直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

作为新手,我该如何学习AI技术

回答

作为新手学习 AI 技术,可以从以下两个方向入手:

  • 偏向技术研究方向:
    • 数学基础:包括线性代数、概率论、优化理论等。
    • 机器学习基础:如监督学习、无监督学习、强化学习等。
    • 深度学习:涵盖神经网络、卷积网络、递归网络、注意力机制等。
    • 自然语言处理:涉及语言模型、文本分类、机器翻译等。
    • 计算机视觉:包含图像分类、目标检测、语义分割等。
    • 前沿领域:例如大模型、多模态 AI、自监督学习、小样本学习等。
    • 科研实践:进行论文阅读、模型实现、实验设计等。
  • 偏向应用方向:
    • 编程基础:掌握 Python、C++等。
    • 机器学习基础:如监督学习、无监督学习等。
    • 深度学习框架:熟悉 TensorFlow、PyTorch 等。
    • 应用领域:包括自然语言处理、计算机视觉、推荐系统等。
    • 数据处理:做好数据采集、清洗、特征工程等。
    • 模型部署:关注模型优化、模型服务等。
    • 行业实践:参与项目实战、案例分析等。

同时,数学和编程基础是必不可少的。还需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。

以下是一些关于 AI 技术原理的基础知识:

  • 概念:生成式 AI 生成的内容称为 AIGC。
  • 相关技术名词:
    • AI 即人工智能。
    • 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。
    • 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。
    • 无监督学习的数据没有标签,算法自主发现规律,经典任务如聚类。
    • 强化学习从反馈里学习,最大化奖励或最小化损失,类似训小狗。
    • 深度学习参照人脑有神经网络和神经元,因层数多称为深度,神经网络可用于多种学习方式。
    • 生成式 AI 可以生成文本、图片、音频、视频等内容形式。
    • LLM 是大语言模型。
  • 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制处理序列数据,比 RNN 更适合处理文本的长距离依赖性。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:AI的技术历史和发展方向,目前最前沿的技术点有哪些

1.数学基础:线性代数、概率论、优化理论等2.机器学习基础:监督学习、无监督学习、强化学习等3.深度学习:神经网络、卷积网络、递归网络、注意力机制等4.自然语言处理:语言模型、文本分类、机器翻译等5.计算机视觉:图像分类、目标检测、语义分割等6.前沿领域:大模型、多模态AI、自监督学习、小样本学习等7.科研实践:论文阅读、模型实现、实验设计等[heading3]偏向应用方向[content]1.编程基础:Python、C++等2.机器学习基础:监督学习、无监督学习等3.深度学习框架:TensorFlow、PyTorch等4.应用领域:自然语言处理、计算机视觉、推荐系统等5.数据处理:数据采集、清洗、特征工程等6.模型部署:模型优化、模型服务等7.行业实践:项目实战、案例分析等无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。内容由AI大模型生成,请仔细甄别。

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

[title]【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT含义:Transformer是关键。Transformer比RNN更适合处理文本的长距离依赖性。

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

[title]【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT含义:Transformer是关键。Transformer比RNN更适合处理文本的长距离依赖性。

