Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何做大模型的云端部署与微调

Answer

做大模型的云端部署与微调,主要包括以下步骤:

  1. 选择合适的部署方式:
    • 本地环境部署。
    • 云计算平台部署。
    • 分布式部署。
    • 模型压缩和量化。
    • 公共云服务商部署。需根据自身的资源、安全和性能需求进行选择。
  2. 准备训练所需的数据和计算资源:
    • 确保有足够的训练数据覆盖目标应用场景。
    • 准备足够的计算资源,如 GPU 服务器或云计算资源。
  3. 选择合适的预训练模型作为基础:
    • 可以使用开源的预训练模型如 BERT、GPT 等。
    • 也可以自行训练一个基础模型。
  4. 针对目标任务进行模型微调训练:
    • 根据具体应用场景对预训练模型进行微调训练。
    • 优化模型结构和训练过程以提高性能。
  5. 部署和调试模型:
    • 将训练好的模型部署到生产环境。
    • 对部署的模型进行在线调试和性能优化。
  6. 注意安全性和隐私保护:
    • 大模型涉及大量数据和隐私信息,需要重视安全性和合规性。

例如,对于 SDXL 的大模型,本地部署时要注意模型分为 base+refiner 以及配套的 VAE 模型,需将其放入对应文件夹,并在秋叶启动器中将 webUI 的版本升级到 1.5 以上。而对于 Llama3 的部署和微调,实操分两部分,包括本地部署并通过 webdemo 对话,以及使用特定数据集进行微调,具体流程为购买服务器、安装代码环境、下载通用模型和数据集、挑选微调框架、编写微调程序和验证结果。

总的来说,部署和微调大模型需要综合考虑多方面因素,根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:如何部署和训练自己的AI开源模型

[title]问:如何部署和训练自己的AI开源模型根据搜索结果,以下是部署和训练自己的大模型的主要步骤:1.选择合适的部署方式本地环境部署云计算平台部署分布式部署模型压缩和量化公共云服务商部署根据自身的资源、安全和性能需求选择合适的部署方式。2.准备训练所需的数据和计算资源确保有足够的训练数据覆盖目标应用场景准备足够的计算资源,如GPU服务器或云计算资源3.选择合适的预训练模型作为基础可以使用开源的预训练模型如BERT、GPT等作为基础也可以自行训练一个基础模型4.针对目标任务进行模型微调训练根据具体应用场景对预训练模型进行微调训练优化模型结构和训练过程以提高性能5.部署和调试模型将训练好的模型部署到生产环境对部署的模型进行在线调试和性能优化6.注意安全性和隐私保护大模型涉及大量数据和隐私信息,需要重视安全性和合规性总的来说,部署和训练自己的大模型需要综合考虑多方面因素,包括部署方式、数据准备、模型训练、部署调试以及安全性等。需要根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。内容由AI大模型生成,请仔细甄别

【SD】向未来而生,关于SDXL你要知道事儿

[title]【SD】向未来而生,关于SDXL你要知道事儿[heading1]#本地部署与在线使用[heading2]1.本地部署SDXL的大模型分为两个部分:第一部分,base+refiner是必须下载的,base是基础模型,我们使用它进行文生图的操作;refiner是精炼模型,我们使用它对文生图中生成的模型进行细化,生成细节更丰富的图片。第二部分,是SDXL还有一个配套的VAE模型,用于调节图片的画面效果和色彩。这三个模型,我已经放入了云盘链接中,大家可以关注我的公众号【白马与少年】,然后回复【SDXL】获取下载链接。想要在webUI中使用SDXL的大模型,首先我们要在秋叶启动器中将webUI的版本升级到1.5以上。