Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

使用主模型及微调模型进行图像生成的过程是什么?

Answer

使用主模型及微调模型进行图像生成的过程通常包括以下步骤:

  1. 对于像 Video LDM 这样的模型,首先训练一个 LDM(隐扩散模型)图像生成器。
  2. 以 OpenAI 的文本到图像模型为例,在大量由图像和描述图像的文本组成的数据集上进行训练。训练时,先将字符串用分词器分解为离散的 token,通过最大化似然函数构建文本语言模型,然后对图像进行调整将其转换为描述生成器。
  3. 为改进在图像生成数据集上的描述效果,对描述生成器进行微调。例如,OpenAI 构建小规模描述数据集来描述图像主对象,诱导模型偏向于描述主对象,此为“短合成描述”;或者创建更长、更丰富的文本数据集来描述图像内容。
  4. 对于视频生成,如 Video LDM 向解码器添加额外的时间层,并使用用 3D 卷积构建的逐块时间判别器在视频数据上进行微调,同时编码器保持不变,以实现时间上一致的重建。类似于 Video LDM,Stable Video Diffusion(SVD)也是基于 LDM,在每一个空间卷积和注意力层之后插入时间层,并在整个模型层面上执行微调。
  5. 在视频生成的微调过程中,长度为 T 的输入序列会被解释成用于基础图像模型的一批图像,然后再调整为用于时间层的视频格式。其中有 skip 连接通过学习到的融合参数导向时间层输出和空间输出的组合。在实践中,实现的时间混合层有时间注意力和基于 3D 卷积的残差模块等。但 LDM 的预训练自动编码器存在只能看见图像、永远看不见视频的问题,直接用于生成视频会产生闪动伪影和时间一致性差的情况,所以需要进行上述微调操作。
Content generated by AI large model, please carefully verify (powered by aily)

References

Lilian Weng|视频生成的扩散模型

[title]Lilian Weng|视频生成的扩散模型[heading2]调整图像模型来生成视频[heading3]在视频数据上进行微调内容𝑐是指视频的外观和语义,其可从文本采样来进行条件化编辑。视频帧的CLIP嵌入能很好地表示内容,并且能在很大程度上与结构特征保持正交。结构𝑠描述了几何性质和动态情况,包括形状、位置、物体的时间变化情况,𝑠是从输入视频采样的。可以使用深度估计或其它针对特定任务的辅助信息(比如用于人类视频合成的人体姿势或人脸标识信息)。Gen-1中的架构变化相当标准,即在其残差模块中的每个2D空间卷积层之后添加1D时间卷积层,在其注意力模块中的每个2D空间注意力模块之后添加1D时间注意力模块。训练期间,结构变量𝑠会与扩散隐变量𝐳连接起来,其中内容变量𝑐会在交叉注意力层中提供。在推理时间,会通过一个先验来转换CLIP嵌入——将其从CLIP文本嵌入转换成CLIP图像嵌入。图9:Gen-1模型的训练流程概况。Blattmann et al.在2023年提出的Video LDM首先是训练一个LDM(隐扩散模型)图像生成器。然后微调该模型,使之得到添加了时间维度的视频。这个微调过程仅用于那些在编码后的图像序列上新增加的时间层。Video LDM中的时间层{𝑙𝜙𝑖∣𝑖= 1,…,𝐿}(见图10)会与已有的空间层𝑙𝜃𝑖交错放置,而这些空间层在微调过程中会保持冻结。也就是说,这里仅微调新参数𝜙,而不会微调预训练的图像骨干模型参数𝜃。Video LDM的工作流程是首先生成低帧率的关键帧,然后通过2步隐含帧插值过程来提升帧率。

