直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

大模型中的RAG

回答

RAG 即 Retrieval-augmented-Generation(检索增强技术),是大模型中的一个重要概念。

首先回顾 LLM 的原理,它是把互联网文献材料降维到 latent space 中,并通过 transformer 方式学习其中的“经验”。但固定文献资料存在局限性,可能无法回答某些问题。

RAG 的出现解决了这一问题,它允许模型到搜索引擎上搜索问题相关资料,并结合自身知识体系综合回复。其中,RAG 的“R”即搜索环节并非简单操作,还涉及传统搜索的逻辑,如对输入问题的纠错、补充、拆分,以及对搜索内容的权重逻辑等。

例如,对于“中国界世杯夺冠那年的啤酒销量如何”的问题,会先纠错为“中国世界杯夺冠那年的啤酒销量如何”,然后拆分问题进行综合搜索,将搜索到的资料提供给大模型进行总结性输出。

RAG 是一种结合检索和生成的技术,能让大模型在生成文本时利用额外数据源,提高生成质量和准确性。其基本流程为:首先,给定用户输入(如问题或话题),RAG 从数据源中检索出相关文本片段(称为上下文);然后,将用户输入和检索到的上下文拼接成完整输入传递给大模型(如 GPT),输入通常包含提示,指导模型生成期望输出(如答案或摘要);最后,从大模型输出中提取或格式化所需信息返回给用户。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

Ranger:【AI 大模型】非技术背景,一文读懂大模型(长文)

rag,也就是Retrieval-augmented-Generation,检索增强技术,应该也是大家经常看到的一个名词了。那么他到底是个什么东西呢?首先我们先回顾llm的原理,其实就是把一堆互联网文献材料,降维到latentspace中,并通过transformer的方式用学习到了其中的“经验”。但文献资料是死的,如果仅通过固定的资料去回答问题,势必会出现一些无法回答的问题。那么rag的出现就解决了这个问题,rag允许模型可以到搜索引擎上去搜索问题相关的资料,并将获取到的信息,综合自己的知识体系内容,综合进行回复。当然rag不全是这些,rag的r,也就是搜索,其实不是一件简单的事情。所以这个环节还会有些传统的搜索的逻辑在,比如对于输入问题的纠错,补充,拆分,以及对于搜索内容的权重逻辑等等的事情。打个比方,比如问中国界世杯夺冠那年的啤酒销量如何,那就首先会做一次纠错,把“界世”纠错为“世界”,然后把问题拆分为两个问题,然后综合去搜索,把搜索到的资料在给到大模型,让其进行总结性输出

开发:LangChain应用开发指南-大模型的知识外挂RAG

RAG是一种结合了检索和生成的技术,它可以让大模型在生成文本时利用额外的数据源,从而提高生成的质量和准确性。RAG的基本流程如下:首先,给定一个用户的输入,例如一个问题或一个话题,RAG会从一个数据源中检索出与之相关的文本片段,例如网页、文档或数据库记录。这些文本片段称为上下文(context)。然后,RAG会将用户的输入和检索到的上下文拼接成一个完整的输入,传递给一个大模型,例如GPT。这个输入通常会包含一些提示(prompt),指导模型如何生成期望的输出,例如一个答案或一个摘要。最后,RAG会从大模型的输出中提取或格式化所需的信息,返回给用户。

开发:LangChain应用开发指南-大模型的知识外挂RAG

RAG是一种结合了检索和生成的技术,它可以让大模型在生成文本时利用额外的数据源,从而提高生成的质量和准确性。RAG的基本流程如下:首先,给定一个用户的输入,例如一个问题或一个话题,RAG会从一个数据源中检索出与之相关的文本片段,例如网页、文档或数据库记录。这些文本片段称为上下文(context)。然后,RAG会将用户的输入和检索到的上下文拼接成一个完整的输入,传递给一个大模型,例如GPT。这个输入通常会包含一些提示(prompt),指导模型如何生成期望的输出,例如一个答案或一个摘要。最后,RAG会从大模型的输出中提取或格式化所需的信息,返回给用户。

