直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

我要创建一个工作流,需要怎么创建,用到什么工具,这些工具在哪可以找到

回答

以下是在 Coze 上创建工作流的步骤和所需工具:

  1. 进入 Coze 平台,点击「个人空间-工作流-创建工作流」,打开创建工作流的弹窗。
  2. 根据弹窗要求,自定义工作流信息,点击确认完成工作流的新建。
  3. 新建完成后,整个编辑视图与功能如下:
    • 左侧「选择节点」模块中,根据子任务需要,实际用到的有:
      • 插件:提供一系列能力工具,拓展 Agent 的能力边界。例如涉及思维导图、英文音频等无法通过 LLM 生成的内容,就需要依赖插件来实现。
      • 大模型:调用 LLM,实现各项文本内容的生成。例如中文翻译、英文大纲、单词注释等都依赖大模型节点。
      • 代码:支持编写简单的 Python、JS 脚本,对数据进行处理。
    • 编辑面板中的开始节点、结束节点,分别对应分解子任务流程图中的原文输入和结果输出环节。
  4. 接下来,按照流程图,在编辑面板中拖入对应的 LLM 大模型、插件、代码节点,即可完成工作流框架的搭建。

此外,在扣子平台上,插件就像一个工具箱,里面可以放一个或者多个工具,称为 API。目前扣子平台已有很多不同类型的插件,如看新闻、规划旅行、提高办公效率、理解图片内容的 API 等,还有一些能处理多种任务的模型。若现有的插件不符合需求,还可自己制作插件并加入所需的 API。工作流就像可视化的拼图游戏,可将插件、大语言模型、代码块等功能组合,由多个小块块(节点)组成,如大语言模型 LLM、自己写的代码、做判断的逻辑等,开始和结束都有特定的小块块,不同小块块可能需要不同信息才能工作,信息包括引用前面小块块给出的和自己设定的。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

一泽Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力

[title]一泽Eze:万字实践教程,全面入门Coze工作流|用Coze打造AI精读专家智能体,复刻10万粉公众号的创作生产力[heading1]Step 2:分步构建和测试Agent功能[heading2]2.1在Coze上搭建工作流框架,设定每个节点的逻辑关系首先进入Coze,点击「个人空间-工作流-创建工作流」,打开创建工作流的弹窗。根据弹窗要求,自定义工作流信息。点击确认后完成工作流的新建,可以看到整个编辑视图与功能如下:其中,左侧「选择节点」模块中,根据我们的子任务需要,实际用上的有:1.插件:提供一系列能力工具,拓展Agent的能力边界。本案例涉及的思维导图、英文音频,因为无法通过LLM生成,就需要依赖插件来实现。2.大模型:调用LLM,实现各项文本内容的生成。本案例的中文翻译、英文大纲、单词注释等都依赖大模型节点。3.代码:支持编写简单的Python、JS脚本,对数据进行处理。而编辑面板中的开始节点、结束节点,则分别对应1.2分解子任务流程图中的原文输入和结果输出环节。接下来,按照流程图,在编辑面板中拖入对应的LLM大模型、插件、代码节点,即可完成工作流框架的搭建。

一泽Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力

[title]一泽Eze:万字实践教程,全面入门Coze工作流|用Coze打造AI精读专家智能体,复刻10万粉公众号的创作生产力[heading1]Step 2:分步构建和测试Agent功能[heading2]2.1在Coze上搭建工作流框架,设定每个节点的逻辑关系首先进入Coze,点击「个人空间-工作流-创建工作流」,打开创建工作流的弹窗。根据弹窗要求,自定义工作流信息。点击确认后完成工作流的新建,可以看到整个编辑视图与功能如下:其中,左侧「选择节点」模块中,根据我们的子任务需要,实际用上的有:1.插件:提供一系列能力工具,拓展Agent的能力边界。本案例涉及的思维导图、英文音频,因为无法通过LLM生成,就需要依赖插件来实现。2.大模型:调用LLM,实现各项文本内容的生成。本案例的中文翻译、英文大纲、单词注释等都依赖大模型节点。3.代码:支持编写简单的Python、JS脚本,对数据进行处理。而编辑面板中的开始节点、结束节点,则分别对应1.2分解子任务流程图中的原文输入和结果输出环节。接下来,按照流程图,在编辑面板中拖入对应的LLM大模型、插件、代码节点,即可完成工作流框架的搭建。

我用扣子做一个简单的智能体——竖起耳朵听