接下来,将模型放入对应的文件夹中,base和refiner放在“……\sd-webui-aki-v4.2\models\Stable-diffusion”路径下;vae放在“……\sd-webui-aki-v4.2\models\VAE”路径下。完成之后,我们启动webUI,就可以在模型中看到SDXL的模型了。我们正常的使用方法是这样的:先在文生图中使用base模型,填写提示词和常规参数,尺寸可以设置为1024*1024,进行生成。我这边使用了一个最简单的提示词“1girl”,来看看效果。生成的图片大家可以看一下,我觉得是相当不错的。我知道大家心里可能会想——“就这,还好吧,也没有那么惊艳吧?”,那么,我用同样的参数再给你画一幅sd1.5版本的图像,你就能看出进步有多大了。是不是没有对比就没有伤害?SDXL,真香!还没完,我们到现在还只使用了一个base模型,接下来,将图片发送到图生图当中,大模型切换为“refiner”,重绘幅度开小一点,再次点击生成。

大圣:全网最适合小白的 Llama3 部署和微调教程

我们会需要如下的流程1.购买服务器用来提供微调的资源2.在服务器上安装微调所需要的代码环境3.下载需要进行微调的通用模型(本文就是Llama3)4.启动webdemo,跟Llama3畅快对话5.下载需要用来微调的数据集(也就是需要大模型学习的知识)6.挑选用来进行微调的框架7.写程序用来进行微调8.验证微调的结果

Others are asking
对于大语言模型使用的未来趋势,是闭源云端还是开源本地部署,作为普通用户是否有必要了解本地部署知识,并且是否有必要自己搭建agent以及rag?
大语言模型的未来趋势在闭源云端和开源本地部署方面存在多种可能性。 对于开源本地部署,以下是一些相关信息: Ollama 是一个方便用户在本地运行和管理大型语言模型的框架,具有以下特点: 支持多种大型语言模型,如通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 CPU 和 GPU。 提供模型库,用户可从中下载不同模型,以满足不同需求和硬件条件,模型库可通过 https://ollama.com/library 查找。 支持用户自定义模型,例如修改温度参数调整创造性和连贯性,或设置特定系统消息。 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 安装可访问 https://ollama.com/download/ 。 可以通过一些教程学习如何本地部署大模型以及搭建个人知识库,例如了解如何使用 Ollama 一键部署本地大模型、通过搭建本地聊天工具了解 ChatGPT 信息流转、RAG 的概念及核心技术、通过 AnythingLLM 搭建完全本地化的数据库等。 同时,采用开源或国内企业提供的 13B 级模型本地部署在内部系统中,虽需投入算力,但有其价值。智能客服的大量优质大客户可能会选择自己搭建智能客服平台,并结合大模型企业提供的技术服务,基于大模型搭建 LangChain、RAG 框架,实现 RPA 自动流程。 对于普通用户是否有必要了解本地部署知识以及是否有必要自己搭建 agent 以及 rag,这取决于个人需求和兴趣。如果您希望更深入了解大模型的工作原理和运行机制,或者有特定的个性化需求,那么了解和尝试本地部署可能是有意义的。但如果只是一般的使用需求,可能无需深入了解和自行搭建。
2024-09-03
云端comfy ui
以下是关于云端 Comfy UI 的使用教程: 1. 打开链接的工作流:https://www.esheep.com/app/5977 ,点击查看工作流,会出现登录或注册界面,正常注册即可。如果已经登录会自动出现相应界面。 2. 步骤 1:红色框选择生成图片的大模型,绿色框添加提示词,蓝色框填写反向提示词。 3. 步骤 2:红色框设置大小确保是 16:9 的比例,绿色框修改参数,若不理解参数保持默认即可。 4. 步骤 3:红色框上传深度图。 5. 步骤 4:点击立即生成,最下面就会出现图片,在生成历史中下载图片即可。
2024-08-11
