Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

贝叶斯网络

Answer

贝叶斯网络:

  • 在 1985 年“ A Learning Algorithm for Boltzmann Machines”中,玻尔兹曼机器类似于神经网络,其单元在给定相连单元值和权重的情况下能计算自身概率,取值为 1 或 0,是随机的,遵循概率分布而非决定性方式。玻尔兹曼机器部分与概率分布有关,其分布决定了数学和推理方法,是一种基于能量的模型实例,适用于基于能量的学习理论框架。一个简单的信念,或者说贝叶斯网络,玻尔兹曼机器基本上就是如此,但有着非直接/对称联系和可训练式权重,能够学习特定模式下的概率。
  • 在深度学习领域的讨论中,有人是贝叶斯主义者,喜欢贝叶斯非参数方法。当时神经网络因无法证明相关数学定理而被边缘化,但有人从一开始就被神经网络吸引。
Content generated by AI large model, please carefully verify (powered by aily)

References

深度 | 神经网络和深度学习简史(第二部分):BP算法之后的又一突破——信念网络

[title]深度|神经网络和深度学习简史(第二部分):BP算法之后的又一突破——信念网络[heading1]神经网络迎来信念网络事实上,在成为1986年讨论反向传播学习算法这篇有重大影响力论文的合作者之前,Hinton在研究一种神经网络方法,可以学习1985年「 A Learning Algorithm for Boltzmann Machines」中的概率分布。玻尔兹曼机器就是类似神经网络的网络,并有着和感知器(Perceptrons)非常相似的单元,但该机器并不是根据输入和权重来计算输出,在给定相连单元值和权重的情况下,网络中的每个单元都能计算出自身概率,取得值为1或0。因此,这些单元都是随机的——它们依循的是概率分布而非一种已知的决定性方式。玻尔兹曼部分和概率分布有关,它需要考虑系统中粒子的状态,这些状态本身基于粒子的能量和系统本身的热力学温度。这一分布不仅决定了玻尔兹曼机器的数学方法,也决定了其推理方法——网络中的单元本身拥有能量和状况,学习是由最小化系统能量和热力学直接刺激完成的。虽然不太直观,但这种基于能量的推理演绎实际上恰是一种基于能量的模型实例,并能够适用于基于能量的学习理论框架,而很多学习算法都能用这样的框架进行表述。一个简单的信念,或者说贝叶斯网络——玻尔兹曼机器基本上就是如此,但有着非直接/对称联系和可训练式权重,能够学习特定模式下的概率。

访谈:Ilya | 2023年11月长篇访谈

[title]访谈:Ilya | 2023年11月长篇访谈[heading2]Ilya自己在深度学习领域的研究经历主持人:我们从最初的深度学习开始讨论。在AlexNet出现之前,深度学习中没有任何东西真正有效。然后考虑到当时的环境,你们下了一个非常独特的赌注。是什么促使你朝这个方向发展?Ilya:在那个黑暗时代,人工智能并不是一个人们抱有希望的领域,人们根本不习惯任何形式的成功。由于没有取得任何成功,因此引发了很多争论,不同的思想流派对机器学习和人工智能应该如何发展有不同的争论。有人热衷于老式人工智能的知识表示。有些人是贝叶斯主义者,他们喜欢贝叶斯非参数方法。有人喜欢图形模型,有人喜欢神经网络。这些人被边缘化,因为神经网络不具备无法证明关于他们的数学定理的特性。如果你不能证明某件事的定理,那就意味着你的研究不好。但是,我从一开始就被神经网络所吸引,因为我觉得这些都是小大脑,谁在乎你是否能证明关于它们的任何定理,因为我们正在训练小大脑,也许它们会变成,也许它们有一天会做某事。我们之所以能够做到AlexNet,是两三个因素的结合。第一个因素是,这是在GPU开始用于机器学习之后不久。人们有一种直觉,认为这是一件好事,但当时人们并不像今天那样确切地知道GPU的用途。他们想,让我们玩一下那些又酷又快的计算机,看看我们能用它们做什么。它特别适合神经网络。所以这绝对对他们有帮助。我非常幸运,因为意识到神经网络的原因是因为它们太小了。就像如果你尝试用神经网络解决视觉任务一样,它有大约一千个神经元,它能做什么?它什么也做不了。你的学习有多好以及其他一切并不重要。但如果你有一个更大的神经网络,它将做出前所未有的事情。主持人:是什么让你有这样的直觉?