DALL·E 3论文公布、上线ChatGPT,作者一半是华人

[title]DALL·E 3论文公布、上线ChatGPT,作者一半是华人OpenAI的文本到图像模型是在大量(t,i)对组成的数据集上进行训练的,其中i是图像,t是描述图像的文本。在大规模数据集中,t通常源于人类作者,他们主要对图像中的对象进行简单描述,而忽略图像中的背景细节或常识关系。更糟糕的是,在互联网上找到的描述往往根本不正确或者描述与图像不怎么相关的细节。OpenAI认为所有的缺陷都可以使用合成描述来解决。构建图像描述生成器图像描述生成器与可以预测文本的传统语言模型非常相似。因此,OpenAI首先提供了语言模型的简单描述。这里先用分词器(tokenizer)将字符串分解为离散的token,以这种方式分解之后,语料库的文本部分就表示为了序列t =[t_1,t_2,...,t_n]。然后通过最大化以下似然函数来构建文本语言模型。接下来若想将该语言模型转换为描述生成器,只需要对图像进行调整即可。因此给定一个预训练的CLIP图像嵌入函数F(i),OpenAI将语言模型目标做了如下增强。微调描述生成器为了改进在图像生成数据集上的描述效果,OpenAI希望使用描述生成器来生成图像描述,这有助于学习文本到图像模型。在首次尝试中,他们构建了一个仅能描述图像主对象的小规模描述数据集,然后继续在这个数据集上训练自己的描述生成器。该过程诱导的更新到θ使得模型偏向于描述图像的主对象。OpenAI将这种微调生成的描述称为「短合成描述」。OpenAI做了第二次尝试,创建了一个更长的、描述更丰富的文本数据集,来描述微调数据集中每个图像的内容。這些描述包括图像的主对象,以及周围对象、背景、图像中的文本、风格、颜色。

Lilian Weng|视频生成的扩散模型

[title]Lilian Weng|视频生成的扩散模型[heading2]调整图像模型来生成视频[heading3]在视频数据上进行微调长度为𝑇的输入序列会被解释成用于基础图像模型𝜃的一批图像(即𝛣・𝑇),然后再调整为用于𝑙𝜃𝑖时间层的视频格式。其中有一个skip连接通过一个学习到的融合参数𝛼导向了时间层输出𝐳'和空间输出𝐳的组合。在实践中,实现的时间混合层有两种:(1)时间注意力,(2)基于3D卷积的残差模块。图10:一个用于图像合成的预训练LDM被扩展成一个视频生成器。B、𝑇、𝐶、𝐻、𝑊分别是批量大小、序列长度、通道数、高度和宽度。𝐜_S是一个可选的条件/上下文帧。但是,LDM的预训练自动编码器依然还有问题:它只能看见图像,永远看不见视频。直接使用它来生成视频会产生闪动的伪影,这样的时间一致性就很差。因此Video LDM向解码器添加了额外的时间层,并使用一个用3D卷积构建的逐块时间判别器在视频数据进行微调,同时编码器保持不变,这样就依然还能复用预训练的LDM。在时间解码器微调期间,冻结的编码器会独立地处理视频中每一帧,并使用一个视频感知型判别器强制在帧之间实现在时间上一致的重建。图11:视频隐扩散模型中自动编码器的训练工作流程。其中编码器的微调目标是通过新的跨帧判别器获得时间一致性,而编码器保持不变。类似于Video LDM,Blattmann et al.在2023年提出的Stable Video Diffusion(SVD)的架构设计也是基于LDM,其中每一个空间卷积和注意力层之后都插入时间层,但SVD是在整个模型层面上执行微调。训练视频LDM分为三个阶段:

Others are asking
如何做 deepseek 微调
要进行 DeepSeek 微调,以下是一些相关的知识和步骤: 1. 模型蒸馏微调:会带着大家复现模型的蒸馏和微调,并讲解相关知识。用 Deepseek RE Zero 蒸馏出带思考的数据,基于 Deepseek V3 微调,进行冷启动,再做强化学习,还从非公布模型提取微调数据,加上人类偏好,最终形成 R1。 2. 本地部署介绍:如果拥有云服务器,可以进行本地部署,了解满血版本地部署的实际情况。 3. 免费额度说明:在 freely.aliyun.com 可领取 500 元免费额度,但有使用限制,不能部署满血版和较大的增流模型。 4. 平台服务差异:了解 DLC、DSW 和 EAS 等模型部署平台服务的差别。 5. 对于微调的全过程,建议阅读 Unsloth 笔记本和 HuggingFace 的《如何微调开放式 LLMs》,也可以使用《如何在一小时内阅读论文》作为指南。 6. 更加完善的训练说明,可直接阅读官方论文:DeepSeekAI《DeepSeekR1:Incentivizing Reasoning Capability in LLMs via Reinforcement Learning》https://arxiv.org/html/2501.12948
2025-04-08
怎么本地部署ai模型,并进行微调
以下是本地部署 AI 模型并进行微调的主要步骤: 1. 选择合适的部署方式:包括本地环境部署、云计算平台部署、分布式部署、模型压缩和量化、公共云服务商部署等,根据自身的资源、安全和性能需求进行选择。 2. 准备训练所需的数据和计算资源:确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础:可以使用开源的预训练模型如 BERT、GPT 等,也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练:根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 5. 部署和调试模型:将训练好的模型部署到生产环境,对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护:大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 此外,关于本地部署还有以下相关内容: 如果拥有云服务器如何进行本地部署,以及满血版本地部署的实际情况。 在 freely.aliyun.com 可领取 500 元免费额度,但有使用限制,不能部署满血版和较大的增流模型。 介绍了 DLC、DSW 和 EAS 等模型部署平台服务的差别。 会带着大家复现模型的蒸馏和微调,并讲解相关知识。 PaaS 平台支持多机分布式部署,满足推理性能要求,使用独占资源和专有网络,能一站式完成模型蒸馏。 登录 Pad 控制台,通过 model gallery 进行部署,如 Deepseek R1 模型,可选择 SG 浪或 Vim 推理框架,根据资源出价,部署后可在模型在线服务 EAS 查看状态。 介绍了模型 API 的调用方法,包括查找位置、获取 token 等,强调使用后要及时停止或删除服务以避免持续付费。 总的来说,部署和训练自己的 AI 模型需要综合考虑多方面因素,包括部署方式、数据准备、模型训练、部署调试以及安全性等。需要根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。
2025-03-27
微调大模型的优势与运用的功能场景是什么?微调具体步骤是?
微调大模型具有以下优势和运用的功能场景: 优势: 提高模型在特定任务中的性能:可以输入更多示例,经过微调的模型在特定任务中表现更好,虽然可能会失去一些通用性。 提高模型效率:实现更低的延迟和更低的成本,可通过专门化模型使用更小的模型,且只对输入输出对进行训练,舍弃示例或指令进一步改善延迟和成本。 功能场景:适用于需要在特定领域(如法律、医学等)获得更优表现的情况。 微调大模型的具体步骤如下: 从参数规模的角度,大模型的微调分成两条技术路线:全量微调(FFT)和参数高效微调(PEFT)。全量微调是对全量的模型参数进行全量的训练,PEFT 则只对部分模型参数进行训练。从成本和效果综合考虑,PEFT 是目前业界较流行的微调方案。 微调是在较小的、特定领域的数据集上继续大模型的训练过程,通过调整模型本身的参数来提高性能。 您可以参考 OpenAI 官方微调教程:https://github.com/openai/openaicookbook/blob/main/examples/How_to_finetune_chat_models.ipynb
2025-03-23
lora微调