[title]我用扣子做一个简单的智能体——竖起耳朵听[heading2]竖起耳朵听的编排[heading3]技能👉插件插件就像是一个工具箱,里面可以放一个或者好几个工具,我们把这些工具叫做API。目前扣子这个平台上已经有很多不同类型的插件了,比如可以看新闻、规划旅行、提高办公效率、理解图片内容的API,还有一些很厉害的能处理多种任务的模型。用了这些插件,我们创建的智能体就能变得更厉害,比如给它加个新闻搜索的插件,它就能帮你找新闻了。要是扣子上现有的插件没有我们想要的,我们还可以自己动手做一个插件,把我们需要的API加进去。在我的智能体里我加了如下插件:👉工作流工作流就像是一个可视化的拼图游戏,我们可以把插件、大语言模型、代码块这些功能像拼图一样组合在一起,这样就能创造出复杂但又很稳定的业务流程。当我们面对的任务有很多步骤,而且对最后的结果要求很严格,比如结果要准确无误、格式也要对,那这时候用工作流来帮忙就最合适了。😎简单来说,工作流是由很多个小块块(节点)组成的,这些小块块就是工作流的基本单元。比如,大语言模型LLM、你自己写的代码、做判断的逻辑,都可以是小块块。工作流一开始和结束都有特别的小块块。开始的那个小块块就像是工作的起点,它可以包含你输入的信息。结束的那个小块块就像是工作的终点,它会告诉你工作流运行的结果是什么。不同的小块块可能需要不同的信息才能工作,这些信息有两种:一种是引用前面小块块给出的信息,另一种是你可以自己设定的信息。在竖起耳朵听的智能体里,我也用到了5个小块块,可以回答带有图片口语的结果,使回答更好。😎👉知识库

其他人在问
如果想创建一个指导高中孩子学习的老师的智能体,我有几个问题:1. 是弄一个全科的智能体还是每门科单独弄一个智能体? 2. 国产哪家的AI产品弄这种智能体比较适合?也就是说回答100%能够正确,不会瞎说; 3.你有什么建议?
对于创建指导高中孩子学习的老师的智能体,以下是一些建议: 1. 关于是创建全科智能体还是每门科单独创建智能体,这取决于您的具体需求和使用场景。如果您希望能够全面、综合地指导学生的学习,全科智能体可能更合适;但如果您想要针对每门学科进行更深入、专业的指导,那么每门科单独创建智能体可能效果更好。 2. 目前国产的 AI 产品中,很难说哪一家 100%能够保证回答正确且不会瞎说。不同的产品在不同的领域和场景中可能表现各异。您可以考虑一些在教育领域有一定口碑和应用案例的产品,并进行充分的测试和评估。 3. 以下是一些创建智能体的建议: 明确智能体的职责和功能,例如是主要进行课程规划、生成测验还是提供学习指导等。 为智能体提供详细准确的提示词,清晰地描述其任务和目标。 像导演一样,将复杂的任务拆分成科学合理的步骤,并确保每个步骤的结果能为后续步骤提供基础。 对于生成的内容,要进行检查和优化,不断调整和改进智能体的表现。 此外,您还可以参考一些相关的提示词库,例如沃顿商学院给教师和学生的提示词库,其中包含了结构化题型设计师和测验生成器等方面的内容。同时,很多 AI 网站都支持创建智能体,您可以为其配置提示词、知识库和能力等。
2024-11-21
如果想创建一个指导高中孩子学习的老师的智能体,我有几个问题:1. 是弄一个全科的智能体还是每门科单独弄一个智能体? 2. 哪家的AI产品弄这种智能体比较适合?也就是说回答100%能够正确,不会瞎说; 3.你有什么建议?
对于创建指导高中孩子学习的老师的智能体,以下是一些建议: 1. 关于是创建全科智能体还是每门科单独创建智能体,这取决于您的具体需求和使用场景。如果您希望能够全面、综合地指导学生的学习,全科智能体可能更合适;但如果您想要针对每门学科进行更深入、专业的指导,那么每门科单独创建智能体可能效果更好。 2. 目前在创建这种智能体方面,一些常见的 AI 产品如 GPT4、Gemini 等都可以考虑。然而,要确保回答 100%正确且不会瞎说是具有一定难度的,因为 AI 的回答仍然受到数据和算法的限制。 3. 以下是一些额外的建议: 参考沃顿商学院给教师和学生的提示词库,例如其中的结构化题型设计师和测验生成器的相关提示。 像导演一样,将创建智能体的任务拆解成科学合理的步骤,明确每个步骤的目标和结果。 注意提示语的逻辑,将复杂任务拆分成多个相互关联的步骤,使前一步的结果成为后一步的基础。 很多 AI 网站都支持创建智能体,您可以根据配置信息、知识库和能力配置等来自行定制。
2024-11-21
给到你一些资料,创建一个对于资料内容掌握 的AI智能体具体操作
以下是创建对于资料内容掌握的 AI 智能体的具体操作: 一、了解智能体的概念 智能体大多建立在大模型之上,从基于符号推理的专家系统逐步演进而来。基于大模型的智能体具有强大的学习能力、灵活性和泛化能力。其核心在于有效控制和利用大型模型,提示词的设计对智能体的表现和输出结果有直接影响。 二、实践制作智能体 1. 基于公开的大模型应用产品(如 Chat GLM、Chat GPT、Kimi 等)尝试开发。 点击“浏览 GPTs”按钮。 点击“Create”按钮创建自己的智能体。 使用自然语言对话或手工设置进行具体设置。 开始调试智能体并发布。 2. 以字节的扣子为例,其作为字节跳动旗下的新一代一站式 AI Bot 开发平台,无论是否具备编程基础,都能迅速构建各类问答 Bot,开发完成后可发布到社交平台和通讯软件上。创建智能体可通过简单 3 步:起一个名称,写一段简单介绍,使用 AI 创建一个头像。 3. 对于 GPTs,可预先写好提示词,像编程一样详细设定操作步骤,方便重复使用。还可将日常工作中部分固定输入输出的场景写成“智能体”并不断迭代优化。很多 AI 网站都能创建“智能体”,如 Kimi.ai ,可设置配置信息、知识库、能力配置等,手搓各种机器人为您工作。