其他人在问
怎么写文档会让RAG 效果更好
要让 RAG 效果更好地写文档,您可以参考以下要点: 1. 文档切割: 合理的文档切割能让系统返回更完整、连贯的结果。例如,对于“猫咪的饮食习惯是什么?”的查询,将相关内容切割为“猫咪的饮食习惯取决于它们的年龄、健康状况和品种。”和“幼猫需要更多的蛋白质,而成年猫则需要均衡的营养。”这样的文档块。 目前免费平台一般提供智能切割和手动切割两种方式。但在当下技术水平下,智能切割效果一般,对于以问答为主的客服场景,将一个问答对切成一个文档片,检索效果会很好。 2. 整理知识库文档阶段: 确定知识库包含的文档类型,如政策原文文档、业务积累的 QA、操作指引、产品说明等,并进行预处理。 知识库本身质量对最终效果至关重要,是大模型生成回答的原始语料。 优化方向包括: 文档格式:PDF 文档格式信息相对简洁,干扰少,但也有说.docx 效果更优的,需根据场景测试。 文档命名:尽量控制在 10 字左右,涵义简洁明了,避免无意义的数字、符号或缩写。 文档语言:尽量统一为同一种,避免中英文混切导致乱码和无用数据。 文档内容:设置清晰的一二级标题,对特殊元素进行处理。 构建问答对:能达到更好效果,但耗费人力和运营成本,需综合考虑。 3. 通用语言模型微调可完成常见任务,更复杂和知识密集型任务可基于语言模型构建系统,访问外部知识源。Meta AI 引入的 RAG 方法把信息检索组件和文本生成模型结合,可接受输入并检索相关文档,给出来源,适应事实变化,不用重新训练就能获取最新信息并生成可靠输出。Lewis 等人(2021)提出通用的 RAG 微调方法,使用预训练的 seq2seq 作为参数记忆,用维基百科的密集向量索引作为非参数记忆。
2024-10-21
RAG应用的案例,结合本地知识库和开放搜索
以下是一些 RAG 应用的案例: 1. 用户向 ChatGPT 查询最近引起广泛关注的事件,如 OpenAI 首席执行官的突然解雇和复职,由于 ChatGPT 预训练数据的限制缺乏对最新事件的了解。RAG 通过从外部知识库中检索最新的文档摘录来解决这一问题,获取相关新闻文章并与最初的问题合并成丰富的提示,使 ChatGPT 能够合成知情的回答,展示了其通过实时信息检索增强模型响应能力的过程。 2. 在本地知识库的搭建中,利用大模型的能力搭建知识库本身就是一个 RAG 技术的应用。RAG 应用可抽象为 5 个过程:文档加载,从多种来源加载文档;文本分割,把文档切分为指定大小的块;存储,包括将切分好的文档块嵌入转换成向量形式并存储到向量数据库;检索,通过检索算法找到与输入问题相似的嵌入片;输出,把问题及检索出来的嵌入片一起提交给 LLM,让其生成更合理的答案。 3. 在了解 RAG 全貌时,其流程分为离线数据处理和在线检索两个过程。离线数据处理目的是构建知识库这本“活字典”,在线检索则是利用知识库和大模型进行查询的过程。以构建智能问答客服这一最经典的应用场景为例,可深入了解 RAG 所有流程中的“What”与“Why”。
2024-10-20
有没有RAG 基本架构的中文图示
以下是关于 RAG 基本架构的介绍: RAG 是当今大多数现代人工智能应用程序的标准架构。以 Sana 的企业搜索用例为例,其工作原理如下: 1. 应用程序加载和转换无结构文件(如 PDF、幻灯片、文本文件),跨越企业数据孤岛(如 Google Drive 和 Notion),通过数据预处理引擎(如 Unstructured)转换为 LLM 可查询格式。 2. 这些文件被“分块”成更小的文本块,作为向量嵌入并存储在数据库(如 Pinecone)中,以实现更精确的检索。 3. 当用户提出问题时,系统检索语义上最相关的上下文块,并将其折叠到“元提示”中,与检索到的信息一起馈送给 LLM。 4. LLM 从检索到的上下文中合成答复返回给用户。 RAG 的基本概念: RAG 是一种结合了检索和生成的技术,能让大模型在生成文本时利用额外的数据源,提高生成的质量和准确性。其基本流程为: 首先,给定用户输入(如问题或话题),RAG 从数据源中检索出相关文本片段(称为上下文)。 然后,将用户输入和检索到的上下文拼接成完整输入传递给大模型(如 GPT),输入通常包含提示,指导模型生成期望输出(如答案或摘要)。 最后,从大模型的输出中提取或格式化所需信息返回给用户。
2024-10-17
基于飞书的知识库RAG的搭建,需要什么接口进行全文搜索