教程 | 可视化CapsNet,详解Hinton等人提出的胶囊概念与原理

[title]教程|可视化CapsNet,详解Hinton等人提出的胶囊概念与原理选自freecodecamp作者:Nick Bourdakos机器之心编译参与:Pedro、思源尽管卷积神经网络已经做出了令人惊艳的成绩,但还是存在着一些根本性问题。是时候开始思考新的解决方案和改进了。现在就让我们一起来了解一下胶囊网络(capsules networks)。在之前的文章中我曾简要地讨论过胶囊网络(https://hackernoon.com/capsule-networks-are-shaking-up-ai-heres-how-to-use-them-c233a0971952)是如何解决一些传统问题的。在过去的几个月里,我一直沉浸在各种各样的胶囊网络里。我觉得现在是时候一起更加深入地探索胶囊网络的实际运作方式了。为了让后面的讨论更加容易,我开发了一款与胶囊网络实现配套的可视化工具,它能够让您看到网络的每一层是如何工作的。这些内容都可以在GitHub上找到(https://github.com/bourdakos1/CapsNet-Visualization)。如下所示是CapsNet的结构。如果您现在还不理解每个部分的具体含义,不必担心。我会尽我所能一层一层地进行详细讨论。part 0:网络输入胶囊网络(CapsNet)的输入是提供给神经网络的真实图片。在这个例子中输入的图片长宽都为28个像素。一张图片实际上有3个维度用来存储不同颜色通道的信息。因为是灰度图,而用作示例的图片仅仅有一个颜色通道。大家所熟悉的大多数图片都有3或4个通道用来存储红-绿-蓝和可能用于存储灰度或透明度的额外通道。