2024-11-19
给到你一些资料,创建一个对于资料内容掌握 的AI智能体
以下是关于创建 AI 智能体的相关内容: 一、使用工具和方法 1. 可以利用 AI 搜索引擎如 felo.ai/search 搜索并归纳资料内容。 2. 运用 AI 可视化工具 napkin.ai 将内容转成图示。 二、提高 GPT 使用效率 预先写好咒语(prompts),像编程一样详细设定操作步骤,方便重复使用。找空闲日列出日常工作,区分哪些可被 AI 加速、哪些工作是固定输入输出的,尝试写成“智能体”并迭代优化。很多 AI 网站都能创建“智能体”,如配置提示词、知识库、能力配置等,还能设置“常用语”“小助手”“bot”,例如 Kimi.ai 。 三、RAG 方法 RAG(RetrievalAugmented Generation)是结合检索和生成的 AI 模型,应用于知识管理能自动检索相关知识点和资料,辅助深度研究。 四、打造个人知识导师 创建个人知识管理员机器人,可随时对话辅助梳理线索,其能基于知识库自学习,成为不可或缺的知识伙伴。 五、构建 AI 写作助手 涵盖构思、草稿生成、内容迭代、润色优化等环节。构思时利用 AI 智能体生成创意点等;草稿生成基于构思细化提示;内容迭代通过 promptchain 工具设计系列提示修改完善;润色优化调整语言风格和语调。 六、AI Agent 介绍 AI Agent 即 AI 智能体,是拥有各项能力帮助做特定事情的“打工人”。目前不少大厂有自己的平台,如字节的扣子、阿里的魔搭社区等。AI 智能体包含知识库、工作流、可调用外部工具,结合大模型自然语言理解能力能完成复杂工作。 七、扣子 Coze 扣子(Coze)是字节跳动旗下的新一代一站式 AI Bot 开发平台,无论有无编程基础都能迅速构建各类问答 Bot,完成后可发布到社交平台和通讯软件上。 八、创建步骤 通过简单 3 步创建智能体,先起名称,再写简单介绍,最后用 AI 创建头像。
2024-11-19
扣子的智能体如何在飞书中创建一个可以和用户会话的账号
要在飞书中创建一个可以和用户会话的扣子智能体账号,您可以按照以下步骤进行操作: 1. 创建扣子的令牌: 在扣子官网左下角选择扣子 API。 在 API 令牌中选择“添加新令牌”。 给令牌起一个名字。 为了方便选择永久有效。 选择制定团队空间,可以是个人空间、也可以选择团队空间。 勾选所有权限。 保存好令牌的 Token,切勿向他人泄露。 2. 获取机器人 ID: 在个人空间中找到自己要接入到微信中的机器人,比如画小二智能小助手。 点击对应的机器人进入机器人编辑界面。 在浏览器地址栏的 bot/之后的数据就是该机器人的 Bot ID。 3. API 授权: 点击右上角发布。 会发现多了一个 Bot as API,勾选 Bot as API。 确定应用已经成功授权 Bot as API。 4. 服务器设置: chatgptonwechat(简称 CoW)项目是基于大模型的智能对话机器人,支持微信公众号、企业微信应用、飞书、钉钉接入,可选择多种模型,能处理文本、语音和图片,通过插件访问操作系统和互联网等外部资源,支持基于自有知识库定制企业 AI 应用。 点击“Docker”中的“编排模板”中的“添加”按钮。 将编译好的内容复制进来。 在“容器编排”中“添加容器编排”。 选择在“编排模板”里创建的“coze2openai”。 提示运行成功,如果无法正常启动,请看文档后面的“常见问题”。 5. 绑定微信: 需要提前准备一个闲置的微信,因为这种方法是非官方接口,有可能微信号会受到官方限制。 点击容器,可以看到运行的是两个服务。 点击“wcandyaibot”后面的日志按钮,在弹出层中用提前预备好的微信进行扫码。 手动刷新界面验证是否成功,点击“刷新日志”,看到 WeChat login success 提示微信登录成功。 为确保微信实时在线,点击“日志管理”的“wcandyaibot”的“刷新日志”,显示“wechat login seccess”则表示微信正常登录中。 6. 效果测试: 把绑定的微信号拉到群里或者单独对话,训练的数据越好,对话效果越好。您可以参考个人微信对话和微信群对话效果演示视频:
2024-11-19
如何创建个人专属知识库