其他人在问
我该怎么用AI让我的短视频文案写的更好
以下是一些利用 AI 让短视频文案写得更好的方法: 1. 对于像《AI 你·南京》AIGC 城市宣传 MV 这类项目,若打算采用旁白朗诵方式,需对文案有较高要求。直接让 GPT 写文案可能效果平淡,应更具体地提出需求,例如可利用 360 浏览器字幕提取功能捕捉相关视频文案,再让 kimi 和 GPT 进行分析和学习,理解目标写作风格并融会贯通。写作时可同时对比 kimi 和 GPT 的结果,在中文理解和写作能力上,kimi 表现更突出。完成文案后可稍作调整,使其更顺口,如让 kimi 将“钟山风雨起苍黄,江南佳丽地,金粉六朝都”改为“钟山风雨起苍黄,古都烟云梦犹长”。 2. 以美妆行业为例,在电商带货本地生活方面,表明身份、描述需求并提出回答要求,用 ChatGPT 生成短视频选题文案和短视频文案。之后按照以下步骤生成虚拟数字人短视频:第一步,打开特定网站(需科学上网);第二步,在右侧文字框输入 ChatGPT 生成的内容,选择想要的头像、不同国家和声音;第三步,点击“Create Video”等待生成。生成后结合产品讲解即可发布用于视频带货。 3. 对于文案创作到一定阶段,如为朗诵配音确定视频时长和分镜数量时,若 AI 语音效果不佳,可考虑让 AI 进行歌词改写和歌曲取名,如将写好的文字复制给 AI,并定义歌词风格和时间长度。对比 kimi 和 GPT 的结果后进行修改定稿。
2024-10-28
我想翻译一些日漫,我该如何提问才可以让得到的翻译结果更接近正常人说话,而不是简单的直译。并且得到的结果必须与原文所表达的内容不出现差错,翻译结果读起来流畅自然
很抱歉,知识库中的内容没有直接针对您如何翻译日漫以获得更自然流畅且准确结果的相关指导。但一般来说,要实现这样的翻译效果,您可以从以下几个方面考虑: 1. 深入理解日漫的文化背景、角色性格和情节发展,以便更好地把握原文的“意”。 2. 注重上下文的连贯和逻辑,不仅仅是逐句翻译,而是从整体上把握语义。 3. 避免过于拘泥于原文的句式和词汇,灵活运用目标语言的表达方式。 4. 多参考优秀的日漫翻译作品,学习他人的翻译技巧和风格。 5. 对于一些特定的文化元素或术语,要进行适当的解释或转换,以确保目标读者能够理解。
2024-10-27
我想翻译一些日漫,我该如何提问才可以让得到的翻译结果更接近正常人说话,而不是简单的直译。还有当翻译时ai遇到比较敏感的话题通常会拒绝回答或者委婉的回答,我不想这样,
在让 AI 翻译日漫时,如果您希望得到更接近正常人说话的翻译结果,而非简单的直译,您可以这样提问:“请以符合自然语言表达习惯和逻辑的方式,为我翻译这段日漫内容,注重语言的流畅性和生动性,避免生硬的直译。” 关于 AI 遇到敏感话题可能拒绝回答或委婉回答的情况,如果您不想这样,需要注意的是,AI 遵循一定的道德和法律规范,对于确实不适合或不被允许处理的敏感内容,强制要求其回答是不可取且不恰当的。但如果您认为某些话题并非真正敏感,只是被误判,您可以尝试更清晰准确地描述相关内容,以减少误解的可能性。
2024-10-27
我想翻译一些日漫,我该如何提问才可以让得到的翻译结果更接近正常人说话,而不是简单的直译
要让日漫的翻译结果更接近正常人说话而不是简单直译,您可以这样提问: 1. 请在翻译时充分考虑上下文和角色的情感,使译文更符合日常交流的表达方式。 2. 能否以符合中文语言习惯和文化背景的方式进行翻译,避免生硬的直译? 3. 翻译过程中请注重语言的流畅性和自然度,让译文更贴近日常口语。 4. 麻烦在翻译时融入适当的语气和情感色彩,使译文更生动形象,像正常人说话一样。
2024-10-27
我该如何利用文心一言、kimi等已有的大语言模型去作个性化训练?
已有的大语言模型如文心一言、kimi 等通常不支持个人进行个性化训练。 大语言模型的相关知识包括: 国内大模型有通用模型如文心一言、讯飞星火等,处理自然语言;还有垂直模型,专注特定领域。 大语言模型工作原理包括训练数据、算力、模型参数,在训练数据一致情况下,模型参数越大能力越强。 Transformer 是大语言模型训练架构,具备自我注意力机制能理解上下文和文本关联。 大模型可能因错误数据导致给出错误答案,优质数据集对其很重要。 Prompt 分为 system prompt、user prompt 和 assistant prompt,写好 prompt 的法则包括清晰说明、指定角色、使用分隔符、提供样本等。 Fine tuning 是基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 学习大型语言模型(LLM)的开发是一个系统性的过程,需要涵盖多个方面的知识和技能: 掌握深度学习和自然语言处理基础,包括机器学习、深度学习、神经网络等基础理论,以及自然语言处理基础,如词向量、序列模型、注意力机制等。 理解 Transformer 和 BERT 等模型原理,掌握相关论文。 学习 LLM 模型训练和微调,包括大规模文本语料预处理,使用预训练框架,以及微调 LLM 模型进行特定任务迁移。 掌握 LLM 模型优化和部署,包括模型压缩、蒸馏、并行等优化技术,模型评估和可解释性,以及模型服务化、在线推理、多语言支持等。 进行 LLM 工程实践和案例学习,结合行业场景,进行个性化的 LLM 训练,分析和优化具体 LLM 工程案例,研究 LLM 新模型、新方法的最新进展。 持续跟踪前沿发展动态。 机器学习是人工智能的一个子领域,深度学习是机器学习的一个子领域,大语言模型是深度学习在自然语言处理领域的应用之一,具有生成式 AI 的特点。
