Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

总结一下AI在游戏领域的应用

Answer

AI 在游戏领域的应用主要包括以下方面:

  1. 虚拟对手:早期游戏中的计算机对手是基于脚本程序,能力取决于编写的工程师且不能学习和迭代。而如今,借助更快的微处理器和云技术,能构建大型神经网络,识别复杂领域的模式和表征,使虚拟对手具备学习能力。
  2. 生成新内容:生成式 AI 可根据用户提示生成原始的新内容,如文本、图像,甚至创造具有完整性格的虚拟角色。
  3. 声音效果:包括生成静态和实时互动的声音效果,如游戏中的脚步声、激光枪音效等,通过游戏中的参数产生更合适且真实的音效。
  4. 音乐配乐:自适应音乐可根据游戏场景和动作实时调整,避免重复和厌烦,但创作难度较大,应用尚不广泛。
Content generated by AI large model, please carefully verify (powered by aily)

References

生成式AI在游戏领域的机会(市场假设+预测)

[title]生成式AI在游戏领域的机会(市场假设+预测)当然,人工智能在游戏中并不新鲜。即使是早期的游戏,如雅达利的《Pong》早就有计算机控制的对手和玩家进行对战。(笔者注:游戏开发商雅达利,创办时期在微处理器诞生后不久,在1972年推出首款街机Pong,奠定街机鼻祖地位。1974年,苹果的乔布斯加入雅达利,负责开发电子游戏)然而这些计算机中的虚拟对手和我们今天讲的生成式人工智能并不一样,这些计算机对手只是游戏设计师精心设计的脚本程序,它们确实模拟了一个人工智能的对手,但它们不能学习和迭代,水平和编写它们的工程师一样。那么,生成式AI和游戏的结合,技术底层有哪些变化?微处理器的速度更快,云计算和各种计算能力更强,具备建立大型的神经网络的潜力,可以在识别高度复杂领域的模式和表征。(Thanks to faster microprocessors and the cloud.With this power,it’s possible to build large neural networks that can identify patterns and representations in highly complex domains.笔者注:这里的意思是越来越快的微处理器单体能力乘上云计算的规模化系数,使建立能够支持复杂的模式识别,啥是模式识别?模式识别是指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分)本篇文章主要两部分:第一部分,包括A16Z对游戏领域生成式AI的观察和预测;第二部分,包括A16Z是我们对游戏+生成式AI领域的市场生态:Market Map,这部分概述了各个细分市场,指出了每个细分市场的主要公司。

游戏中的生成式 AI 革命

生成性AI是一种机器学习类别,计算机可以根据用户的提示生成原始的新内容。目前,文本和图像是这项技术的最成熟应用,但几乎在每一个创意领域都有工作在进行,从动画、音效、音乐,甚至到创造具有完整性格的虚拟角色。当然,AI在游戏中并不是什么新鲜事。即使是早期的游戏,如雅达利的Pong,也有计算机控制的对手来挑战玩家。然而,这些虚拟的敌人并不是我们今天所知道的AI。它们只是由游戏设计师制定的简单脚本程序。它们模拟了一个人工智能对手,但它们不能学习,它们的能力只取决于创建它们的程序员。现在与以前的不同之处在于,由于更快的微处理器和云技术,我们有了更多的计算能力。有了这种能力,我们可以构建大型的神经网络,这些网络可以在高度复杂的领域中识别模式和表示。这篇博文分为两部分:第一部分包括我们对游戏领域的生成性AI的观察和预测。第二部分是我们对该领域的市场地图,概述了各个细分市场并确定了每个市场的关键公司。

生成式AI在游戏领域的机会(市场假设+预测)

[title]生成式AI在游戏领域的机会(市场假设+预测)[heading2]市场生态概述声音效果是人工智能的另一个有吸引力的领域。已经有学术论文探讨了使用人工智能在电影中生成"foley"的想法(例如脚步声),不过目前能够直接在游戏中应用的商业产品还很少。笔者认为,这只是一个时间问题,因为游戏的互动性使其成为生成式人工智能的一个明显的应用,既可以创造静态的声音效果作为生产的一部分("游戏里的激光枪音效等等"),也可以在运行时创造实时的互动声音效果。想象一下,如何给玩家角色生成脚步声(笔者注:例如CS和吃鸡里的脚步声..)?大多数传统游戏,会通过少量预先录制的脚步声来解决这个问题:例如,在草地上行走、在砾石上行走、在草地上跑步、在砾石上跑步等等。这些声音的发布和管理都很繁琐,而且运行的时候听起来重复且不真实。更好的方法是实时通过生成式AI的模拟音效,产生合适且更真实的的音效,通过游戏中的参数,如地面、角色、的重量、步态、鞋类等不同的介质,表现出不同的音效。音乐(游戏配乐)配乐对游戏来说很重要,因为它可以帮助故事主题设定感情基调,就像在电影或电视中一样。但由于游戏持续的时间更长,有的时候能持续数百甚至数千小时,不变的音乐可能很快变得重复或令玩家厌烦。此外,由于游戏具备互动性质,游戏配乐很难完全精确地配合屏幕上随机发生的场景和动作。二十多年来,自适应音乐(Adaptive music)一直是游戏配乐的一个受关注的话题,它可以一直追溯到微软的"DirectMusic"系统,用于创建互动音乐。不过,DirectMusic并没有被广泛采用,主要是因为用这种格式作曲难度较大,只有少数游戏,如Monolith的《无人生还》,创造了真正的互动配乐(Monolith’s No One Lives Forever,)。