以下是创建个人专属知识库的相关内容: 私人知识库中的内容通常包括从互联网收集的优质信息以及个人日常的思考和分享。 基于私人知识库打造个人专属的 ChatGPT 常见有两种技术方案: 训练专有大模型:可以使用个人知识库训练专有大模型,但此方案并非当下主流,存在高成本、更新难度大等缺陷。 利用 RAG(检索增强生成)技术:先将文本拆分成若干小文本块并转换为 embeddings 向量,保存在向量储存库中。当用户提出问题时,将问题转换为向量与储存库中的向量比对,提取关联度高的文本块与问题组合成新的 prompt 发送给 GPT API。 搭建基于 GPT API 的定制化知识库时,由于 GPT3.5 一次交互支持的 Token 有限,OpenAI 提供了 embedding API 解决方案。embeddings 是一个浮点数字的向量,向量之间的距离衡量关联性,小距离表示高关联度。
2024-11-16
免费实用的ai PPT制作生成工具
以下为您介绍一些免费实用的 AI PPT 制作生成工具: 歌者 PPT(gezhe.com):是一款永久免费的智能 PPT 生成工具。具有话题生成、资料转换、多语言支持、海量模板和案例库、在线编辑和分享、增值服务等功能。其产品优势包括免费使用、智能易用、海量案例、资料转 PPT 专业、AI 翻译等。推荐理由为完全免费、智能化程度高、模板和案例丰富、支持多语言、几乎无需学习成本就能上手使用。 MindShow、爱设计、闪击、Process ON、WPS AI:这些工具各具独特优势,能助您快速、高效地完成 PPT 设计。 目前市面上大多数 AI 生成 PPT 通常按照以下思路完成设计和制作: 1. AI 生成 PPT 大纲 2. 手动优化大纲 3. 导入工具生成 PPT 4. 优化整体结构 此外,为您推荐 2 篇市场分析的文章供参考: 《》 《》 请注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-21
一键去除图片马赛克的工具
以下是一些可以一键去除图片马赛克的工具: 1. AVAide Watermark Remover:这是一个在线工具,使用 AI 技术从图片中去除水印。它支持多种图片格式,如 JPG、JPEG、PNG、GIF 等。操作简单,只需上传图片,选择水印区域,然后保存并下载处理后的图片即可。这个工具还提供了其他功能,如去除文本、对象、人物、日期和贴纸等。 2. Vmake:同样提供 AI 去除图片水印的功能。用户可以上传最多 10 张图片,AI 会自动检测并移除图片上的水印。处理完成后,用户可以选择保存生成的文件。适合需要快速去除水印的用户,尤其是那些需要在社交媒体上分享图片的用户。 3. AI 改图神器:提供 AI 智能图片修复去水印的功能,可以一键去除图片中的多余物体、人物或水印,不留任何痕迹。支持直接粘贴图像或上传手机图像,操作简单方便。 此外,如果想去除图片中特定的物体,如右手的手串,除了 PS,还可以选择以下工具: PS 的 AI 版,操作相对简单。 SD 局部重绘。 Firefly、Canva、Google photo 都有局部重绘功能。 微软 Designer 免费。 https://clipdrop.co/cleanup 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-21
总结大量文字的工具
以下是关于总结大量文字的工具的相关内容: 在当今世界,大型语言模型可用于概括文本,如在 Chat GPT 网络界面中可完成此工作。对于电子商务网站的产品评论,可通过特定提示生成 30 个单词以内的简短摘要,包括 4.1 文字总结、4.2 针对某种信息总结、4.3 尝试“提取”而不是“总结”、4.4 针对多项信息总结等方面。 一些 GPTs 应用可实现相关功能,如 Flow Speed Typist 用于重写混乱文字,AnalyzePaper 用于分析研究论文,GPT Detector 用于识别 AI 生成文本,Math Solver 用于解决数学问题,editGPT 用于校对编辑内容,You Tube Summarizer 用于获取 YouTube 视频摘要等。 除聊天内容外,AI 还能总结各种文章(不超过 2 万字),可直接复制粘贴给 GPTs 进行总结。对于 B 站视频,若有字幕,可通过安装油猴脚本提取字幕,再发给 AI 执行内容总结任务。总结完视频内容后,还可继续向 AI 提问或探讨。
2024-11-21
我需要能够帮我找到能根据字幕对应视频剪辑到内容的工具
以下为您推荐一些能够根据字幕对应视频剪辑内容的工具: 1. 剪映:有很多人性化设计和简单的音效库、小特效。但无法协同工作和导出工程文件,难以达到更好的商业化效果。其剪辑流程包括视频粗剪、定剪、音效/音乐、特效、包装(如字幕)等环节。 2. Reccloud:免费的在线 AI 字幕生成工具,可直接上传视频精准识别,能翻译字幕并生成双语字幕,处理视频数量多,识别准确率高。 3. 绘影字幕:一站式专业视频自动字幕编辑器,提供字幕制作和翻译服务,支持多种语言,准确率高,可自定义字幕样式。 4. Arctime:能对视频语音自动识别并转换为字幕,支持自动打轴,支持主流平台和多种字幕功能。 5. 网易见外:国内知名语音平台,支持视频智能字幕功能和音频转写,转换正确率较高。 您可以根据自身需求选择适合的工具。
2024-11-21