基于飞书的知识库 RAG 搭建,可用于全文搜索的接口方式主要有以下几种: 1. 语义检索:语义匹配关注查询和文档内容的意义,而非仅仅表面的词汇匹配。通过向量的相似性来判断语义的相似性。 2. 全文检索:这是基于关键词的检索方式。例如,对于句子“猫的饮食习惯包括吃鱼和鸡肉”,输入“猫”“饮食”“猫的饮食习惯”“吃鱼”等关键词可搜索到该句子,但输入“猫喜欢吃什么呀”则无法搜索到。 3. 混合检索:结合了语义匹配和全文检索的优点,通常系统先进行全文检索获取初步结果,然后再对这些结果进行语义匹配和排序。 此外,在本地部署资讯问答机器人实现 RAG 时,会涉及加载所需的库和模块,如 feedparse 用于解析 RSS 订阅源,ollama 用于在 python 程序中跑大模型。还会为文档内容生成向量,如使用文本向量模型 bgem3 等。 在开发 LangChain 应用开发指南中,实现 LangChain 和 RAG 的结合时,需要加载数据、分割文档、转换嵌入并存储到向量存储器、创建检索器以及聊天模型等步骤。
2024-10-17
如何在个人电脑中部署本地RAG
在个人电脑中部署本地 RAG 可以按照以下步骤进行: 1. 加载所需的库和模块: 确保 ollama 服务已开启并下载好模型,ollama 用于在 python 程序中跑大模型。 feedparse 用于解析 RSS 订阅源。 2. 从订阅源获取内容: 函数用于从指定的 RSS 订阅 url 提取内容,如需接收多个 url 可稍作改动。 通过专门的文本拆分器将长文本拆分成较小的块,并附带相关元数据,如标题、发布日期和链接。最终,这些文档被合并成一个列表并返回,用于进一步的数据处理或信息提取任务。 3. 为文档内容生成向量: 使用文本向量模型 bgem3,从 hf 下载好模型后放置在指定路径,如 /path/to/bgem3,通过函数利用 FAISS 创建一个高效的向量存储。 4. 创建 Python 虚拟环境: 创建 python 虚拟环境,并安装相关库,版本如下: ollama:0.1.8 langchain:0.1.14 faisscpu:1.8.0(有 gpu 则安装 gpu 版本) gradio:4.25.0 feedparser:6.0.11 sentencetransformers:2.6.1 lxml:5.2.1 5. 导入依赖库。 6. 基于用户的问题,从向量数据库中检索相关段落,并根据设定的阈值进行过滤,最后让模型参考上下文信息回答用户的问题,从而实现 RAG。 7. 创建网页 UI:通过 gradio 创建网页 UI,并进行评测。 8. 问答测试:对于同样的问题和上下文,基于 Qwen7b、Gemma、Mistral、Mixtral 和 GPT4 分别进行多次测试。 总结: 1. 本文展示了如何使用 Langchain 和 Ollama 技术栈在本地部署一个资讯问答机器人,同时结合 RSSHub 来处理和提供资讯。 2. 上下文数据质量和大模型的性能决定了 RAG 系统性能的上限。 3. RAG 通过结合检索技术和生成模型来提升答案的质量和相关性,可以缓解大模型幻觉、信息滞后的问题,但并不意味着可以消除。
2024-10-13
知识图片与RAG
RAG 分为离线数据处理和在线检索两个过程。离线数据处理旨在构建知识库,就像准备一本“活字典”,知识会按特定格式和排列方式存储在其中以待使用。在线检索则是利用知识库和大模型进行查询的过程。 LangChain 是专注于大模型应用开发的平台,提供一系列组件和工具帮助构建 RAG 应用,包括: 1. 数据加载器(DocumentLoader):能从数据源加载数据并转换为包含 page_content(文本内容)和 metadata(元数据)的文档对象。 2. 文本分割器(DocumentSplitter):将文档对象分割成多个小文档对象,方便后续检索和生成,因大模型输入窗口有限,短文本更易找相关信息。 3. 文本嵌入器(Embeddings):将文本转换为高维向量的嵌入,用于衡量文本相似度以实现检索。 4. 向量存储器(VectorStore):存储和查询嵌入,通常使用 Faiss 或 Annoy 等索引技术加速检索。 5. 检索器(Retriever):根据文本查询返回相关文档对象,常见实现是向量存储器检索器,利用向量存储器的相似度搜索功能检索。 6. 聊天模型(ChatModel):基于大模型如 GPT3,根据输入序列生成输出消息。 使用 LangChain 构建 RAG 应用的一般流程如下:(具体流程未给出)