SD云端部署的教程
Stable Diffusion(SD)的云端部署允许用户利用云服务器的强大计算能力来运行和操作AI绘图模型,无需高端的本地硬件。以下是SD云端部署的教程概述: 1. 购买云服务器:选择一个云服务提供商,如腾讯云,并购买GPU服务器。在购买时选择合适的配置,如GN7 8核32GB,N卡,并选择Ubuntu Server作为操作系统。 2. 配置运行环境:安装Anaconda以管理Python环境和依赖。可以通过wget下载Anaconda安装脚本,并按照提示完成安装。 3. 安装SDwebui:将SDwebui克隆到服务器上,使用git clone命令。然后,修改相关配置文件,如launch.until.py,以适应国内的网络环境。 4. 启动SD:在激活了相应conda环境后,定位到stablediffusionwebui项目目录下,执行启动脚本,如./webui.sh listen,以启动SD的Web界面。 5. 修改Webui配置:编辑webui.user.sh文件,预先配置一些参数,简化启动流程。 6. 扩展换源:由于一些扩展源无法在国内直接访问,需要替换成国内可访问的源,如秋叶大佬的源地址。 7. 下载与安装LoRA和VAE:下载必要的模型,并上传到服务器的相应目录下。LoRA和VAE模型通常需要放置在特定的文件夹内,并在Web UI中进行配置以使其可用。 8. 安装ControlNet:根据服务器的位置,选择直接从GitHub安装或下载压缩包后上传至服务器。 9. 配置Clip Skip:调整Clip Skip的设置,并在UI中添加相应的模块以启用该功能。 10. 安装Hypernetworks(可选):下载并安装Hypernetworks模型,上传到指定的文件夹,并刷新Web UI。 11. 插件使用:安装汉化插件和其他有用的扩展,如中英对照tag自动补全插件,以改善用户体验。 12. 保持服务器连接:使用如Putty等工具保持服务器连接的稳定性,避免因连接中断而导致的工作中断。 13. 其他注意事项:在部署过程中,确保网络环境稳定,及时解决可能遇到的技术问题,并合理管理服务器资源以避免不必要的费用。 请注意,具体的部署步骤可能会根据云服务商的不同而有所变化,同时,确保遵循云服务提供商的使用条款和隐私政策。在部署时,也要注意数据安全和隐私保护,避免泄露敏感信息。
2024-04-16
哪个AI软件适合做大学工科PPT
以下是一些适合做大学工科 PPT 的 AI 软件: 1. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用科大讯飞在语音识别和自然语言处理领域的技术优势,提供智能文本生成、语音输入、文档格式化等功能,可提高文档编辑效率。网址:https://zhiwen.xfyun.cn/ 2. GPT4、WPS AI 和 chatPPT:可帮助完成 PPT 制作。 3. Tome 和 Beautiful.ai:协助创建演示文稿。 目前市面上大多数 AI 生成 PPT 通常按照以下思路完成设计和制作: 1. AI 生成 PPT 大纲。 2. 手动优化大纲。 3. 导入工具生成 PPT。 4. 优化整体结构。 推荐阅读以下市场分析文章: 1. 《》 2. 《》 您可以根据自己的需求和喜好选择合适的 AI PPT 工具,以提高工作效率和演示效果。
2024-08-31
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
如何构建自己领域的微调数据集
构建自己领域的微调数据集可以参考以下步骤: 1. 确定目标领域和应用需求:明确您希望模型在哪个细分领域进行学习和优化。 2. 数据收集:广泛收集与目标领域相关的数据。例如,若要训练二次元模型,需收集二次元优质数据;若要微调 Llama3 ,可参考相关文档获取数据集。 3. 数据标注:对收集的数据进行准确标注,以便模型学习到有效的特征。 4. 数据清洗:去除无效或错误的数据,提高数据质量。 5. 特殊处理:如为数据添加特殊 tag 等。 以 Stable Diffusion 为例,可收集如 833 张宝可梦数据,并按照特定步骤进行清洗、标注和添加特殊 tag 。对于 Llama3 ,获取数据集后上传到服务器,编写并执行微调代码即可进行微调。 在微调过程中,还需注意一些问题,如大型语言模型微调可能面临训练时间长、成本高等挑战,此时可考虑参数有效调优等创新方法。