有没有把外国PPT翻译为中文的工具
以下为您介绍将外国 PPT 翻译为中文的工具及相关方法: 有一种自动 PPT 翻译脚本,其开发过程如下: 1. 前期准备: 翻译需要外接 API,推荐讯飞大模型,新账户免费送 200 万 tokens,有效期 3 个月。 进入 https://xinghuo.xfyun.cn/ ,首页选择 API 接入,然后点服务管理进入控制台。 创建一个新项目,比如“PPT 翻译”,以避免 API 泄露。 点进去,找到左边机器翻译的模型,按提示领取 200 万 tokens 的礼包,然后在主控台看到对应的 id、apikey、api secret 和接入路径。 2. 导入依赖: 大部分依赖是常用的,只有一个 ppt 可能需要装,运行 CMD 输入 pip install pythonpptx,如果还缺的可以按提示安装。 3. 初始化 API 相关信息和文件路径: 先设置对应的 api 信息,其他模型可以对应做替换。 4. 读取并提取 PPT 文本: 根据讯飞的 API 文档配置做请求指令,确保 API 可以正确调用。打印响应数据设置方便监测脚本执行动态,如果碰到报错可以随时做优化。 5. 翻译脚本: 目前只设置了文本翻译,未对表格元素处理,排除了所有 shape,如果要加入表格翻译,可以定义 shape = table 来定义表格,然后翻译表格里的 cell 实现。 接收路径已调好,如果用其他的 API,要在 translated_text = get_result 后面替换成自己的地址。 语言选择,原文件是中文用'cn'表示,英文文档改成‘en’,其他语种对应。 此外,还有 Claude 官方文档提示词工程最佳实践@未来力场编译版(中英对照),源地址 https://docs.anthropic.com/claude/docs ,扫码关注未来力场:AIGC 最佳实践中文互联网搬运工。
2024-11-21
企业做自己的小模型,需要用到的工具及工具背后的公司都有哪些?
企业做自己的小模型,可能会用到以下工具及背后的公司: 1. 在编排(Orchestration)方面,涉及的公司如 DUST、FIAVIE、LangChain 等,其提供的工具可帮助管理和协调各部分及任务,确保系统流畅运行。 2. 部署、可扩展性和预训练(Deployment, Scalability, & PreTraining)类别中,像 UWA mosaicm、NMAREL、anyscale 等公司提供的工具,有助于部署模型、保证可扩展性及进行预训练。 3. 处理上下文和嵌入(Context & Embeddings)的工具,相关公司有 TRUDO、Llamalndex、BerriAI 等,能帮助模型处理和理解语言上下文,并将词语和句子转化为计算机可理解的形式。 4. 质量保证和可观察性(QA & Observability)方面,例如 Pinecone、drant、Vald 等公司提供的工具,可确保模型表现并监控其性能和状态。 此外,还有以下工具和相关公司: 1. 图片生成 3D 建模工具,如 Tripo AI(由 VAST 发布)、Meshy、CSM AI(Common Sense Machines)、Sudo AI、VoxCraft(由生数科技推出)等。 企业还可能涉及具身智能、3D 眼镜、AI 绘本、AI 图书、学习机、飞书的多维表格、蚂蚁的智能体、Coze 的智能体、Zeabur 等云平台、0 编码平台、大模型(通义、智谱、kimi、deepseek 等)、编程辅助、文生图(可灵、即梦等)等方面,可能需要相应资质。
2024-11-20
我要做GPTs
做 GPTs 的原因主要有以下几点: 1. 从社会层面看,虽然 AI 信息充斥,但大多数人对其了解有限,直接面对大模型时交流有限。而 Character.ai 因创造具体角色,数据居高不下,这表明需要明确的引导,而 GPTs 的创作者们可以做到这一点。 2. 对于平台来说,需要场景反哺产品,也需要先行者带动,形成双赢的共存生态。 3. 从从业者角度,如作者自身,虽有丰富经验,但在做 LLMs 应用时面临诸多问题,如找不到落脚点、技术与业务的断档等。懂技术的人不懂业务,熟悉业务的人对新技术没概念。 4. 从产品角度,普通用户的简单交流大模型难以明白其意图,而 GPTs 通过对话引导逐步获取用户信息,将生成高质量 Prompt 的过程拆解为以一轮对话为最小单元任务的重复,解决了用户说什么以及低门槛生成高质量 Prompt 的问题。
2024-11-21
我有一张图像,我要如何用stable Diffusion给它添加噪音。我是一个小白,请给出详细的步骤,用webui来操作。