2024-10-11
大模型评测标准
大模型的评测标准通常包括以下方面: 1. 多维度、多视角的综合性测评方案: 如中文大模型基准测评 2023 年度报告中,采用了由多轮开放问题 SuperCLUEOPEN 和三大能力客观题 SuperCLUEOPT 组成的评测集,共 4273 题,包括 1060 道多轮简答题(OPEN)和 3213 道客观选择题(OPT)。 在确定的评估标准指导下,OPEN 基准使用超级模型作为评判官,对比待评估模型与基准模型,计算胜和率作为 OPEN 得分,最终 SuperCLUE 总分由 0.7OPEN 分+0.3OPT 分计算得出,且经过人工校验。 OPT 主要测评选择题,包括基础能力、中文特性、专业与学术能力,构造统一 prompt 供模型使用,要求选取唯一选项。多轮简答题 OPEN 更能反映模型真实能力,故权重设置较高。 2. 特定的评测体系及开放平台: FlagEval(天秤)大模型评测体系及开放平台,旨在建立科学、公正、开放的评测基准、方法、工具集,创新构建了“能力任务指标”三维评测框架,细粒度刻画基础模型的认知能力边界,可视化呈现评测结果。 CEval 构造了一个覆盖多个方向和学科,共 13948 道题目的中文知识和推理型测试集,并给出了当前主流中文 LLM 的评测结果。 SuperCLUElyb 是中文通用大模型匿名对战评价基准,以众包方式提供匿名、随机的对战,并发布了初步结果和基于 Elo 评级系统的排行榜。 3. 基于业务目标和特定场景的测评: 例如在开发基于 LangChain Chatchat 框架的产品时,基于业务目标和政策咨询场景,对回答的内容生成质量进行测评,主要包括是否理解问题、是否匹配正确政策原文、基于政策原文的回答是否准确全面、是否生成政策原文以外的内容、回答是否可靠以及不同轮次回答是否差异大、是否支持追问等方面。
2024-10-23
Florence节点和模型下载方法
Florence 节点和模型的下载方法如下: 节点下载: 方法一:从节点管理器中安装(注意结尾是 V2.6int4 的那个)。 方法二:在秋叶包中安装(注意结尾是 V2.6int4 的那个)。 方法三:直接下载下面文件解压,复制 ComfyUI_MiniCPMV2_6int4 文件夹到您的“\\ComfyUI\\custom_nodes”目录下。注意 ComfyUI_MiniCPMV2_6int4 文件夹里面直接就是多个文件不能再包文件夹了。 夸克网盘:链接:https://pan.quark.cn/s/bc35e6c7e8a6 百度网盘:链接:https://pan.baidu.com/s/1sq9e2dcZsLGMDNNpmuYp6Q?pwd=jdei 提取码:jdei 模型下载: 模型下载地址(解压后大小 5.55G,压缩包大小 4.85G): 夸克网盘:链接:https://pan.quark.cn/s/98c953d1ec8b 百度网盘:链接:https://pan.baidu.com/s/1y4wYyLn511al4LDEkIGEsA?pwd=bred 提取码:bred 此外,Joy_caption 相关模型下载: 从 https://huggingface.co/unsloth/MetaLlama3.18Bbnb4bit 下载并放到 Models/LLM/MetaLlama3.18Bbnb4bit 文件夹内。 必须手动下载: https://huggingface.co/spaces/fancyfeast/joycaptionprealpha/tree/main/wpkklhc6 ,存放文件夹:models/Joy_caption 。 MiniCPMv2_6 提示生成器 + CogFlorence: https://huggingface.co/pzc163/MiniCPMv2_6promptgenerator https://huggingface.co/thwri/CogFlorence2.2Large TheMisto.ai 的 MistoLine 版相关: 节点: MistoControlNetFluxdev ,在您的 \\ComfyUI\\custom_nodes 文件夹里面右键终端命令行,复制相关代码即可下载,或者通过以下网盘下载: 夸克网盘:链接:https://pan.quark.cn/s/ad43dd5152a6 百度网盘:链接:https://pan.baidu.com/s/1NcOdG4AV68xTup8FvphsYA?pwd=lpvc 提取码:lpvc 模型: 夸克网盘:链接:https://pan.quark.cn/s/5551e813db21 百度网盘:链接:https://pan.baidu.com/s/1Ntf4MbTCGJ5TYDv6mgvqNQ?pwd=zhfq 提取码:zhfq 处理:将模型放到您的 ComfyUI\\models\\TheMisto_model 文件夹中,并导入官方工作流 。