2024-10-18
我需要制作大量视频用于抖音短视频,请问我该用什么工具
如果您需要制作大量用于抖音短视频的视频,以下是一些相关工具: 1. GPT4:可以用自然语言画出效果较好的图,但费用较高。免费替代工具是微软的 Copilot,不过准确性比 GPT4 差。 2. ChatGPT + 剪映:ChatGPT 生成视频小说脚本,剪映根据脚本自动分析出视频所需要素并生成素材和文本框架,能快速实现从文字到画面的转化。 3. PixVerse AI:在线 AI 视频生成工具,支持将多模态输入转化为视频。 4. Pictory:AI 视频生成器,用户提供文本描述即可生成相应视频内容,无需视频编辑或设计经验。 5. VEED.IO:提供 AI 图像生成器和 AI 脚本生成器,帮助从图像制作视频并规划内容。 6. Runway:能将文本转化为风格化的视频内容,适用于多种场景。 7. 艺映 AI:专注于人工智能视频领域,提供文生视频、图生视频、视频转漫等服务,可根据文本脚本生成视频。 这些工具各有特点,适用于不同的应用场景和需求,能帮助您快速生成吸引人的视频内容。但请注意,内容由 AI 大模型生成,请仔细甄别。
2024-10-07
能够生成产品背景图的AI产品
以下是一些能够生成产品背景图的 AI 产品: 1. Artguru AI Art Generator:在线平台,生成逼真图像,给设计师提供灵感,丰富创作过程。 2. Retrato:AI 工具,将图片转换为非凡肖像,拥有 500 多种风格选择,适合制作个性头像。 3. Stable Diffusion Reimagine:新型 AI 工具,通过稳定扩散算法生成精细、具有细节的全新视觉作品。 4. Barbie Selfie Generator:专为喜欢梦幻童话风格的人设计的 AI 工具,将上传的照片转换为芭比风格,效果超级好。 此外,还有一些 AI 驱动的背景更换工具,如: 1. Zmo:AI 商品背景替换工具(https://www.zmo.ai/aibackground),可为产品照片生成逼真的 AI 背景,能以较低成本创建令人惊叹且逼真的产品图片,可在几秒钟内个性化产品背景,并展示最佳背景下的产品,还能轻松更换各种背景,包括纯色、图案、渐变、纹理或自定义图像。 需要注意的是,这些 AI 模型在使用中可能会存在一些局限,如偶尔会出现性能不稳定、生成内容不当等问题。
2024-10-31
你能帮我找到这篇报告吗?他的名字是《InfoQ:中国AI Agent应用研究报告2024》
以下是为您找到的《InfoQ:中国 AI Agent 应用研究报告 2024》的链接:https://waytoagi.feishu.cn/record/Y45LrXJiwe4SgYc5tMZcVVtqn6b
2024-10-31
有什么好用的作图AI
以下为您介绍一些好用的作图 AI 工具: 对于绘制 CAD 图,有以下工具和插件: CADtools 12:Adobe Illustrator 插件,添加 92 个绘图和编辑工具,包括图形绘制、编辑、标注等。 Autodesk Fusion 360:集成了 AI 功能的云端 3D CAD/CAM 软件,能创建复杂几何形状和优化设计。 nTopology:基于 AI 的设计软件,可创建复杂 CAD 模型,包括拓扑优化等。 ParaMatters CogniCAD:基于 AI 的 CAD 软件,能根据输入自动生成 3D 模型。 主流 CAD 软件如 Autodesk 系列、SolidWorks 等的生成设计工具,可根据输入自动产生多种设计方案。但使用这些工具通常需要一定 CAD 知识和技能,初学者建议先学习基本 3D 建模技巧。 对于图生图产品,主要有: Artguru AI Art Generator:在线平台,生成逼真图像,为设计师提供灵感。 Retrato:将图片转换为非凡肖像,有 500 多种风格选择。 Stable Diffusion Reimagine:通过稳定扩散算法生成精细、具细节的全新视觉作品。 Barbie Selfie Generator:将上传照片转换为芭比风格。 这些 AI 模型通过组合技术如扩散模型、大型视觉转换器等生成相似图像,但存在性能不稳定、生成内容不当等局限。 绘制逻辑视图、功能视图、部署视图的工具包括: Lucidchart:流行的在线绘图工具,支持多种图表创建。 Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能。 ArchiMate:开源建模语言,与 Archi 工具配合使用创建逻辑视图。 Enterprise Architect:强大的建模、设计和生成代码工具,支持多种视图创建。 Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板。 draw.io(diagrams.net):免费在线图表软件,支持多种图表创建。 PlantUML:文本到 UML 转换工具,通过描述性文本生成序列图等。 Gliffy:基于云的绘图工具,提供创建架构图功能。 Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型。 Rational Rose:IBM 的 UML 工具,支持多种视图创建。