以下是使用 WebUI 为图像添加噪音的详细步骤: 1. 首先,了解 Stable Diffusion 的加噪原理。从数据集中选择一张干净样本,然后用 random 函数生成 0 3 共 4 种强度的噪声,在每次迭代中随机选择一种强度的噪声添加到干净图片上,完成图片的加噪流程。 2. 在训练过程中,对干净样本进行加噪处理,采用多次逐步增加噪声的方式,直至干净样本转变成为纯噪声。 3. 加噪过程中,每次增加的噪声量级可以不同,假设存在 5 种噪声量级,每次都可以选取一种量级的噪声,以增加噪声的多样性。 4. 与图片生成图片的过程相比,在预处理阶段,先把噪声添加到隐空间特征中。通过设置去噪强度(Denoising strength)控制加入噪音的量。如果去噪强度为 0 ,则不添加噪音;如果为 1 ,则添加最大数量的噪声,使潜像成为一个完整的随机张量。若将去噪强度设置为 1 ,就完全相当于文本转图像,因为初始潜像完全是随机的噪声。
2024-11-18
我有一张图像,我要如何用stable Diffusion给它添加噪音
要使用 Stable Diffusion 给一张图像添加噪音,以下是相关的原理和过程: 在 Stable Diffusion 中,与 GAN 等生成式模型一样,它学习拟合训练集分布,并能够生成与训练集分布相似的输出结果。但与 GAN 相比,SD 模型训练过程更稳定,且具备更强的泛化性能,这归功于其核心的前向扩散过程和反向扩散过程。 在前向扩散过程中,SD 模型持续对一张图像添加高斯噪声直至变成随机噪声矩阵。而在反向扩散过程中,SD 模型进行去噪声过程,将一个随机噪声矩阵逐渐去噪声直至生成一张图像。 Stable Diffusion 的整个训练过程在最高维度上可以看成是如何加噪声和如何去噪声的过程,并在针对噪声的“对抗与攻防”中学习到生成图片的能力。 其训练逻辑为: 1. 从数据集中随机选择一个训练样本。 2. 从 K 个噪声量级随机抽样一个 timestep t。 3. 将 timestep t 对应的高斯噪声添加到图片中。 4. 将加噪图片输入 UNet 中预测噪声。 5. 计算真实噪声和预测噪声的 L2 损失。 6. 计算梯度并更新 SD 模型参数。 在训练时,需要把加噪的数据集输入模型中,每一次迭代用 random 函数生成从强到弱各个强度的噪声,通常会生成 0 1000 一共 1001 种不同的噪声强度,通过 Time Embedding 嵌入到训练过程中。Time Embedding 由 Timesteps(时间步长)编码而来,引入 Timesteps 能够模拟一个随时间逐渐向图像加入噪声扰动的过程。每个 Timestep 代表一个噪声强度(较小的 Timestep 代表较弱的噪声扰动,而较大的 Timestep 代表较强的噪声扰动),通过多次增加噪声来逐渐改变干净图像的特征分布。 以下是一个简单的加噪声流程示例:首先从数据集中选择一张干净样本,然后再用 random 函数生成 0 3 一共 4 种强度的噪声,然后每次迭代中随机一种强度的噪声,增加到干净图片上,完成图片的加噪流程。 在训练过程中,首先对干净样本进行加噪处理,采用多次逐步增加噪声的方式,直至干净样本转变成为纯噪声。接着,让 SD 模型学习去噪过程,最后抽象出一个高维函数,这个函数能在纯噪声中不断“优化”噪声,得到一个干净样本。其中,将去噪过程具像化,就得到使用 UNet 预测噪声,并结合 Schedule 算法逐步去噪的过程。加噪和去噪过程都是逐步进行的,假设进行 K 步,那么每一步,SD 都要去预测噪声,从而形成“小步快跑的稳定去噪”。与此同时,在加噪过程中,每次增加的噪声量级可以不同,假设有 5 种噪声量级,那么每次都可以取一种量级的噪声,增加噪声的多样性。
2024-11-18
我要用数字人AI做教学讲课
数字人 AI 用于教学讲课具有诸多优势: 1. 突破时空限制:可以让历史人物如牛顿亲自授课《牛顿运动定律》,白居易讲述《长恨歌》背后的故事,学生能与任何历史人物对话交流,不受时空约束。 2. 个性化教学:能根据学生的学习情况、兴趣和偏好提供定制化学习计划和资源,因材施教,提高学习效率和成果,缓解教育资源不平等问题。 3. 提高参与感:数字教师博学多能、善解人意且不受情绪左右,基本可实现一对一辅导,让学生参与感更高。 4. 丰富教学形式:如卡尔的 AI 沃茨的数字人课程,包含 15 节视频课,持续更新并增加最新内容,还有课外社群辅导。课程回顾了 2023 年数字人领域的破圈事件,如 AI 马斯克对谈 AI 乔布斯等。 5. 优化工作流:数字人的出现能在制作个人 IP 短视频、配音、直播、智能客服、虚拟偶像等领域完成赋能。 关于数字人课程的学习: 1. 推荐卡尔的 AI 沃茨的数字人课程,建立了完整的数字人学习体系。 2. 报名方式可通过扫码查看课程详细内容和介绍。 在与 AI 交互方面: 1. 对于提示词工程和学习提示词,有人持反对观点,认为像打字和写作一样,不断尝试和大模型交互是最佳方法。 2. 和大模型交互不一定需要遵循规则,未达成目的可锲而不舍地开新窗口再尝试,或更换模型。 3. 用 Markdown 格式清晰表达问题有助于提高与大模型交流的效率和精确性,其具有结构清晰、格式化强调、适用性广等优点。
2024-11-17
我现在是一个AI小白,我想学习AI相关知识,我要怎么进阶学习?