2024-10-22
Lora模型训练数据集
以下是关于 Lora 模型训练数据集的相关内容: 创建数据集: 1. 进入厚德云模型训练数据集(https://portal.houdeyun.cn/sd/dataset)。 2. 在数据集一栏中,点击右上角创建数据集,输入数据集名称。 3. 可以上传包含图片+标签 txt 的 zip 文件,也可以只有图片(之后可在 c 站使用自动打标功能),还可以一张一张单独上传照片,但建议提前把图片和标签打包成 zip 上传。 4. Zip 文件里图片名称与标签文件应当匹配,例如:图片名“1.png”,对应的达标文件就叫“1.txt”。 5. 上传 zip 以后等待一段时间,确认创建数据集。返回到上一个页面,等待一段时间后上传成功,可以点击详情检查,能预览到数据集的图片以及对应的标签。 Lora 训练: 1. 点击 Flux,基础模型会默认是 FLUX 1.0D 版本。 2. 选择数据集,点击右侧箭头,会跳出所有上传过的数据集。 3. 触发词可有可无,取决于数据集是否有触发词。模型效果预览提示词则随机抽取一个数据集中的标签填入即可。 4. 训练参数这里可以调节重复次数与训练轮数,厚德云会自动计算训练步数。如果不知道如何设置,可以默认 20 重复次数和 10 轮训练轮数。 5. 可以按需求选择是否加速,点击开始训练,会显示所需要消耗的算力。然后等待训练,会显示预览时间和进度条。训练完成会显示每一轮的预览图。鼠标悬浮到想要的轮次模型,中间会有个生图,点击会自动跳转到使用此 lora 生图的界面。点击下方的下载按钮则会自动下载到本地。 用 SD 训练一套贴纸 LoRA 模型的工作流: 1. 原始形象:MJ 初步产出符合设计想法的贴纸原始形象。 2. 二次加工:完成贴纸的白色边线等细节加工。 3. 处理素材:给训练集图片打 tag,修改 tag。 4. 训练模型:将上述处理好的数据集做成训练集,进行训练。 用 SD 训练一套贴纸 LoRA 模型的原始形象:MJ 关键词: A drawing for a rabbit stickers,in the style of hallyu,screenshot,mori kei,duckcore plush doll art exaggerated poses,cry/happy/sad/...ar 3:4 niji 5 style cute s 180 。会得到不同风格的贴图,我们可以先看看自己喜欢哪一种。出图过程可以有意识地总结这一类贴图的特征,比如都是可爱的兔子,有不同的衣服和头饰,都有一双大大的卡通眼睛,会有不同的面部表情。 注意事项: 1. 关键词中限制了颜色,因此 MJ 生成的图片会一种情绪对应一种颜色,所以同一种情绪最好多生成几张不同色系的,可以减少后续训练中模型把情绪和颜色做挂钩(如果需要这样的话,也可以反其道而行之)。 2. 数据集中正面情绪与负面情绪最好比例差不多,如果都是正面积极的,在出一些负面情时(sad,cry)的时候,可能会出现奇怪的问题(如我们训练的是兔子形象,但 ai 认知的 sad 可能是人的形象,可能会出现人物特征)。 3. 如果训练 256266 大小的表情包,这样的素材就已经够用了。如果要训练更高像素的图片,则需要进一步使用 MJ 垫图和高清扩展功能。 高清化: 左(256)→右(1024),输入左图,加入内容描述,加入风格描述,挑选合适的,选出新 30 张图片(卡通二次元类型的 lora 训练集 30 张差不多,真人 60100 张)。
2024-10-22
Lora模型训练