2024-10-31
google ai studio
生成式 AI Studio 是 Google Cloud 上的一个工具,允许应用程序开发人员或数据科学家快速制作原型和自定义生成式 AI 模型,无需代码或代码量少。 生成式人工智能是一种能够生成新的、未曾存在内容的人工智能技术,生成的内容可以是多模态的,包括文本(如文章、报告、诗歌等)、图像(如绘画、设计图、合成照片等)、音频(如音乐、语音、环境声音等)、视频(如电影剪辑、教程、仿真等)。 其应用场景广泛,例如文档摘要、信息提取、代码生成、营销活动创建、虚拟协助、呼叫中心机器人等。 生成式人工智能的工作原理包括训练阶段和应用阶段。在训练阶段,通过从大量现有内容(文本、音频、视频等)中学习,得到一个“基础模型”。在应用阶段,基础模型可用于生成内容并解决一般性问题,还可以使用特定领域的新数据集进一步训练以解决特定问题。 Google Cloud 提供了多种相关工具,如 Vertex AI(端到端机器学习开发平台,帮助构建、部署和管理机器学习模型)、Model Garden(平台,可发现 Google 的基础和第三方开源模型,并提供 MLOps 工具用于自动化机器学习管道)。
2024-10-31
AI创建角色的指令
以下是关于 AI 创建角色的一些信息: 在 c.ai 这个 AI 角色扮演对话平台中,创建角色的功能非常简洁,主要依赖用户编写的 Description(基础信息)和 Definition(复杂背景),并且已经支持上传声音片段实现语言克隆。 在筑梦岛中,创建梦中人(捏崽)需要用户提供各类信息,其中最核心的是完整设定这样的人设背景信息;创建梦屋(拉群)则允许用户添加多个 AI 角色创建一个群聊。 在游戏开发中,如 Arrowmancer 这款 RPG 游戏,具有 AI 创造的角色,以实现几乎无限的新游戏玩法。还有游戏开发公司使用 AI 让玩家创建自己的游戏内角色形象,相比让玩家从零开始上传自己的内容,通过 AI 生成内容更安全,因为可避免创造冒犯性内容,同时让玩家有更强的归属感。 在使用 Nijijourney 5 进行二次元角色设计时,为获得最佳结果,可能需要尝试不同的权重组合并根据产出调整 Prompt。
2024-10-31
AI制作音乐的工具和案例
以下是一些 AI 制作音乐的工具和相关案例: :无需昂贵的录音设备即可进行多轨录音。 :生成歌词、旋律、鼓点等,并且能够像任何专业 DAW 一样进行编辑和混音。 :AI 驱动的音乐制作平台,使用 AI 创作歌词、节拍和人声,然后直接从 Cassette 进行混音和发布。 :人工智能创作情感背景音乐。 :简化的音乐创作工具,帮助您为视频和播客创作音乐。 :为直播的游戏玩家提供自适应 AI 音乐。 :高质量音乐和音效,所有内容都包含版权。 :世界上第一个动态音乐引擎。 (被 Shutterstock 收购):为内容创作者提供的 AI 音乐创作工具。 :您的虚拟音乐工作室。 :即时制作音乐,与世界分享。 :智能乐谱。 :由一群艺术家、研究人员、设计师和程序员组成的团队。 (被 Apple 收购):音乐帮助品牌与受众建立更深层次的连接。 :下一代音乐制作人。 :数字宇宙的音乐解决方案,Soundtracks、AI Studio、Music Maker JAM 的制作者。 :AI 音乐创作和制作。 :自由定制高质量免版权费音乐。 :一个云平台,让音乐人和粉丝在全球范围内创作音乐、协作和互动。 :使用嵌入式软件、信号处理和 AI 帮助艺术家录制、混音和母带处理他们的现场表演。 :开源音乐生成工具。 :旨在通过 AI 赋能真实艺术家的伦理音频 AI 插件、工具和社区,而非取代他们。 :使用 AI 创作音乐和语音。 :与 DAW 集成的生成音乐工具,100%免版权费。 :为创意媒体提供的伦理音乐 AI。 :AI 音乐创作平台和探索声音宇宙的个人音乐制作人。 :通过音乐赋予你新的创作和表达方式。 :使用 AI 改变你的歌唱声音。 :为你的创造力和生产力提供 AI 音乐。 :使用 AI 生成声音、音效、音乐、样本、氛围等。 案例方面,Manglemoose 最近展示了由他们最新开发的音乐生成器制作的视频案例,该工具的名称尚未公布。bGPT 是一种具有下一个字节预测功能的模型,它几乎完美地复制了符号音乐数据的转换过程,在将 ABC 符号转换为 MIDI 格式时实现了每字节 0.0011 位的低错误率。此外,bGPT 在模拟 CPU 行为方面表现出卓越的能力,执行各种操作的准确度超过 99.99%。