对于 AI 小白的进阶学习,您可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能、机器学习、深度学习等主要分支及其之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,根据自身兴趣选择特定模块深入学习。 掌握提示词的技巧,因其上手容易且实用。 4. 实践和尝试: 理论学习后,通过实践巩固知识,尝试使用各种产品创作自己的作品。 分享实践后的经验和成果。 5. 体验 AI 产品: 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获取实际应用中的体验,激发对 AI 潜力的认识。 同时,您还需要掌握以下基础知识: AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2024-11-14
我要用Sd做图片细化,要怎么做?给出具体方法
以下是使用 SD 做图片细化的具体方法: 1. 对于更精确的蒙版,如人物的眼睛或配饰等,可使用 Segment Anything 中的 GroundingDINO。启用 GroundingDINO 后,AI 会自动下载模型,若没有魔法,可去云盘下载并放到指定文件目录下。在检测提示词中输入相关内容,如“eye”,AI 可自动检测并设置蒙版,还可通过预览箱体得到编号来选择调整单一部分。选择要修改的蒙版上传到重绘蒙版中,并添加提示词,如“闭眼”,点击生成即可完成修改。 2. 给人物换背景时,加载生成的背景蒙版。大模型选择 revAnimated_v122,正向提示词可设为“简单背景、花、国画、工笔”,蒙版模式选择“重绘非蒙版内容”。若头发部分没抠好,可将其放入图生图中,使用 tile 模型做整体细化,还能给人物衣服添加国风元素。 3. SD 扩图时,若原本图片尺寸为 1152x1152 需增高高度,可设置为(1152x1526)。ControlNet 设置方面,若无法识别处理,可采取以下措施:提高 ControlNet 的权重(增加预处理权重,降低引导介入时机直到为 0,增加引导终止时机直到为 1);降低重绘幅度(高清修复大图时使用);把原始的黑白二维码叠加在二维码上方(正片叠底,保留 4 个定位点,擦去其他地方),调节透明度;使劲抽卡。 4. SD 放大通常重绘幅度设置在 0.3 以下,使用 tile 模型时可提高重绘幅度,如保持重绘幅度为 1 放大 1.5 倍绘图,能加强画面细节且不崩坏。对于草图,可将其导入 ControlNet 中,添加提示词进行细化,还可通过改变控制模式和增加关键词来优化效果,如实现随机提示词转换,用提示词对参考图做出调整。
2024-11-09
如何可以使用到chatgpto1大模型
目前 ChatGPT 没有 ChatGPT1 这个大模型。ChatGPT 有多个版本,如 ChatGPT3、ChatGPT3.5、ChatGPT4 等。您可以通过以下方式使用 ChatGPT 相关模型: 1. 访问 OpenAI 的官方网站,按照其指引进行注册和使用。 2. 部分应用和平台可能集成了 ChatGPT 的接口,您可以在这些应用中体验其功能。 需要注意的是,使用 ChatGPT 时应遵循相关的使用规则和法律法规。
2024-11-16
怎么学习人工智能并应用到赚钱
学习人工智能并应用到赚钱可以从以下几个方面入手: 1. 掌握基础知识:学习人工智能的基本概念、原理和技术,包括机器学习、深度学习、自然语言处理等。 2. 提升技能:通过相关课程和实践,提高自己在数据处理、模型训练和优化等方面的能力。 3. 学习商业应用:了解人工智能在金融、医疗、制造业等行业的应用案例,例如学习微软的《面向商业用户的人工智能学习》《人工智能商学院》等课程。 4. 深入研究经典机器学习:可参考《机器学习入门课程》。 5. 掌握特定技术:如使用 Azure 认知服务(Azure Cognitive Services)来创建实用的人工智能应用,包括《视觉》《自然语言处理》《使用 Azure OpenAI 服务的生成式人工智能》等课程。 6. 持续学习和实践:人工智能领域发展迅速,需要不断更新知识和技能,并将其应用到实际项目中。 然而,需要注意的是,学了人工智能有可能赚钱,但不一定保证每个人都能赚到钱。人工智能领域确实有很多高薪工作,比如数据科学家、机器学习工程师等,但能否赚钱还取决于很多因素,比如个人的学习能力、实际应用能力、对市场和商业的理解等等。仅仅学会一些基础知识可能还不足以在竞争激烈的市场中脱颖而出。大型语言模型主要基于语言理解和生成,并非专门设计用于数学计算,在处理数学问题时可能出错。同时,关于 GPTs/GLMs 能否帮助创作者赚钱,答案是能,但大多数人不能,具体原因会在相关文章中详细阐述。