以下是关于 Lora 模型训练的相关内容: 一、用 SD 训练一套贴纸 LoRA 模型的要点 1. 训练数据集准备:包括训练素材处理、图像预处理、打标优化。 2. 训练环境参数配置:选择本地或云端训练环境,进行训练环境配置和训练参数配置。 3. 模型训练:基于 kohyass 训练模型。 4. 模型测试:通过 XYZ plot 测试模型。 二、郑敏轩:Flux 的 Lora 模型训练 1. 所需模型下载:t5xxl_fp16.safetensors、clip_l.safetensors、ae.safetensors、flux1dev.safetensors。 注意事项: 不使用时,模型放置位置不限,只要知道路径即可。 训练时,建议使用 flux1dev.safetensors 版本的模型和 t5xxl_fp16.safetensors 版本的编码器。 2. 下载脚本: 夸克网盘链接:https://pan.quark.cn/s/ddf85bb2ac59 百度网盘链接:https://pan.baidu.com/s/1pBHPYpQxgTCcbsKYgBi_MQ?pwd=pfsq 提取码:pfsq 三、100 基础训练大模型 1. 步骤一·创建数据集 进入厚德云模型训练数据集:https://portal.houdeyun.cn/sd/dataset 在数据集一栏中,点击右上角创建数据集,输入数据集名称。 可以上传包含图片+标签 txt 的 zip 文件,也可以只有图片(之后可在 c 站使用自动打标功能),或者一张一张单独上传照片。 Zip 文件里图片名称与标签文件应当匹配,例如:图片名"1.png",对应的达标文件就叫"1.txt"。 上传 zip 以后等待一段时间,确认创建数据集,返回到上一个页面,等待一段时间后上传成功,可点击详情检查,预览数据集的图片以及对应的标签。 2. 步骤二·Lora 训练 点击 Flux,基础模型会默认是 FLUX 1.0D 版本。 选择数据集,点击右侧箭头,选择上传过的数据集。 触发词可有可无,取决于数据集是否有触发词。 模型效果预览提示词则随机抽取一个数据集中的标签填入即可。 训练参数可调节重复次数与训练轮数,厚德云会自动计算训练步数,若不知如何设置,可默认 20 重复次数和 10 轮训练轮数。 可按需求选择是否加速,点击开始训练,会显示所需要消耗的算力,然后等待训练,会显示预览时间和进度条。 训练完成后会显示每一轮的预览图,鼠标悬浮到想要的轮次模型,中间会有个生图,点击会自动跳转到使用此 lora 生图的界面。点击下方的下载按钮则会自动下载到本地。
2024-10-22
你是基于什么大模型做的知识库
以下是关于大模型和知识库的相关知识: 1. RAG(检索增强生成)技术:利用大模型搭建知识库是 RAG 技术的应用。大模型训练数据有截止日期,当需要依靠不在训练集中的数据时,可通过 RAG 实现。RAG 包括文档加载、文本分割、存储(包括嵌入和向量数据存储到向量数据库)、检索、输出(把问题及检索出的嵌入片提交给 LLM 生成答案)等 5 个过程。文档加载可从多种来源加载不同类型的文档,文本分割将文档切分为指定大小的块。 2. 硬件配置要求:运行大模型需要较高的机器配置。生成文字大模型最低配置为 8G RAM + 4G VRAM,建议配置为 16G RAM + 8G VRAM,理想配置为 32G RAM + 24G VRAM(跑 GPT3.5 差不多性能的大模型);生成图片大模型最低配置为 16G RAM + 4G VRAM,建议配置为 32G RAM + 12G VRAM;生成音频大模型最低配置为 8G VRAM,建议配置为 24G VRAM。 3. 实例:在一个设定中,使用阿里千问模型,设定角色为“美嘉”,知识库为《爱情公寓》全季剧情,实现问答。
2024-10-22
图片问答相关的大模型产品有哪些
以下是一些与图片问答相关的大模型产品: 国内免费的 APP 有 Kimi 智能助手、文心一言、通义千问。 Kimi 智能助手:由 Moonshot AI 出品,具有超大“内存”,能读长文和上网。 文心一言:百度出品的 AI 对话产品,可写文案、想点子、聊天和答疑。 通义千问:由阿里云开发,能与人交互、回答问题及协作创作。 好用的图生图产品有: Artguru AI Art Generator:在线平台,生成逼真图像,为设计师提供灵感。 Retrato:将图片转换为非凡肖像,有 500 多种风格选择,适合制作个性头像。 Stable Diffusion Reimagine:通过稳定扩散算法生成精细、具细节的全新视觉作品。 Barbie Selfie Generator:将上传照片转换为芭比风格,适合喜欢梦幻童话风格的人。 此外,2023 年大模型关键进展包括: 百度发布文心一言 1.0 并不断升级。 OpenAI 发布 GPT4 等。 复旦开源 MOSS 等。 需注意,内容由 AI 大模型生成,请仔细甄别。
2024-10-22