2025-02-17
微调
微调(Finetuning)是一种迁移学习技术,常用于深度学习中。其基本思路是先有一个在大量数据上预训练过的模型,该模型已学会一些基本模式和结构,然后在特定任务数据上继续训练,使其适应新任务。 例如在情感分类中,可先使用大量语料库预训练模型学会基本语法和单词语义,再用标注过的电影评论继续训练以判断情感。在图像分类中,先使用大量图片预训练模型学会识别基本形状和纹理,再用标注的猫和狗图片继续训练以区分二者。 创建微调模型时,假设已准备好训练数据,可使用 OpenAI CLI 开始微调工作。需确定从哪个基本模型(如 ada、babbage、curie 或 davinci)开始,并可使用后缀参数自定义微调模型名称。运行命令会上传文件、创建微调作业、流式传输事件直至作业完成。每个微调工作默认从 curie 模型开始,模型选择会影响性能和成本。作业开始后可能需几分钟或几小时完成,若事件流中断可恢复。此外,还可列出现有作业、检索作业状态或取消作业。 微调的超参数方面,选择了适用于一系列用例的默认超参数,唯一需要的参数是训练文件。但调整超参数通常可产生更高质量输出的模型,可能需配置的内容包括:要微调的基本模型名称(如“ada”“babbage”“curie”“davinci”);训练模型的时期数(n_epochs,默认为 4);批量大小(batch_size,默认为训练集中示例数量的 0.2%,上限为 256);微调学习率乘数(learning_rate_multiplier,默认为 0.05、0.1 或 0.2);是否计算分类指标(compute_classification_metrics,默认为假)。配置这些超参数可通过 OpenAI CLI 上的命令行标志传递。
2025-01-11
微调是什么意思
微调(Finetuning)是一种迁移学习技术,常用于深度学习中。其基本思路是:先有一个在大量数据上预训练过的模型,该模型已学会一些基本模式和结构(如自然语言处理中学会基本语法和单词语义,图像识别中学会基本形状和纹理)。然后,在特定任务数据上继续训练这个模型,使其适应新的任务。 以下是两个例子帮助理解: 1. 情感分类:先使用大量语料库预训练模型,使其学会基本语法和单词语义。再收集标注过的电影评论(一部分积极,一部分消极),在这些评论上继续训练模型,使其学会判断评论情感。 2. 图像分类:先使用大量图片(如 ImageNet 数据集)预训练模型,使其学会识别图片中的基本形状和纹理。再收集标注过的图片(一部分是猫,一部分是狗),在这些图片上继续训练模型,使其学会区分猫和狗。 微调在 LLM 应用中,是在已经训练好的模型基础上进一步调整,让模型的输出更符合预期。Finetune、Finetuning 是常用的英文写法。微调是在较小的、针对特定任务的标注数据集上进一步训练已经预训练过的 LLM 的过程,可调整部分模型参数以优化其在特定任务或任务集上的性能。 微调可让您从 API 提供的模型中获得更多收益,如比即时设计更高质量的结果、能够训练比提示中更多的例子、由于更短的提示而节省 Token、更低的延迟请求。GPT3 已在大量文本上预训练,微调通过训练比提示中更多的示例来改进小样本学习,让您在大量任务中取得更好的结果。对模型进行微调后,您将不再需要在提示中提供示例,这样可以节省成本并实现更低延迟的请求。 微调涉及以下步骤: 1. 准备和上传训练数据。 2. 训练新的微调模型。 3. 使用您的微调模型。 微调目前仅适用于以下基础模型:davinci、curie、babbage 和 ada。这些是原始模型,在训练后没有任何说明(例如 textdavinci003)。您还可以继续微调微调模型以添加其他数据,而无需从头开始。建议使用 OpenAI 命令行界面,安装时需注意相关要求。