Others are asking
AI搜索如何商业变现
AI 搜索的商业变现方式主要有以下几种: 1. 开放接口 API:将联网判断、意图识别、问题改写、信息源检索等步骤封装进黑盒,导出标准 API,让 ChatBot 类产品快速集成。开放 API 后,ChatBot 类应用只需修改 API 的域名前缀即可集成联网检索功能,这对 AI 搜索产品自身而言,增加了面向小 B 的营收途径。 2. 自定义信息源 Source:允许用户自定义信息源,满足个性化搜索需求。比如允许第三方创作者通过 Form 表单填写信息源的相关信息,调试通过后完成集成。 在 AI 时代,一些优秀的 AI 搜索产品如秘塔搜索(https://metaso.cn/)、Perplexity(https://www.perplexity.ai/?loginsource=oneTapHome)已展现出强大的搜索能力。同时,大型科技公司在 AI 搜索领域的动作也备受关注,如微软和苹果自愿放弃 OpenAI 董事会观察员席位,监管机构关注大型科技公司与初创企业的关系。人工智能驱动的搜索虽已开始出现成效,但也存在可靠性等问题。
2025-02-11
你觉得小白从现在开始怎么学AI
对于小白如何学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)及其联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始学习之旅: 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程按照自己的节奏学习,有机会还可获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,包括图像、音乐、视频等,可根据自身兴趣选择特定模块深入学习。 掌握提示词的技巧,其上手容易且实用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多实践后的作品和文章分享,欢迎实践后进行分享。 5. 体验 AI 产品: 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获得对 AI 实际应用表现的第一手体验,激发对 AI 潜力的认识。 此外,还可以参考以下经验: 像《谁是人类》活动中的元子语一样,从 prompt 入手。3.5 刚出来时,对 AI 生成原理的理解加上写好 prompt,能提高问问题和解决问题的效率。 参考《雪梅 May 的 AI 学习日记》,学习模式可以是输入→模仿→自发创造。学习内容可去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新内容。学习时间不必每天依次进行,有空时学习即可。学习状态很重要,保持良好状态能更好地学进去。学习资源多为免费开源。 总之,学习 AI 需要花费时间和精力,愿意做一些准备,坚持学习和实践。
2025-02-11
我要查找医学论文文献,用哪种AI最合适?
如果您要查找医学论文文献,以下几种 AI 工具可能较为合适: 1. Scite.ai:这是一个为研究人员、学者和行业专业人员打造的创新平台,能增强对科学文献的洞察,提供引用声明搜索、自定义仪表板和参考检查等工具,简化学术工作。 2. Scholarcy:一款科研神器,能从文档中提取结构化数据,并通过知识归纳引擎生成文章概要,包含关键概念、摘要、学术亮点、学术总结、比较分析、局限等板块的内容。 3. ChatGPT:强大的自然语言处理模型,可以提供有关医学课题的修改意见。您可以向它提供您的文章,并提出您的问题和需求,它将尽力为您提供帮助。 此外,在论文写作领域,还有以下常用的 AI 工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,帮助管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供相关文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,可帮助精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于进行数据分析和可视化。 Knitro:用于数学建模和优化的软件,可进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化论文编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 使用这些工具时,要结合自己的写作风格和需求,选择最合适的辅助工具。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-02-11
没有接触过AI的小白刚来到这个网站应该从哪里学习
对于刚接触 AI 的小白,您可以从以下几个方面开始学习: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 您还可以参考《雪梅 May 的 AI 学习日记》,这适合纯 AI 小白。其学习模式是输入→模仿→自发创造。学习内容方面,由于 AI 节奏快,很多材料可能不适用,您可以去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新的内容。而且学习时间灵活,资源免费开源。另外,像元子语从 prompt 开始自己的 AI 之旅,通过参与活动和近距离观察,发现 AI 的门槛并非高不可攀。
2025-02-11