2024-10-31
新手怎么学习人工智能
对于新手学习人工智能,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库中有很多实践后的作品、文章分享,欢迎实践后进行分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人进行互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 6. 持续学习和跟进: AI 是快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-10-28
怎样快速的从新手变为一个AI方面的资深从业者?
要从新手快速成长为 AI 方面的资深从业者,可以按照以下步骤进行: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支如机器学习、深度学习、自然语言处理等以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人进行互动,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,【野菩萨的 AIGC 资深课】由工信部下属单位【人民邮电出版社】开设,是市面上为数不多的值得推荐的 AI 课程之一,也是全网技术更新最快的课程!课程内容涵盖 AI 绘画、视听语言和 ChatGPT 等多个体系的知识。无论您是 AI 初学者还是进阶者,这门课程都能满足您的学习需求。您可以扫码添加菩萨老师助理,了解更多信息。
2024-10-13
推荐一本适合纯新手小白看的ai书籍
以下是为纯新手小白推荐的 AI 相关书籍: 在 Python 方面: 《Python 学习手册》:名声在外。 《Python 编程》:对新手友好。 在 AI 方面: 《人类简史》:其中“认知革命”的相关章节令人获益匪浅。 《深度学习实战》:按脉络梳理了 ChatGPT 爆发前的 AI 信息与实践。 此外,还有以下相关资源: 课程:推荐 B 站 up 主“PAPAYA 电脑教室”的 Python 入门课,完全免费。 地址:https://space.bilibili.com/402780815/channel/seriesdetail?sid=2762019 对于大模型,Andrej Karpathy 的讲解很不错,其相关地址: 油管:https://www.youtube.com/watch?v=zjkBMFhNj_g B 站:https://www.bilibili.com/video/BV1AU421o7ob 资料库:推荐 AJ 和众多小伙伴们共创的“🌈通往 AGI 之路(一个飞书文档)”,这是当下最全的中文 AI 资料库,免费、开源、共创,包含了几乎所有有价值的文档、文章、资料、资讯,并永远是第一时间更新。 地址:https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e 另外,还有“陈财猫:推荐书单了解各个领域的知识,并在恰当的时候调用它们”中提到的相关书籍: 计算机方面: file:智慧的疆界从图灵机到人工智能.epub file:白话机器学习的数学(图灵图书).epub 课程:【李宏毅 2021/2022 春机器学习课程哔哩哔哩】https://b23.tv/KhwgLna 【【授权】李宏毅 2023 春机器学习课程哔哩哔哩】https://b23.tv/2ocUNn0 https://www.lanqiao.cn/mobile/courses/1330 人工智能方面: file:人工智能(第 4 版)现代方法.epub
2024-09-30
新手怎么学习AI
新手学习 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 4. 掌握提示词的技巧:提示词上手容易且很有用。 5. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 6. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 7. 持续学习和跟进: AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 需要记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-09-28
新手小白如何学习ai
