AI Agent 涉及的技术包括以下方面:
在技术层面,AI Agent 的发展有两条技术路线:
特别值得关注的是 Anthropic 提出的 MCP(Model Context Protocol),其本质是一个通用接口协议,能解决让 AI 模型以标准化、可扩展方式与外部世界交互的问题。
此外,强化学习(RL)也是 AI Agent 的重要技术,起初主要依托策略搜索和价值函数优化等算法,如 Q-learning 和 SARSA。随着深度学习技术兴起,深度神经网络与强化学习结合形成深度强化学习,赋予 Agent 从高维输入中学习复杂策略的能力,如 AlphaGo 和 DQN 等。但强化学习面临训练周期长、采样效率低和稳定性等问题。其特点是通过试错学习最优行为策略以最大化累积奖励,时间始于 20 世纪 90 年代至今,技术包括 Q-learning、SARSA、深度强化学习(结合 DNN 和 RL),优点是能够处理高维状态空间和连续动作空间,缺点是样本效率低、训练时间长。
Long horizon task长期任务执行:就像一个称职的项目经理,Agent现在能够处理更复杂、跨度更长的任务。它不仅能够将大任务分解成可管理的小步骤,还能在执行过程中保持清晰的目标导向,适时调整策略。多模态理解:Agent不再局限于单一的交流方式。它能同时理解文字、图像、声音,就像人类一样通过多种感官来理解世界。这种全方位的感知能力让它能更好地理解环境和任务上下文。记忆与行动:通过先进的记忆机制,Agent能够像人类一样积累经验,从过去的交互中学习。它不仅能记住之前的对话,还能记住操作步骤和效果,这让它的行动更加精准和高效。自适应学习:最令人惊叹的是Agent的学习能力。它能够从每次交互中吸取经验,不断完善自己的策略。这种进步不是简单的数据积累,而是真正的“智慧成长”。在技术层面,AI Agent的发展出现了两条技术路线:一是以自主决策为核心的LLM控制流,二是以工作流(Workflow)编排为重点的工具集成系统。前者代表了AGI的探索方向,后者则加速了AI落地应用。特别值得关注的是Anthropic提出的MCP(Model Context Protocol),在其官网,Anthropic说2025年将是Agentic系统年。MCP的本质是一个通用接口协议,它试图解决一个根本性问题:如何让AI模型能够以一种标准化、可扩展的方式与外部世界交互。在传统方法中,每添加一个新工具或数据源,都需要重新设计接口和提示词。MCP则提供了一个统一的抽象层,将所有外部资源(工具、API、数据库等)抽象为“上下文提供者”(Context Providers),使得模型能够自然地使用各种工具和访问各类数据。用一个比喻来理解:想象一个刚来到陌生城市的人。他需要完成各种任务:找住处、办手续、买日用品。
强化学习(RL)领域关注的核心议题是:如何培养Agent通过与环境的互动进行自我学习,以在特定任务中累积最大的长期奖励。起初,基于RL-based Agent主要依托于策略搜索和价值函数优化等算法,Q-learning和SARSA便是其中的典型代表。随着深度学习技术的兴起,深度神经网络与强化学习的结合开辟了新的天地,这就是深度强化学习。这一突破性融合赋予了Agent从高维输入中学习复杂策略的能力,带来了诸如AlphaGo和DQN等一系列令人瞩目的成就。深度强化学习的优势在于,它允许Agent在未知的环境中自主探索和学习,无需依赖明确的人工指导。这种方法的自主性和适应性使其在游戏、机器人控制等众多领域都展现出广泛的应用潜力。然而,强化学习的道路并非一帆风顺。它面临着诸多挑战,包括漫长的训练周期、低下的采样效率以及稳定性问题,特别是在将其应用于复杂多变的真实世界环境时更是如此。时间:20世纪90年代至今特点:通过试错学习最优行为策略,以最大化累积奖励技术:Q-learning,SARSA,深度强化学习(结合DNN和RL)优点:能够处理高维状态空间和连续动作空间缺点:样本效率低,训练时间长
强化学习(RL)领域关注的核心议题是:如何培养Agent通过与环境的互动进行自我学习,以在特定任务中累积最大的长期奖励。起初,基于RL-based Agent主要依托于策略搜索和价值函数优化等算法,Q-learning和SARSA便是其中的典型代表。随着深度学习技术的兴起,深度神经网络与强化学习的结合开辟了新的天地,这就是深度强化学习。这一突破性融合赋予了Agent从高维输入中学习复杂策略的能力,带来了诸如AlphaGo和DQN等一系列令人瞩目的成就。深度强化学习的优势在于,它允许Agent在未知的环境中自主探索和学习,无需依赖明确的人工指导。这种方法的自主性和适应性使其在游戏、机器人控制等众多领域都展现出广泛的应用潜力。然而,强化学习的道路并非一帆风顺。它面临着诸多挑战,包括漫长的训练周期、低下的采样效率以及稳定性问题,特别是在将其应用于复杂多变的真实世界环境时更是如此。时间:20世纪90年代至今特点:通过试错学习最优行为策略,以最大化累积奖励技术:Q-learning,SARSA,深度强化学习(结合DNN和RL)优点:能够处理高维状态空间和连续动作空间缺点:样本效率低,训练时间长