我想给我的品牌设计一整套的门店设计方案,现在哪个AI工具最合适,我需要中国内地的AI工具
以下是一些适合用于品牌门店设计的中国内地 AI 工具: 1. 藏师傅推荐的流程:通过获取 Logo 图片的描述、生成图片提示词,并输入 Comfyui 工作生成。相关链接:https://www.coze.cn/s/iDec2U13/ 2. 月度榜单中的相关工具: 美图公司的开拍,具有视频生成功能。 贝因科技的妙笔工坊,属于原生个人助理。 惊叹科技的 TalkAI 练口语,用于教育。 美图公司的美图设计室,具备图片生成功能。 秘塔网络的秘塔 AI 搜索,属于智慧搜索。 3. 生成 Logo 的 AI 产品: Looka:在线 Logo 设计平台,根据用户品牌信息和设计偏好生成方案。 Tailor Brands:通过回答问题生成 Logo 选项。 Designhill:基于用户输入生成个性化 Logo 设计。 LogoMakr:提供简单易用的设计工具和 AI 建议。 Canva:提供模板和元素,有 AI 辅助设计建议。 LogoAI by Tailor Brands:根据输入快速生成 Logo 方案。 标小智:中文 AI Logo 设计工具。 您可以访问网站的 AI 生成 Logo 工具版块获取更多好用的工具:https://waytoagi.com/category/20 。在选择工具时,建议您根据自身品牌理念和视觉偏好进行尝试和定制。
2025-02-11
请帮我找AI拆书相关的学习文档
以下为您推荐与 AI 拆书相关的学习资料: 1. 【包教包会】一条视频速通 AI 大模型原理_哔哩哔哩_bilibili 链接:https://www.bilibili.com/video/BV17t4218761/?vd_source=3cc4af77a2ef185635e8097d3326c893 介绍:由(女神)主讲,和某知识 up 主 Genji 一起制作的免费公益课。干货满满,新手友好,带你 50 分钟速通 AI 大模型原理。 2. 用大模型保存你的全部人生,你会接受吗:专访安克创新 CEO 阳萌|大咖谈芯第 11 期_哔哩哔哩_bilibili 链接:https://www.bilibili.com/video/BV1iT421Q7M1 介绍:某知识 up 主老石谈芯专访安克创新 CEO 阳萌的视频,一共两期,此链接为第二期。两期内容都值得观看,访谈非常硬核。
2025-02-11
有没有推荐的游戏编程ai
以下是为您推荐的一些游戏编程相关的 AI 工具和应用: 1. 生成性 AI 方面:建议现在就开始探索生成性 AI,一些工作室已经启动内部实验项目来探索其对生产的影响。 2. AI 游戏道具推荐系统:在一些游戏中,利用数据分析和机器学习为玩家推荐合适的游戏道具,如武器、装备等。 3. 游戏开发 AI 工具集合: 语音生成:Coqui Studio(https://coqui.ai)、Bark(https://github.com/sunoai/bark)、Replica Studios(https://replicastudios.com) 语音识别:OpenAI Whisper(https://huggingface.co/openai/whisperbase)、Facebook Wav2Vec2(https://huggingface.co/facebook/wav2vec2largexlsr53) 对话模型:ChatGPT(https://chat.openai.com)、HuggingChat(https://huggingface.co/chat) 故事讲述模型:MPT7BStoryWriter65k+(https://huggingface.co/mosaicml/mpt7bstorywriter)、Claude 100k(https://www.anthropic.com/index/100kcontextwindows)、GTP4 32k(https://platform.openai.com/docs/models/overview) 游戏设计:Ludo.ai(https://ludo.ai) 搜索引擎:Haddock(https://www.haddock.ai) AI NPC:Inworld(https://inworld.ai) 希望这些推荐能够满足您的需求,帮助您在游戏编程中更好地运用 AI 技术。
2025-02-11
光遇游戏与ai的融合
光遇游戏与 AI 的融合可以体现在以下几个方面: 1. 生成式 AI 在游戏中的应用: 微处理器速度更快、云计算和计算能力更强,具备建立大型神经网络的潜力,可识别高度复杂领域的模式和表征。 能基于玩家游戏行为评估玩家技能水平和游戏风格,动态调整游戏难度,如增加或降低敌人的数量和强度、改变游戏环境等。 不断收集玩家数据,使 NPC 和游戏系统更适配玩家水平。 2. AI 制作游戏相关内容: 如利用 AI 辅助制作游戏宣传片,包括使用 ChatGPT 构思背景世界观、MJ 绘图、SD 重绘、制作深度图以及视频、AI 抠图、尝试制作背景音乐等。 3. AI 带来新的游戏: 许多开发者将 AI 作为游戏玩法的一环,如 2023 年 Genfun.ai 和 Meshy 联合制作的《Soul Chronicle》,实现了实时 3D+AIGC+UGC,能实时生成角色皮肤。 2024 年 Bitmagic 推出的《Roleverse》平台,可使用提示在游戏内定制角色,并对角色和游戏世界进行编辑。 4. AI 促进游戏产业变革: 为游戏行业提供新的增长空间,成本、效率和质量同步上升。例如 2023 年我国游戏市场实际销售收入增长,用户规模也有所增加。
2025-02-08
可以自己制作游戏吗?