对于新手小白学习 AI,以下是一份详细的指南: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 4. 掌握提示词技巧: 提示词上手容易且很有用。 5. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 6. 体验 AI 产品: 尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 7. 持续学习和跟进: AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 需要记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。 如果您想学习 AI 绘画,可以体验《AI 绘画助手》,他是一位专业且贴心的导师。他能够将复杂的知识用通俗易懂的语言解释清楚,介绍流行的绘画工具及使用步骤,擅长风格迁移技术等领域,拥有丰富的实战案例经验,能为您答疑解惑并规划学习路径,帮助您在 AI 绘画之旅上不断突破,充分释放创意与想象。
2024-09-19
新手小白怎么入门ai
新手小白入门 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 4. 掌握提示词的技巧:提示词上手容易且很有用。 5. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 6. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 7. 持续学习和跟进: AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 入门工具推荐:Kimi 智能助手 Chatgpt 的国产平替,实际上手体验最好,推荐新手用 Kimi 入门学习和体验 AI。 不用科学🕸️、不用付费、支持实时联网。 是国内最早支持 20 万字无损上下文的 AI,也是目前对长文理解做的最好的 Ai 产品。 能一次搜索几十个数据来源,无广告,能定向指定搜索源。 点我去下载 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。
2024-09-19
aigc提示工程师应该学习哪些课程
以下是 AIGC 提示工程师应该学习的一些课程: 1. 针对开发者的 AIGPT 提示工程课程:由 OpenAI 技术团队成员授课,涵盖软件开发最佳实践的提示,常见用例如总结、推理、转换和扩展,以及使用 LLM 构建聊天机器人等内容。 2. 范德堡大学的提示工程课程:教您成为生成 AI 工具的专家用户,展示利用生成式人工智能工具的示例,提高日常工作效率,并深入了解其工作原理。 3. 了解大型语言模型背后的理论:深入探讨自然语言处理中基本模型的细节,学习创新技术,涉及基于 Transformer 的模型,以及少量学习和知识蒸馏等转移学习技术,聚焦新的 LLM 发展方向。 4. 提示词培训课——Part4:包括提词工程的基础概念和实用技巧,如利用地规构建思考链条、探讨提示词的敏感性问题、解释'token'概念及相关操作,深入讲解提示词的进阶技术,如增强推理能力、运用元提示和任务分解技巧,探讨 AIAgent 和 AIAgentic 的概念和差别,学习多智能体设计模式,梳理提词落地流程。
2024-10-31
AI 可以帮助我学习并理解统计学的相关概念和公式吗
AI 可以帮助您学习并理解统计学的相关概念和公式。以下是一些相关方面: 数学基础中的统计学基础部分,您可以熟悉均值、中位数、方差等统计概念。 在算法和模型方面,监督学习、无监督学习和强化学习等领域的知识也可能涉及到统计学的应用。 对于模型的评估和调优,例如了解如何评估模型性能,包括交叉验证、精确度、召回率等,也与统计学有一定的关联。 通过学习这些内容,能够为您理解统计学的相关概念和公式提供帮助。
2024-10-31
学习AI
以下是为新手提供的学习 AI 的全面指导: 一、了解 AI 基本概念 1. 建议阅读「」部分,熟悉 AI 的术语和基础概念,了解人工智能及其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 1. 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 2. 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,您可以按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 1. 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 2. 体验 AI 产品,与现有的 AI 产品(如 ChatGPT、Kimi Chat、智谱、文心一言等)进行互动,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 五、持续学习和跟进 AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 对于中学生学习 AI,还有以下建议: 1. 从编程语言入手学习,可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识,了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等,学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目,可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态,关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。