2024-10-30
如何使用ai去写软件需求设计文档,需要用到哪些工具
使用 AI 写软件需求设计文档可以参考以下步骤和工具: 1. 明确需求和目标:清晰界定软件的功能、性能、用户界面等方面的要求。 2. 收集相关信息:利用 AI 工具如学术搜索引擎、文献管理软件等搜集类似软件的需求文档和相关资料。 3. 分析总结信息:借助 AI 文本分析工具提取关键要点和主要观点。 4. 生成大纲:使用 AI 写作助手构建需求文档的大纲,涵盖引言、功能需求、非功能需求、界面设计等部分。 5. 撰写各部分内容:利用 AI 写作工具撰写需求文档的各个部分,并进行语法和风格检查。 6. 审阅和修改:通过 AI 审阅工具检查文档的逻辑性、一致性和准确性,并根据反馈进行修改。 7. 提交前检查:使用 AI 抄袭检测工具确保文档的原创性,并做最后的格式调整。 以下是一些可用于写软件需求设计文档的工具: ChatPRD、WriteMyPRD、Uizard、tldraw 等。 需要注意的是,AI 工具只是辅助,不能完全替代您的专业判断和思考,要确保文档的质量和准确性。
2024-10-17
大学老师最头疼的场景,能够使用到最多的AI场景解决问题
以下是一些大学老师可能会遇到的头疼场景以及能够用 AI 解决的方式: 学习指导方面: 可以大规模部署个性化的学习计划,为每个学生提供一个“口袋里的老师”,理解学生独特需求,回答问题或测试技能。例如像 Speak、Quazel 和 Lingostar 这样的应用。 对于特定学科的学习,如数学,有像 Photomath 和 Mathly 这样的应用指导学生解决问题;对于历史学习,有 PeopleAI 和 Historical Figures 通过模拟与杰出人物的聊天来教授。 学生在作业中利用 AI 助手,如 Grammarly、Orchard 和 Lex 帮助克服写作难题,提升写作水平。处理其他形式内容的产品,如 Tome 和 Beautiful.ai 协助创建演示文稿。 教学协助方面: 自适应学习,精准回答学生问题,协助教师提供数字资源。 在教育的各个方面,如教学内容、教学场景、教材与教法、教育思想和教育组织形态等,AI 都能发挥作用。 在不同的教育时代,如口传时代、手抄时代、印刷时代、电子媒体时代和数字媒体时代,AI 都能为教育带来新的可能性和改进。 AI 在医疗保健、金融服务、零售和电子商务、制造业、交通运输等行业也有广泛应用: 医疗保健:医学影像分析辅助诊断疾病、药物研发、个性化医疗、机器人辅助手术等。 金融服务:风控和反欺诈、信用评估、投资分析、客户服务等。 零售和电子商务:产品推荐、搜索和个性化、动态定价、聊天机器人等。 制造业:预测性维护、质量控制、供应链管理、机器人自动化等。 交通运输:自动驾驶、交通流量预测、物流优化等。
2024-10-07
围棋人机博弈是否有用到智能算法的功能
围棋人机博弈有用到智能算法的功能。 早期的国际象棋对弈程序是以搜索为基础,发展出了阿尔法贝塔剪枝搜索算法。在对局开始时,由于搜索空间巨大,采用了基于案例的推理,即从知识库中寻找相似案例来决定棋步。 现代能够战胜人类棋手的对弈程序基于神经网络和强化学习。例如,DeepMind 团队开发的新算法 Deep QNetwork(DQN)可以从经验中学习。2015 年 10 月 AlphaGo 项目首次在围棋中击败人类冠军李世石,之后的 AlphaGo Zero 用新的可以自我博弈的改进算法让人类在围棋领域难以翻盘。 AlphaGO 的价值网络和策略网络以人类高手的对弈数据以及 AI 自我博弈的数据为基础进行训练,并且与蒙特卡洛树搜索有机结合,取得了突破。
2024-09-18