2025-01-11
如何微调大模型
微调大模型主要包括以下几个方面: 1. 理解大模型:大模型是通过输入大量语料,让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。可以用“上学参加工作”来类比大模型的训练和使用过程,包括找学校(需要大量 GPU 进行训练)、确定教材(需要大量数据)、找老师(选择合适算法)、就业指导(微调)和搬砖(推导)。 2. 准备数据集:数据集是让大模型重新学习的知识。例如,对于 Llama3 的微调,可以参考相关文档获取和了解数据集,如下载数据集。 3. 选择微调方式:从参数规模的角度,大模型的微调分成两条技术路线,全量微调 FFT(Full Fine Tuning)对全量的模型参数进行全量训练,PEFT(ParameterEfficient Fine Tuning)只对部分模型参数进行训练。从成本和效果综合考虑,PEFT 是目前业界较流行的微调方案。 4. 进行微调操作:有了数据集后,将其上传到服务器,编写微调代码并执行,大概 15 分钟左右可完成微调。 5. 参考资源:OpenAI 官方微调教程 。 微调的好处包括提高模型在特定任务中的性能和提高模型效率。经过微调的模型可能会失去一些通用性,但对于特定任务会有更好的表现,同时还能实现更低的延迟和成本。
2025-01-10
我想做一个产品(生涯规划领域的垂直大模型),这个产品服务的对象是所有人:帮助所有人进行更好的职业规划。每个人都能通过使用这个产品更好地了解自己,了解自己的天赋、兴趣、优势,然后找到自己的热爱的领域和热爱的事业,并且能够个性化地推荐相关的行业和职业,包括职业的主要工作内容和核心能力要求等等。 请对这个产品进行可行性分析,并给出产品的发展规划,别忘了给这个项目起一个名字。
以下是对您提出的生涯规划领域垂直大模型产品的可行性分析和发展规划,并为项目取名为“生涯智途”。 可行性分析: 1. 需求广泛:帮助人们进行职业规划是一个普遍存在的需求,涵盖了各个年龄段和职业阶段的人群。 2. 数据可用性:可以通过各种渠道收集大量与职业相关的数据,包括行业报告、职位描述、人才需求等。 3. 技术支持:当前大模型技术的发展为实现这样的产品提供了可能,能够处理和分析大量复杂的数据。 发展规划: 1. 数据收集与整理:广泛收集各类职业数据,建立丰富的数据库,确保数据的准确性和完整性。 2. 模型训练与优化:利用收集到的数据进行模型训练,不断优化模型,提高预测和推荐的准确性。 3. 功能开发: 个性化测评:开发能够准确评估用户天赋、兴趣、优势的功能模块。 精准推荐:根据用户的特点,提供个性化的行业和职业推荐,并详细介绍职业的工作内容和核心能力要求。 持续学习与更新:随着行业变化,及时更新数据和模型,以提供最新的职业信息。 4. 用户体验优化:设计简洁、易用的界面,提供良好的用户交互体验。 5. 市场推广:通过线上线下多种渠道进行推广,提高产品的知名度和用户覆盖面。 希望以上分析和规划对您有所帮助。
2025-02-18
现在大语言模型的跑分对比
对比不同大语言模型的性能需要考虑多个维度,包括但不限于以下方面: 1. 理解能力:评估对语言的语法、语义、上下文和隐含意义的理解程度。 2. 生成质量:检查生成文本的流畅性、相关性和准确性。 3. 知识广度和深度:掌握广泛主题的知识程度,以及对特定领域或话题的理解深度。 4. 泛化能力:处理未见过的任务或数据时的表现。 5. 鲁棒性:应对错误输入、对抗性输入或模糊不清指令的能力。 6. 偏见和伦理:生成文本时是否存在偏见,是否遵循伦理标准。 7. 交互性和适应性:在交互环境中的表现,包括对用户反馈的适应性和持续对话的能力。 8. 计算效率和资源消耗:考虑模型大小、训练和运行所需的计算资源。 9. 易用性和集成性:是否易于集成到不同应用和服务中,提供的 API 和工具的易用性。 