可以自己制作游戏。 目前,利用生成式人工智能制作游戏具有以下情况: 1. 第一阶段重点在工具方面。生成式人工智能可作为人类创作者的辅助,让现有的 UGC(用户生成内容)工作流程更强大和易操作。现有的 UGC 平台(如 Roblox)会在现有工具集中添加生成人工智能工具,初创公司也会复制当前 UGC 工作流程并针对生成人工智能进行优化。 2. 第二阶段会有新公司出现,重新构想创作工作流程。这一阶段的产品可能更像基于生成人工智能构建的引擎或操作系统,会出现全新的创作范式,但具体形式难以预测。 在实际操作中,要求 GPT4 使用高层次规格在 HTML 和 JavaScript 中编写 3D 游戏是可行的,GPT4 能以 zeroshot 方式生成满足要求的工作游戏。但创建 HTML 和 JavaScript 的 3D 游戏需要大量编程知识和经验,并非轻松快速能完成,要花费大量时间和精力开发 3D 图形、物理、用户输入和人工智能等必要功能。 对于 AI 游戏的商业化,由于消耗算力,目前 AI 游戏多为网游形态,买断制游戏回收成本困难。可采用聊天模块按量付费(如原神中充值月卡附带与 AI 对话次数,用完再收费)、UGC 模块包装成抽卡等方式将消耗 AI 的成本转嫁给玩家。 此外,有人希望自己制作的游戏能被更多人玩到、启发他人创作,成长为平台和生态,甚至成为划时代产品载入游戏史册。但游戏形式是否会造成冲突尚无答案,做游戏的目的不同(如注重游戏本身还是赚钱),选择也会不同。
2025-01-26
有用来做网络游戏研发和运营的全套AI工具吗?
目前游戏领域还没有涵盖整个制作过程(包括代码、资产生成、纹理、音频等)的全套生成式人工智能工具,也没有能与流行的游戏引擎(如虚幻和 Unity)紧密结合使用、专为适应典型的游戏生产流程而设计的一体化平台。但有一些相关的工具和平台在不同方面发挥作用,例如: 生成可以互动的角色方面:有很多初创公司在研究,如 Charisma.ai、Convai.com、Inworld.ai 等平台,它们可以为具有情感和自主权的完全渲染的 3D 角色提供动力,并提供工具让创作者给角色设定目标。 语音生成方面:Coqui Studio(https://coqui.ai)、Bark(https://github.com/sunoai/bark)、Replica Studios(https://replicastudios.com)等。 语音识别方面:OpenAI Whisper(https://huggingface.co/openai/whisperbase)、Facebook Wav2Vec2(https://huggingface.co/facebook/wav2vec2largexlsr53)。 对话模型方面:ChatGPT(https://chat.openai.com)、HuggingChat(https://huggingface.co/chat)。 故事讲述模型方面:MPT7BStoryWriter65k+(https://huggingface.co/mosaicml/mpt7bstorywriter)、Claude 100k(https://www.anthropic.com/index/100kcontextwindows)、GTP4 32k(https://platform.openai.com/docs/models/overview)。 游戏设计方面:Ludo.ai(https://ludo.ai)。 搜索引擎方面:Haddock(https://www.haddock.ai)。 AI NPC 方面:Inworld(https://inworld.ai)。
2025-01-23
AI开发游戏
以下是用国产 AI 开发游戏的过程: 1. 元素设计: 狼:图片放进去,调整大小。 栅栏:图片放进去,调整大小。 洞:调整背景颜色,让 AI 提供。 槌子:点一下转动,实现方式从动画效果改为点一下马上旋转 90 度,放开时恢复,点击时洞的高度变短。 羊:生成 20 只羊时出现重叠问题,通过让 AI 调整每只羊间隔 10PX 解决。控制羊的移动花费较多时间,重写多轮代码。 2. 图片生成: 直接让智普生成羊、狼、锤子、栅栏、胜利图片、失败图片。其中羊、狼、锤子、栅栏生成无背景的,用 PS 做成透明 PNG。栅栏和胜利、失败图片生成多次。 3. 框架搭建: 让智普生成 HTML 的大框架,验证元素摆放位置。生成的 HTML 代码简洁,CSS 结构不错但 position 定位模式不对,修改为 position:fixed 修复 BUG。 4. 效果制作: 失败判断在羊的跑的动作中实现,羊跑光显示失败图像。 胜利判断在槌子事件中,洞全部修好即胜利。 第二关在胜利时多一个步骤跳转到第二页,复制代码并修改,增加一只凶狠的狼,用 AI 作图。 5. 完成与测试: 2024 年 5 月 11 日 17:34:04 完成所有内容,上传服务器测试,存在小 BUG 但先凑合用。 开发过程中发现 AI 生成的内容不能完全信任,可能 90%能用,但剩下 10%需要人工调整,学习还是有必要的,AI 只是辅助,有条件问专家是好的解决方案。
2025-01-11
如果自己一个人要完成一个类似游戏的虚拟世界,需要一些什么软件,并且需要多久完成
要一个人完成类似游戏的虚拟世界,可能需要以下软件: 1. 图像生成软件,如 Midjourney、Stable Diffusion 等,用于生成概念图像和美术作品。 2. 3D 建模软件,用于创建 3D 模型、添加纹理和效果等。 完成所需的时间因多种因素而异,包括个人的技能水平、项目的复杂程度、投入的时间和精力等。像《Red Dead Redemption 2》这样复杂的游戏,制作成本近 5 亿美元,花了将近 8 年的时间来建造。但如果是相对简单的虚拟世界,时间可能会短很多。不过,这需要您具备扎实的相关技能和持续的努力。
2025-01-10
哪个AI可以帮我看视频并总结要点?