Others are asking
我的行业是专门的信息安全服务商(针对网络安全、数据安全等),请帮我分析有什么AI工具是可以跟我的行业进行结合使用,我需要学习哪些内容
以下是一些与您所在的信息安全服务行业相结合的 AI 工具及您需要学习的内容: AI 工具: 1. 自然语言处理模型,如 ChatGPT、文心一言、通义千问等,可用于分析和理解大量的安全相关文本数据。 2. 图像识别模型,如 DALLE 等,有助于检测和识别网络中的异常图像或数据安全中的图像相关问题。 需要学习的内容: 1. 了解 GenAI(生成式 AI)和 AIGC 的基本概念,包括其工作原理、应用场景和潜在风险。 2. 熟悉相关法律法规,如国内的《网络安全法》《数据安全法》《个人信息保护法》以及相关管理规定,以确保在使用 AI 工具时符合法律要求。 3. 掌握 AI 工具在信息安全领域的应用方法和技巧,例如如何利用自然语言处理模型进行安全文本分析,如何防范图像识别模型可能带来的安全漏洞。 4. 研究 AI 带来的特定风险,如未经授权收集信息、提供虚假信息、侵害个人隐私等,并学习相应的防范和应对措施。 5. 关注 AI 技术在网络安全攻击方面的新趋势,如利用大型语言模型进行自动化、加速和增强网络攻击的手段,以及相应的防御策略。
2025-03-24
神经网络需要哪些硬件设施才能搭建起来
搭建神经网络通常需要以下硬件设施: 1. 图形处理单元(GPU):如英伟达的 GTX 580 GPU,其具有大量快速小内核,适合矩阵乘法和高内存带宽,能显著提高训练速度。 2. 专用芯片:如 ASIC 芯片、neuromorphic chips 等,更易于在芯片上实现神经网络的指令集,适用于低能耗的智能设备。 此外,搭建神经网络的硬件设施还具有以下特点和优势: 1. 同质化计算:典型的神经网络主要由矩阵乘法和线性整流函数(ReLu)两种操作组合而成,相比传统软件的指令更简单,核心代码(如矩阵乘法)的正确性和性能验证更容易。 2. 对芯片更友好:指令集小,在芯片实现上更轻松,能改变低能耗智能设备的应用场景。 3. 常量级的运行时间:每次前向迭代的计算量高度一致,不存在手写复杂 C++代码中的各种执行分支,能避免未预料的无限循环。 4. 常量级的内存消耗:几乎无需动态分配内存,减少与硬盘的 swap 和内存泄漏的可能。 5. 高度可移植:一连串的矩阵乘法操作更容易在各种计算机环境下运行。
2025-03-23
我想用ai写网络爆款小说,我应该怎么做
如果您想用 AI 写网络爆款小说,可以参考以下步骤: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析您的构思,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 另外,还有一种工作流可供参考: 1. 用 bing 搜索小说标题相关的内容。 2. 用程序将搜索结果结构化(这一步有一定的提升效果,不熟悉程序的可以忽略,或者直接复制文中的代码)。 3. 用大模型草拟大纲,包括标题、主旨、世界观、主要角色、小说背景、情节概要。 4. 再用大模型来写文章。 在让 AI 生产文章时,关键在于提供清晰且具有指导性的提示词(prompt)。例如:“请根据我们收集的关于及其可能产生的影响,结尾处提出一些引人深思的问题或观点。”这样的提示词能帮助 AI 更准确地理解您的需求,并生成更符合预期的内容。但最终产出的内容可能需要您进行一些微调,以确保完全符合您的预期和风格。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2025-03-18
如何使用AI在网络搜索信息,并将信息填入表格内呢?
使用 AI 在网络搜索信息并填入表格内,您可以参考以下几种方法: 1. 利用 AI 与权威网站结合获取关键数据,并辅助提取结构化表格数据或编写抓取程序。例如,针对如何用 AI 撰写专业区域经济报告,信息收集时可这样操作。同时,针对报告需求将内容拆分,避免 AI 单次处理任务过长。数据处理时,借助传统工具如 Excel,结合 AI 指导高效操作数据筛选与图表生成。分析与撰写时,通过整理数据,利用 AI 辅助分析后撰写报告初稿,可指定风格并校验数据与结论准确性。但要注意,AI 仅作辅助,最终内容需人工主导校验,避免误导性结论。 2. 使用 Perplexity 进行搜索。Perplexity 的 Pro 搜索会将复杂问题拆分成不同关键词,进行多次搜索后整合结果,为用户提供全面、精准的答案。用户提问一次,Perplexity 会自动分多次搜索并把答案合并整理呈现,还会提供信息来源以便进一步查证。 3. 对于调研市场上主流的开源搜索引擎技术架构这类任务,可采用多智能体 AI 搜索引擎方案: 第一步,根据用户任务,使用搜索工具如 API WebSearchPro 补充更多信息,参考相关文档。 第二步,使用大模型如 GLM40520 把用户问题拆分成若干子搜索任务,并转换为 JSON 格式,参考相应 API 文档和 JSON 工具。 第三步,用具备联网搜索和自主分析能力的 AI 搜索智能体完成子任务,参考智能体 API 的调用方式。 第四步,智能体能调用各种插件生成思维导图等,根据工作需要选择,参考智能体 API 的调用方式。
2025-03-18
结合北京房山区文化、地标建筑、生态景观等内容,设计房山区中小学数学节 LOGO,要求巧妙融合数学元素(如几何图形、数学公式、数学符号等)与 AI 元素(如神经网络图案、代码片段、智能机器人形象等),生动诠释 “数学 + AI=?” 的主题内涵。
以下是为您整合的相关内容: 北京具有丰富多样的特色元素,包括经典地标如万里长城、天安门广场、故宫角楼、天坛等,见证了历史变迁;宜居生活方面,有独特的美食如豆汁儿、脆皮烤鸭、老北京炸酱面,以及充满京腔的日常生活;潮流文化新地标如国家博物馆、胡同里的新老交融、环球影城、798 等;未来科技方面,有西二旗的上班族日常、北大化学系科研 vlog、世界机器人大会等。 在海报设计方面,若对 AI 回答有疑问可再搜索确认,对于想用的项目要确认与北京的关系及能否使用;兔爷、戏曲金句等北京有名元素可用,金句可分化。做海报时可借鉴三思老师毛绒玩具美食系列,先找参考、做头脑风暴。比赛征集内容有四个赛道,若做系列海报,围绕金句或偏向北京非遗项目做系列较简单。用 AI 制作海报时,如制作北京地标糖葫芦风格海报,可用集梦 2.1 模型,以天坛等建筑为画面中心,注意材质、抽卡选图和细节处理。 对于设计房山区中小学数学节 LOGO,您可以考虑将房山区的特色文化、地标建筑、生态景观与数学元素(如几何图形、数学公式、数学符号等)和 AI 元素(如神经网络图案、代码片段、智能机器人形象等)相结合。例如,以房山区的著名建筑为主体,融入数学图形进行变形设计,同时添加一些代表 AI 的线条或图案,以生动诠释“数学 + AI=?”的主题内涵。
2025-03-18
NLP包括哪些任务,现在的GPT是否都已覆盖,CV类包括哪些任务,现在由哪些网络模型覆盖
NLP 包括的任务有文本分类、情感分析、命名实体识别、信息抽取、机器翻译、问答系统、摘要生成等。目前 GPT4 在一系列 NLP 任务上表现出色,优于现有的大型语言模型,但不能说已完全覆盖所有 NLP 任务。 CV 包括的任务有图像分类、目标检测、图像分割、图像生成、视频分析等。在 CV 领域,一些常见的网络模型有生成对抗网络(GANs)、变分自编码器(VAEs)、流模型、扩散模型、视觉变压器(ViT)、Swin 变压器等。
2025-03-16