为了进行有效的比较,可以采用以下方法: 1. 标准基准测试:使用如 GLUE、SuperGLUE、SQuAD 等标准的语言模型评估基准,它们提供统一的测试环境和评分标准。 2. 自定义任务:根据特定需求设计任务,评估模型在特定领域的表现。 3. 人类评估:结合人类评估者的主观评价,特别是在评估文本质量和伦理问题时。 4. A/B 测试:在实际应用场景中,通过 A/B 测试比较不同模型的表现。 5. 性能指标:使用准确率、召回率、F1 分数、BLEU 分数等性能指标来量化比较。 当前领先的大型语言模型的排行榜,例如聊天机器人竞技场,由伯克利的团队管理,根据 ELO 评级对不同语言模型进行排名,计算方式与国际象棋中的类似。在排行榜中,顶部多为专有模型,下方有开放权重的模型。 大语言模型的特点包括: 1. 架构:有 encoderonly、encoderdecoder、decoderonly 等,如 BERT 是 encoderonly 模型,google 的 T5 是 encoderdecoder 模型,众多 AI 助手多为 decoderonly 模型。 2. 数据和参数:预训练数据量大,往往来自互联网,包括论文、代码、公开网页等,参数多,如 OpenAI 在 2020 年发布的 GPT3 已达到 170B 的参数。
2025-02-18
现在大语言模型的跑分对比
对比不同大语言模型的性能需要考虑多个维度,包括但不限于以下方面: 1. 理解能力:评估对语言的语法、语义、上下文和隐含意义的理解程度。 2. 生成质量:检查生成文本的流畅性、相关性和准确性。 3. 知识广度和深度:掌握广泛主题的知识程度,以及对特定领域或话题的理解深度。 4. 泛化能力:处理未见过的任务或数据时的表现。 5. 鲁棒性:应对错误输入、对抗性输入或模糊不清指令的能力。 6. 偏见和伦理:生成文本时是否存在偏见,是否遵循伦理标准。 7. 交互性和适应性:在交互环境中的表现,包括对用户反馈的适应性和持续对话的能力。 8. 计算效率和资源消耗:考虑模型大小、训练和运行所需的计算资源。 9. 易用性和集成性:是否易于集成到不同应用和服务中,提供的 API 和工具的易用性。 为了进行有效的比较,可以采用以下方法: 1. 标准基准测试:使用如 GLUE、SuperGLUE、SQuAD 等标准的语言模型评估基准,它们提供统一的测试环境和评分标准。 2. 自定义任务:根据特定需求设计任务,评估模型在特定领域的表现。 3. 人类评估:结合人类评估者的主观评价,特别是在评估文本质量和伦理问题时。 4. A/B 测试:在实际应用场景中,通过 A/B 测试比较不同模型的表现。 5. 性能指标:使用准确率、召回率、F1 分数、BLEU 分数等性能指标来量化比较。 当前领先的大型语言模型的排行榜,例如聊天机器人竞技场,由伯克利的团队管理,根据 ELO 评级对不同语言模型进行排名,计算方式与国际象棋中的类似。在排行榜中,顶部多为专有模型,下方有开放权重的模型。 大语言模型的特点包括: 1. 架构:有 encoderonly、encoderdecoder、decoderonly 等,如 BERT 是 encoderonly 模型,google 的 T5 是 encoderdecoder 模型,众多 AI 助手多为 decoderonly 模型。 2. 数据和参数:预训练数据量大,往往来自互联网,包括论文、代码、公开网页等,参数多,如 OpenAI 在 2020 年发布的 GPT3 已达到 170B 的参数。
2025-02-18
什么是大模型一体机