以下是一些可以帮助您看视频并总结要点的 AI 工具和方法: 1. GPT 系列:您可以将视频的字幕提取出来,全选复制发送给 GPT 进行总结。例如对于 B 站视频,如果其有字幕,您可以通过安装油猴脚本获取字幕,然后复制发送给 GPT 进行总结。GPT4 能识别重点内容。 2. BibiGPT:https://bibigpt.co/ 它可以支持小红书、B 站等网站视频的归纳总结,还可以提问互动,答案会附上对应的视频节点,是融合课程备课的好助手。 此外,还有以下相关的经验分享: 1. 即刻用户拐子狼分享的用 AI 做播客笔记的工作流:用飞书妙计将音频转换为文字;找不到合适的封面图时,使用 Midjourney 制作;Raycast AI 初步检索关键词;Notion AI 总结全文内容。 2. 张翼然的“AI 引领未来课堂的探索与实践.pdf”中提到的优化线上课程、总结内容和知识点的方法,以及推荐的其它视频工具如剪映的图文成片功能(只需提供文案,自动配图配音)。
2025-02-10
从你的知识库中总结提炼一下,形成一个表格,告诉我目前已经有哪些面向个人和面向企业的AI应用\工具\智能体,以及具体的功能简介
|应用类型|应用名称|使用技术|功能简介|示例场景| |||||| |智能体应用(Assistant)|无|基于上下文对话,自主决策并调用工具|客户服务:了解客户诉求,解决客户问题。如查询订单状态、处理退款等。个人助理:管理日程安排、提醒事项、发送邮件等。技术支持:了解技术问题,提供解决方案,帮助用户排除故障。| |工作流应用(Workflow)|无|将复杂任务拆解为若干子任务|AI 翻译:实现初步翻译、内容审校、再次优化的翻译流程,提升翻译质量。| |智能体编排应用|无|支持多智能体协作|综合调研报告:组建一个报告撰写团队,包括负责写作意图识别、大纲书写、总结摘要、智能绘图、事件研判、段落撰写、文笔润色等任务的智能体。软件开发团队:组建一个智能体开发团队,包括负责需求分析、系统设计、编码实现、测试调试、文档编写等任务的智能体。| |AI 游戏道具推荐系统|游戏内商城推荐功能|数据分析、机器学习|根据玩家需求推荐游戏道具。|在一些游戏中,利用 AI 分析玩家的游戏风格和进度,为玩家推荐合适的游戏道具,如武器、装备等。| |AI 天气预报分时服务|彩云天气分时预报|数据分析、机器学习|提供精准的分时天气预报。|彩云天气利用 AI 提供每小时的天气预报,帮助用户更好地安排出行和活动。| |AI 医疗病历分析平台|医渡云病历分析系统|数据分析、自然语言处理|分析医疗病历,辅助诊断。|医渡云利用 AI 分析医疗病历中的症状、检查结果等信息,为医生提供辅助诊断建议。| |AI 会议发言总结工具|讯飞听见会议总结功能|自然语言处理、机器学习|自动总结会议发言内容。|讯飞听见在会议中利用 AI 自动总结发言者的主要观点和重点内容,方便回顾和整理。| |AI 书法作品临摹辅助工具|书法临摹软件|图像识别、数据分析|帮助书法爱好者进行临摹。|书法临摹软件利用 AI 识别书法作品的笔画和结构,为用户提供临摹指导和评价。| |超级简历优化助手|无|自然语言处理|帮助用户优化简历提高求职成功率。|超级简历优化助手分析简历内容并提供优化建议。| |AI 室内设计方案生成|酷家乐|图像生成、机器学习|快速生成个性化室内设计方案。|酷家乐允许用户上传户型图,通过 AI 生成多种设计方案。| |AI 音乐创作辅助工具|Amper Music|机器学习、音频处理|协助音乐创作者进行创作。|Amper Music 根据用户需求生成旋律和编曲。| |AI 情感咨询助手|松果倾诉智能助手|自然语言处理、情感分析|提供情感支持和建议。|松果倾诉智能助手通过文字或语音交流为用户提供情感咨询。| |AI 宠物健康监测设备|小佩宠物智能设备|传感器数据处理、机器学习|实时监测宠物健康状况。|小佩宠物智能设备可监测宠物活动、饮食等,提供健康预警。| |AI 旅游行程规划器|马蜂窝智能行程规划|数据分析、自然语言处理|根据用户需求生成个性化旅游行程。|马蜂窝智能行程规划根据目的地、时间等因素为用户定制旅游路线。|
2025-02-06
如何让AI总结超长文本
以下是让 AI 总结超长文本的一些方法和策略: 1. 对于需要进行很长对话的应用,可对前面的对话进行总结或筛选。当输入大小达到预定阈值长度时,触发总结部分对话的查询,或将先前对话的总结作为系统消息包含在内,也可在后台异步总结。 2. 对于超长文档,如一本书,可以使用一系列查询来总结文档的每一部分,然后将部分总结连接并再次总结,递归进行直至完成整个文档的总结。在总结某一点内容时,可包括前文的运行总结。 3. 除聊天内容外,还能让 AI 总结各种文章(不超过 2 万字),直接全选复制全文发送给 GPT 即可。 4. 对于 B 站视频,可利用视频字幕进行总结。若视频有字幕,可安装油猴脚本获取字幕,然后复制发送给 AI 执行总结任务。 5. 在当今世界,大型语言模型可用于概括文本,如在 Chat GPT 网络界面中操作。还可针对不同情况,如文字总结、针对某种信息总结、尝试“提取”而非“总结”、针对多项信息总结等。
2025-02-06
让AI总结播客的prompt
以下是关于您提到的内容的总结: 在“Claude 工程师聊 prompt”中,提到一个“汉语新解”的 prompt 爆火,探讨了如何写好 prompt 及未来随着大模型进化是否还需为其绞尽脑汁,Anthropic 公司几位负责相关工作的工程师录制播客讨论了好的 prompt 应如何写。 在“夙愿:AI 快速总结群聊消息”中,指出直接将原文发给 GPT 无法按意图工作,需编写提示词让其执行总结文字内容的工作,包括单人发言版和多人发言版,并介绍了后续处理 GPT 输出的方法。 在“杨志磊:对当事人提供的证据发表质证意见或制定诉讼方案”中,对通义千问和豆包 AI 在输入起诉状 prompt 后的表现进行了评测,包括对当事人信息、事实、诉讼请求等方面的处理,格式和内容的符合程度,以及对 prompt 的理解情况。
2025-02-06
我想要搭建一个能够帮我阅读并总结提炼,同时能在我提出问题时,随时在我给他提供的知识库中检索的AI Agent,如何用Coze搭建?