LoRA 微调相关内容如下: 微调脚本: LoRA 微调脚本见:,单机多卡的微调可通过修改脚本中的include localhost:0 来实现。 全量参数微调脚本见:。 加载微调模型: 基于 LoRA 微调的模型参数见:基于 Llama2 的中文微调模型,LoRA 参数需要和基础模型参数结合使用。通过加载预训练模型参数和微调模型参数,示例代码中,base_model_name_or_path 为预训练模型参数保存路径,finetune_model_path 为微调模型参数保存路径。 对于全量参数微调的模型,调用方式同模型调用代码示例,只需要修改其中的模型名称或者保存路径即可。 此外,在 Comfyui AnimateDiff 项目中,有一个关键的 lora 对图像模型进行了微调,lora 地址为 https://huggingface.co/guoyww/animatediff/blob/main/v3_sd15_adapter.ckpt,lora 的强度越高,画面越稳定,但需在合理范围。 在 100 基础训练大模型的 Lora 生图中,模型上的数字代表模型强度,可在 0.61.0 之间调节,默认为 0.8。您也可以自己添加 lora 文件。正向提示词输入您写的提示词,可选择基于提示词一次性生成几张图,选择生成图片的尺寸(横板、竖版、正方形)。采样器和调度器新手小白可默认,迭代步数可在 2030 之间调整,CFG 可在 3.57.5 之间调整,随机种子1 代表随机生成图。所有设置完成后,点击开始生成,生成的图会显示在右侧。若某次生成结果不错,想要微调或高分辨率修复,可点开图,下滑复制随机种子,粘贴到随机种子处,下次生成的图会与此次结果近似。若确认合适的种子和参数,想要高清放大,点开高清修复,选择放大倍数,新手小白可默认算法,迭代步数建议在 2030 之间,重回幅度在 0.30.7 之间调整。
2025-03-22
lora微调
LoRA 微调相关内容如下: 微调脚本: LoRA 微调脚本见:,单机多卡的微调可通过修改脚本中的include localhost:0 来实现。 全量参数微调脚本见:。 加载微调模型: 基于 LoRA 微调的模型参数见:基于 Llama2 的中文微调模型,LoRA 参数需要和基础模型参数结合使用。通过加载预训练模型参数和微调模型参数,示例代码中,base_model_name_or_path 为预训练模型参数保存路径,finetune_model_path 为微调模型参数保存路径。 对于全量参数微调的模型,调用方式同模型调用代码示例,只需要修改其中的模型名称或者保存路径即可。 此外,在 Comfyui AnimateDiff 项目中,有一个关键的 lora 对图像模型进行了微调,lora 地址为 https://huggingface.co/guoyww/animatediff/blob/main/v3_sd15_adapter.ckpt,lora 的强度越高,画面越稳定,但需在合理范围。 在 100 基础训练大模型的 Lora 生图中,模型上的数字代表模型强度,可在 0.61.0 之间调节,默认为 0.8。您也可以自己添加 lora 文件。正向提示词输入您写的提示词,可选择基于提示词一次性生成几张图,选择生成图片的尺寸(横板、竖版、正方形)。采样器和调度器新手小白可默认,迭代步数可在 2030 之间调整,CFG 可在 3.57.5 之间调整,随机种子1 代表随机生成图。所有设置完成后,点击开始生成,生成的图会显示在右侧。若某次生成结果不错,想要微调或高分辨率修复,可点开图,下滑复制随机种子,粘贴到随机种子处,下次生成的图会与此次结果近似。若确认合适的种子和参数,想要高清放大,点开高清修复,选择放大倍数,新手小白可默认算法,迭代步数建议在 2030 之间,重回幅度在 0.30.7 之间调整。
2025-03-22
lora微调
LoRA 微调相关内容如下: 微调脚本: LoRA 微调脚本见:,单机多卡的微调可通过修改脚本中的include localhost:0 来实现。 全量参数微调脚本见:。 加载微调模型: 基于 LoRA 微调的模型参数见:基于 Llama2 的中文微调模型,LoRA 参数需要和基础模型参数结合使用。通过加载预训练模型参数和微调模型参数,示例代码中,base_model_name_or_path 为预训练模型参数保存路径,finetune_model_path 为微调模型参数保存路径。 对于全量参数微调的模型,调用方式同模型调用代码示例,只需要修改其中的模型名称或者保存路径即可。 此外,在 Comfyui AnimateDiff 项目中,有一个关键的 lora 对图像模型进行了微调,lora 地址为 https://huggingface.co/guoyww/animatediff/blob/main/v3_sd15_adapter.ckpt,lora 的强度越高,画面越稳定,但需在合理范围。 在 100 基础训练大模型的 Lora 生图中,模型上的数字代表模型强度,可在 0.61.0 之间调节,默认为 0.8。您也可以自己添加 lora 文件。正向提示词输入您写的提示词,可选择基于提示词一次性生成几张图,选择生成图片的尺寸(横板、竖版、正方形)。采样器和调度器新手小白可默认,迭代步数可在 2030 之间调整,CFG 可在 3.57.5 之间调整,随机种子1 代表随机生成图。所有设置完成后,点击开始生成,生成的图会显示在右侧。若某次生成结果不错,想要微调或高分辨率修复,可点开图,下滑复制随机种子,粘贴到随机种子处,下次生成的图会与此次结果近似。若确认合适的种子和参数,想要高清放大,点开高清修复,选择放大倍数,新手小白可默认算法,迭代步数建议在 2030 之间,重回幅度在 0.30.7 之间调整。