2024-10-30
在WaytoAGI如何从0开始学习AI
对于在 WaytoAGI 中从 0 开始学习 AI,以下是一些建议: 1. 学习 AI 是一个长期的过程,需要耐心和持续的努力,不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。 2. 完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。 3. 为您推荐【野菩萨的 AIGC 资深课】,这门课程由工信部下属单位【人民邮电出版社】开设,是市面上为数不多的值得推荐的 AI 课程之一,也是全网技术更新最快的课程。课程内容涵盖 AI 绘画、视听语言和 ChatGPT 等多个体系的知识,无论您是 AI 初学者还是进阶者,都能满足您的学习需求。您可以扫码添加菩萨老师助理,了解更多信息。 需要注意的是,开源社区资源丰富,适合自律的自主学习者,而知识付费课程能提供系统结构、专业指导、针对性计划和互动反馈,是一种高效的学习途径,您可以根据自身情况选择适合自己的学习方式。
2024-10-30
如何学习ai
以下是关于新手学习 AI 的全面指导: 一、了解 AI 基本概念 1. 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 1. 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 2. 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 1. 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 2. 体验 AI 产品,与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 五、持续学习和跟进 1. AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 2. 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 对于中学生学习 AI,还有以下建议: 1. 从编程语言入手学习,如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等体验 AI 的应用场景,也可以探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识,了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等,学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目,参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态,关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,无论是新手还是中学生,都可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。
2024-10-30
怎么学习人工智能并应用到赚钱
学习人工智能并应用到赚钱可以从以下几个方面入手: 1. 掌握基础知识:学习人工智能的基本概念、原理和技术,包括机器学习、深度学习、自然语言处理等。 2. 提升技能:通过相关课程和实践,提高自己在数据处理、模型训练和优化等方面的能力。 3. 学习商业应用:了解人工智能在金融、医疗、制造业等行业的应用案例,例如学习微软的《面向商业用户的人工智能学习》《人工智能商学院》等课程。 4. 深入研究经典机器学习:可参考《机器学习入门课程》。 5. 掌握特定技术:如使用 Azure 认知服务(Azure Cognitive Services)来创建实用的人工智能应用,包括《视觉》《自然语言处理》《使用 Azure OpenAI 服务的生成式人工智能》等课程。 6. 持续学习和实践:人工智能领域发展迅速,需要不断更新知识和技能,并将其应用到实际项目中。 然而,需要注意的是,学了人工智能有可能赚钱,但不一定保证每个人都能赚到钱。人工智能领域确实有很多高薪工作,比如数据科学家、机器学习工程师等,但能否赚钱还取决于很多因素,比如个人的学习能力、实际应用能力、对市场和商业的理解等等。仅仅学会一些基础知识可能还不足以在竞争激烈的市场中脱颖而出。大型语言模型主要基于语言理解和生成,并非专门设计用于数学计算,在处理数学问题时可能出错。同时,关于 GPTs/GLMs 能否帮助创作者赚钱,答案是能,但大多数人不能,具体原因会在相关文章中详细阐述。
2024-10-30