搭建能够阅读、总结提炼并在给定知识库中检索的 AI Agent 可以使用 Coze 按照以下步骤进行: 1. 规划 制定任务的关键方法。 总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。 关于一些其他问题: 1. 如何判断自己的任务/Prompt 是否需要拆解为工作流? 构建稳定可用的 AI Agent 是一个需要不断调试和迭代的过程。通常先从当前性能最强的 LLM(如 ChatGPT4 和 Claude 3.5 sonnet)着手,先用单条 Prompt 或 Prompt Chain 来测试任务的执行质量和稳定性。然后,根据实际执行情况、最终投产使用的 LLM,逐步拆解子任务,降低 LLM 执行单任务的难度,直到达成工程目标。一般对于场景多样、结构复杂、对输出格式要求严格的内容,基本可以预见到需要将其拆解为工作流。此外,如果涉及生成多媒体内容或从网络自主获取额外信息等能力,必然需要通过工作流来调用相应的插件。 2. 只用了一段 Prompt 的 Agent,还算 AI Agent 吗? 算。详见
2025-02-06
AI播客总结软件
以下是一些关于 AI 播客总结软件的信息: 1. 即刻用户拐子狼分享的工作流: 用飞书妙计将音频转换为文字。 找不到合适的封面图时,使用 Midjourney 制作。 Raycast AI 初步检索关键词。 Notion AI 总结全文内容。 将整篇笔记分为四个部分,包括 AI 总结、ShowNotes、节目文字版和笔记。笔记部分对节目提及的关键词做拓展阅读,若解读品牌会放上该品牌在节目所讨论年份的财报。 2. 危柯宇分享的案例: 点开小宇宙播客分享链接。 打开微信通义听悟小程序。 可以直接在通义听悟看概括总结(2 小时播客可在 4 分钟左右分析完),也可一键转录解析导出 txt 文字版,丢到 kimi 自定义分析。 3. 产品推荐: Podwise:是一款面向播客听众的知识管理应用程序,提供人工智能驱动的摘要、思维导图、大纲、值得引用、转录等功能,帮助用户快速提取和理解播客剧集的主要内容。 Decode:提供分析报税表并提供降低税费建议的服务。 Deasie:为 LLM 应用提供数据治理服务,包括检测敏感信息、确定数据的上下文和含义、为文档分配质量分数以及创建认证数据目录。 Relay:工作流程自动化工具,结合了一键式人工智能辅助、人机交互协作和强大的多人游戏体验,支持在协作中加入人工介入的环节。
2025-02-06
agent比较好用的应用是什么
以下是一些比较好用的 Agent 应用: 1. 构建平台: Coze:新一代一站式 AI Bot 开发平台,适用于构建各类问答 Bot,集成丰富插件工具拓展能力边界。 Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及部署到各种渠道。 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者打造产品能力。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等场景,提供多种成熟模板。 钉钉 AI 超级助理:依托钉钉优势,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 2. 项目应用: AppAgent:让 AI 模仿人类在手机上操作 APP,对于模仿数据的反利用有不错应用场景,例如优化产品原型和 UE 交互。由腾讯和德州大学达拉斯分校的研究团开发,是基于大语言模型的多模态代理,能处理和理解多种信息,执行各种任务。 3. 设计范式: Reflection(反思):类似于 AI 的自我纠错和迭代,如让 AI 写代码并自我检查修改,反复优化。 Tool Use:大语言模型调用插件,拓展 LLM 的边界能力。 Planning:较为新颖有前景的方式。 Multiagent:较为新颖有前景的方式。