2025-03-22
图像识别模型
图像识别模型通常包括编码器和解码器部分。以创建图像描述模型为例: 编码器:如使用 inception resnet V2 应用于图像数据,且大部分情况下会冻结此 CNN 的大部分部分,因为其骨干通常是预训练的,例如通过庞大的数据集如图像网络数据集进行预训练。若想再次微调训练也是可行的,但有时仅需保留预训练的权重。 解码器:较为复杂,包含很多关于注意力层的说明,还包括嵌入层、GRU 层、注意力层、添加层归一化层和最终的密集层等。 在定义好解码器和编码器后,创建最终的 TF Keras 模型并定义输入和输出。模型输入通常包括图像输入进入编码器,文字输入进入解码器,输出则为解码器输出。在运行训练前,还需定义损失功能。 另外,还有一些相关模型的安装配置,如 siglipso400mpatch14384(视觉模型),由 Google 开发,负责理解和编码图像内容,其工作流程包括接收输入图像、分析图像的视觉内容并将其编码成特征向量。image_adapter.pt(适配器)连接视觉模型和语言模型,优化数据转换。MetaLlama3.18Bbnb4bit(语言模型)负责生成文本描述。
2025-03-28
gpt4o图像生成
GPT4o 是 OpenAI 推出的具有强大图像生成能力的多模态模型,能够实现精确、准确、照片级真实感输出。其核心功能包括生成美观且实用的图像,如白板演示、科学实验图解等。亮点功能有精确的文本渲染,能在图像中准确生成文字,如街道标志、菜单、邀请函等;支持多样化场景生成,从照片级真实感到漫画风格均可;具有上下文感知能力,能利用内在知识库和对话上下文生成符合语境的内容。技术上通过联合训练在线图像和文本的分布,学会了图像与语言及图像之间的关系,经过后期训练优化,在视觉流畅性和一致性方面表现出色。实际应用场景包括信息传递、创意设计、教育与演示等。但也存在某些场景或细节的限制。安全性方面,OpenAI 强调了保护。目前该功能已集成到 ChatGPT 中,用户可直接体验。 此外,在 3 月 26 日的 AI 资讯汇总中,OpenAI 推出了 GPT4o 图像生成能力。昨晚 Open AI 更新 GPT4o 图像生成功能后,其真正强大之处在于几乎可以通过自然语言对话完成复杂的 SD 图像生成工作流的所有玩法,如重新打光、扩图、换脸、融脸、风格化、风格迁移、换装、换发型等。
2025-03-28
免费增强图像分辨率的
以下是一些免费增强图像分辨率的工具和方法: 1. Kraken.io:主要用于图像压缩,但也提供免费的图像放大功能,能保证图像细节清晰度。 2. Deep Art Effects:强大的艺术效果编辑器,通过 AI 技术放大图像并赋予艺术效果,支持多种滤镜和风格。 3. Waifu2x:提供图片放大和降噪功能,使用深度学习技术提高图像质量,保留细节和纹理,简单易用效果好。 4. Bigjpg:强大的图像分辨率增强工具,使用神经网络算法加大图像尺寸,提高图像质量,处理速度快。 此外,还有以下相关资源: 1. 【超级会员 V6】通过百度网盘分享的 Topaz 全家桶,链接:https://pan.baidu.com/s/1bL4tGfl2nD6leugFh4jg9Q?pwd=16d1 ,提取码:16d1 ,复制这段内容打开「百度网盘 APP 即可获取」。 2. RealESRGAN:基于 RealESRGAN 的图像超分辨率增强模型,具有可选的人脸修复和可调节的放大倍数,但使用几次后要收费。 3. InvSR:开源图像超分辨率模型,提升图像分辨率的开源新工具,只需一个采样步骤(支持 1 5 的材料步骤)即可增强图像,可以高清修复图像。地址、在线试用地址:https://github.com/zsyOAOA/InvSR?tab=readme ov filerailway_car online demo 、https://huggingface.co/spaces/OAOA/InvSR 。 4. GIGAGAN:https://mingukkang.github.io/GigaGAN/ 。 5. Topaz Gigapixel AI:https://www.topazlabs.com/gigapixel ai 。 6. Topaz Photo AI:https://www.topazlabs.com/ 。 7. discord:https://discord.gg/m5wPDgkaWP 。