大模型一体机是一个相对复杂的概念。通俗来讲,大模型是输入大量语料,让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。其本质是两个文件:一个是参数文件,类似于问答机器人的“大脑镜像”,负责处理和生成文本信息;另一个是包含运行这些参数的代码文件。 大模型的训练和使用过程可以类比为上学参加工作: 1. 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练。 2. 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用合适的算法讲述“书本”中的内容,让大模型更好理解 Token 之间的关系。 4. 就业指导:为了让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。 大模型的特点包括: 1. 预训练数据非常大,往往来自互联网上的论文、代码、公开网页等,一般用 TB 级别的数据进行预训练。 2. 参数非常多,如 Open 在 2020 年发布的 GPT3 就已达到 170B 的参数。 在架构方面,大模型有 encoderonly、encoderdecoder、decoderonly 等类型。目前常见的 AI 助手多采用 decoderonly 架构。
2025-02-18
传统AI、大模型、AGI的区别
传统 AI、大模型、AGI 存在以下区别: 传统 AI: 语音技能 NLU 通常通过一系列规则、分词策略等训练而成。 运作逻辑规律可观测,具有 ifelse 式的逻辑性。 大模型: 凭借海量数据在向量空间中学习知识的关联性。 运作逻辑难以观测,脱离了 ifelse 的层面。 Transformer 是其底层结构,是一个大参数(千亿级别)的回归方程,底层是 function loss 损失函数,能在一定 prompt condition 情况下,repeat 曾经出现过的数据内容,实现“生成”能力。 大语言模型是一个 perfect memory,repeat 曾经出现的内容。与 Alpha Go 相比,Alpha Go 是增强学习模型,有推理能力,而大语言模型这块很弱。 AGI(通用人工智能): 部分人觉得 LLM(大语言模型)具有 AGI 潜力,但 LeCun 反对。 目前对于能否到达 AGI 阶段尚不明确。 在公众传播层面: AIGC 指用 Stable Diffusion 或 Midjourney 生成图像内容,后来泛指用 AI 生成音乐、图像、视频等内容。 LLM 指 NLP 领域的大语言模型,如 ChatGPT。 GenAI 是生成式人工智能模型,国内官方政策文件使用这个词相对科学,涵盖了 LLM 和 AIGC。 公众传播一般会混用上述名词,但底层是 transformer 结构。
2025-02-18
有哪些在企业内部落地应用AI大模型工具的实践案例?不要营销文案生成、代码开发助手、智能客服问答机器人这种太常见的
以下是一些在企业内部落地应用 AI 大模型工具的实践案例: 1. 阿里云百炼: 智能体应用:能够弥补大模型的不足,如回答私有领域问题、获取实时信息、回答专业问题等。适用于有企业官网、钉钉、微信等渠道,期望为客户提供产品咨询服务,以及缺少技术人员开发大模型问答应用的场景。典型场景包括私有领域知识问答、个性化聊天机器人、智能助手等。 内部业务助手:通过企业内部规章制度、部门结构、产品介绍等文档构建知识库,并借助 RAG 智能体实现内部知识问答功能。系统支持多源异构数据,并通过复杂文档解析和视觉增强技术,提升文档理解的准确性与深度。目前该功能已灰度上线,需提供 UID 并通过白名单进行开启。 2. 达摩院: AI 模特(虚拟换装):支持虚拟换装、姿态编辑。 3. 电商零售: 推广文案写作:通过内置的多样化营销场景的文体模板,基于用户输入的创作主题以及参考素材,大模型即可为您生成对应的营销文案,为营销活动和宣传文案提供灵感和文案写作支持。 4. 泛企业: VOC 挖掘:是一个面向各类企业的 VOC 标签挖掘的工具。不论是用户的长短评论、帖子、还是用户和客服/销售的聊天记录、通话记录,都可以使用。通过选中或自定义标签,即可让大模型针对海量非结构化的 VOC 数据快速打标。相比于人工打标或规则打标准确率更高;对于业务标签变动频繁的情况,也能更敏捷、快速地影响。 5. 通义晓蜜:基于深度调优的对话大模型,为营销服类产品提供智能化升级所需的生成式摘要总结、质检、分析等能力应用。
2025-02-18