2025-02-11
ai应用有哪些爆款
以下是一些爆款的 AI 应用: 1. AI 摄影参数调整助手:使用图像识别、数据分析技术,常见于摄影 APP 参数调整功能,市场规模达数亿美元,能根据场景自动调整摄影参数。 2. AI 音乐情感分析平台:运用机器学习、音频处理技术,有音乐情感分析软件,市场规模数亿美元,可分析音乐的情感表达。 3. AI 家居智能照明系统:基于物联网技术、机器学习,如小米智能照明系统,市场规模数十亿美元,实现家居照明的智能化控制。 4. AI 金融风险预警平台:采用数据分析、机器学习,有金融风险预警软件,市场规模数十亿美元,能提前预警金融风险。 5. AI 旅游路线优化平台:借助数据分析、自然语言处理,如马蜂窝路线优化功能,市场规模数亿美元,可根据用户需求优化旅游路线。 此外,还有以下爆款: 1. AI 智能写作助手:如 Grammarly、秘塔写作猫,运用自然语言处理技术,市场规模数十亿美元,辅助用户进行高质量写作。 2. 淘宝拍照搜商品:使用图像识别、机器学习技术,市场规模数百亿美元,通过图像识别为用户推荐相似商品。 3. AI 语音助手定制开发:像小爱同学、Siri,采用语音识别、自然语言理解技术,市场规模百亿美元以上,为不同需求定制专属语音助手。 4. Keep 智能训练计划:基于数据分析、机器学习,市场规模数十亿美元,根据用户数据制定个性化健身方案。 5. 大众点评智能推荐:借助数据挖掘、自然语言处理,市场规模百亿美元规模,基于用户口味偏好推荐美食。 6. 阿里小蜜等电商客服:运用自然语言处理、机器学习技术,市场规模数十亿美元,为企业提供智能客服解决方案。 7. 超级简历优化助手:使用自然语言处理技术,市场规模数亿美元,帮助用户优化简历提高求职成功率。 8. 酷家乐等设计软件:基于图像生成、机器学习技术,市场规模数十亿美元,快速生成个性化室内设计方案。 9. Amper Music:运用机器学习、音频处理技术,市场规模数亿美元,协助音乐创作者进行创作。 10. 松果倾诉智能助手:采用自然语言处理、情感分析技术,市场规模数亿美元,提供情感支持和建议。 11. 小佩宠物智能设备:基于传感器数据处理、机器学习技术,市场规模数十亿美元,实时监测宠物健康状况。 12. 马蜂窝智能行程规划:借助数据分析、自然语言处理技术,市场规模数十亿美元,根据用户需求生成个性化旅游行程。
2025-02-11
现在个人应用场景下最新的产品是什么
在个人应用场景下,最新的产品包括以下方面: 个人实操案例: 产品使用场景:为本篇文章配图,通过不同提示词生成搞笑图片等。 产品开发场景:搭建 AI 访谈 bot,以了解做 AI 朋友的访谈意愿和产出内容质量水平;对内容推荐机制感兴趣,希望 bot 具备内容推荐能力。实现方案有简单和复杂之分,复杂方案需考虑用户识别、记录存储入库可查看等问题,在扣子搭建 bot 时存在工作流触发不成功导致访谈记录未成功存储入库的情况。由于要发布到公众号作为订阅号助手,目前部署的是扣子版本,回复关键词【元器】可体验元器版本。 AIGC 落地应用: 筛选出 5 大应用场景、17 个细分方向、40+大模型案例。 使用场景分为改善大模型产品的使用体验、助力用户工作流、细分场景独立实用工具、AI 社区、Chatbot 五个方向。 产品形态分为插件(Chat GPT/Chrome 等)、辅助现有产品能力、深度结合 LLM 能力的独立网站&应用、AI 社区四种。目前产品大多分布在 PC 端。
2025-02-11
药品零售上市企业如何接入DeepSeek?应用场景有哪些?
目前没有关于药品零售上市企业接入 DeepSeek 以及其应用场景的相关内容。但一般来说,企业接入新的技术或系统需要进行充分的前期调研和规划。对于药品零售上市企业接入 DeepSeek,可能需要考虑与自身业务流程的匹配度、数据安全和合规性等方面。应用场景可能包括但不限于药品库存管理的优化、客户需求预测、销售趋势分析等,具体还需根据企业的实际情况和 DeepSeek 的功能特点来确定。
2025-02-11
利用deep seek建立知识库应用
以下是关于利用 deep seek 建立知识库应用的相关内容: RAG 技术: 利用大模型的能力搭建知识库是 RAG 技术的应用。在需要依靠不包含在大模型训练集中的数据时,主要通过检索增强生成 RAG 实现。RAG 应用可抽象为 5 个过程: 1. 文档加载:从多种来源加载文档,LangChain 提供 100 多种文档加载器,包括非结构化、结构化数据和代码等。 2. 文本分割:文本分割器把文档切分为指定大小的块。 3. 存储:包括将切分好的文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 4. 检索:通过检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题及检索出来的嵌入片提交给 LLM,生成更合理答案。 创建知识库应用的具体步骤: 1. 地址输入浏览器:http://这里替换为你宝塔左上角的那一串:3000/ 2. 进入后,点击应用并创建,选择 qwen 模型。 3. 创建知识库。点击知识库 选择 qwen Embedding 1 点击确认创建。 4. 上传文件,等待处理,文本状态为“已就绪”即可。 5. 回到创建的应用,关联创建的知识库。 6. 点击两个发布,之前第一个叫做保存。 7. 点击新建,创建 key。创建后保存同时将 API 根地址最后加上/v1 并保存下来。 此外,在安装并接入 cow 方面: 1. 回到宝塔,打开【终端】。 2. 依次粘贴并回车:cd/root 、git clone https://github.com/zhayujie/chatgptonwechat (注意粘贴完整)。 3. 出现特定样子表示成功,失败或无反应则刷新重试。 4. 继续依次输入:cd chatgptonwechat/ 、pip install r requirements.txt 。 5. 等待执行完成后,继续粘贴:pip install r requirementsoptional.txt 。 6. 到“文件”菜单中执行,点击文件 找到 root,进入 root 文件夹,找到 chatgptonwechat 文件夹并进入。
2025-02-10
Deepseek 如何赋能职场应用
DeepSeek 可以通过以下方式赋能职场应用: 1. 智能纪要方面:在直播中,分享了用 DeepSeek 提升职场生产力的经历,重点包括求职场景,剖析职场人士简历常见问题,展示简历模板,演示用 DS 生成定制自我介绍及实际操作求职。 2. 助力求职方面:从分析岗位差异入手,借助 AI 工具增强简历定制化。分享不同 AI 工具的使用及设备适配情况,针对职场人和学生简历问题给出建议,介绍用 AI 增加工作经验和作品的方法,如参加比赛、生成视频等,并进行 PPT 生成等实操演示及互动答疑。 3. 功能与使用案例方面:能做文本生成等多种事,使用时可用更少词让模型做更多事。分享了在育儿、知识探讨、学科学习方面的应用案例。 4. 提示词方法论方面:包括模糊指令优化、迭代优化法、高级调试策略、行业应用案例、异常处理方案、效能监测指标等。 5. 产业生态方面:大量云计算巨头和企业应用纷纷接入 DeepSeek,形成了前所未有的 AI 产业热潮。
2025-02-10