2025-03-24
图像生成
图像生成是 AIGC 的一个重要领域,离不开深度学习算法,如生成对抗网络(GANs)、变分自编码器(VAEs)以及 Stable Diffusion 等,以创建与现实世界图像视觉相似的新图像。 图像生成可用于多种场景,如数据增强以提高机器学习模型的性能,也可用于创造艺术、生成产品图像(如艺术作品、虚拟现实场景或图像修复等)。 一些具有代表性的海外项目包括: Stable Diffusion:文本生成图像模型,主要由 VAE、UNet 网络和 CLIP 文本编码器组成。首先使用 CLIP 模型将文本转换为表征形式,然后引导扩散模型 UNet 在低维表征上进行扩散,之后将扩散之后的低维表征送入 VAE 中的解码器,从而实现图像生成。 DALLE 3(Open AI):OpenAI 基于 ChatGPT 构建的一种新型神经网络,可以从文字说明直接生成图像。 StyleGAN 2(NVIDIA):一种生成对抗网络,可以生成非常逼真的人脸图像。 DCGAN(Deep Convolutional GAN):一种使用卷积神经网络的生成对抗网络,可生成各种类型的图像。 在图像生成的用法方面,图像生成端点允许您在给定文本提示的情况下创建原始图像。生成的图像的大小可以为 256x256、512x512 或 1024x1024 像素。较小的尺寸生成速度更快。您可以使用 n 参数一次请求 1 10 张图像。描述越详细,就越有可能获得您或您的最终用户想要的结果。您可以探索 DALL·E 预览应用程序中的示例以获得更多提示灵感。 图像编辑端点允许您通过上传蒙版来编辑和扩展图像。遮罩的透明区域指示应编辑图像的位置,提示应描述完整的新图像,而不仅仅是擦除区域。 AI 绘图 Imagen 3 具有以下功能点和优势: 功能点: 图像生成:根据用户输入的 Prompt 生成图像。 Prompt 智能拆解:能够自动拆解用户输入的 Prompt,并提供下拉框选项。 自动联想:提供自动联想功能,帮助用户选择更合适的词汇。 优势: 无需排队:用户可以直接使用,无需排队。 免费使用:目前 Imagen 3 是免费提供给用户使用的。 交互人性化:提供了人性化的交互设计,如自动联想和下拉框选项。 语义理解:具有较好的语义理解能力,能够根据 Prompt 生成符合描述的图像。 灵活性:用户可以根据自动联想的功能,灵活调整 Prompt 以生成不同的图像。
2025-03-23
在ai图像训练打标时,怎么让部分标签权重更大
在 AI 图像训练打标时,让部分标签权重更大的方法如下: 1. 在 Stable Diffusion 中,手动补充的特殊 tag 放在第一位,因为 tags 标签有顺序,最开始的 tag 权重最大,越靠后的 tag 权重越小。 2. 在 BooruDatasetTagManager 中采用方法二: 删除部分特征标签,如 All tags 中不该出现的错误识别的自动标签,Image tags 中作为特定角色的自带特征的标签,并将特征与 LoRA 做绑定。 完成所有优化删除后,点击左上角菜单 File>Save all changes 保存当前的设置。 此外,在 Stable Diffusion 训练数据集制作中还需注意: 1. 调用 Waifu Diffusion v1.4 模型需要安装特定版本(2.10.0)的 Tensorflow 库,在命令行输入相应命令完成版本检查与安装适配。 2. 进入到 SDTrain/finetune/路径下,运行相应代码获得 tag 自动标注,其中主要参数包括: batch_size:每次传入 Waifu Diffusion v1.4 模型进行前向处理的数据数量。 model_dir:加载的本地 Waifu Diffusion v1.4 模型路径。 remove_underscore:开启后将输出 tag 关键词中的下划线替换为空格。 general_threshold:设置常规 tag 关键词的筛选置信度。 character_threshold:设置特定人物特征 tag 关键词的筛选置信度。 caption_extension:设置 tag 关键词标签的扩展名。 max_data_loader_n_workers:设置大于等于 2,加速数据处理。
2025-03-15
推荐几个可以对已有图像编辑的AI网站
以下是为您推荐的可以对已有图像进行编辑的 AI 网站: 1. pixelcut.ai:提供图像编辑功能,网址为。 2. Befunky:属于图像编辑类网站,网址是。 3. SnapEditAllinone AI Photo Editor:可进行图像编辑,网址为。 4. Remini:图像编辑网站,尤其在提升分辨率方面有特色,网址是。 5. Erase.bg:图像编辑网站,可用于去水印背景,网址为。 6. Palette.fm:图像编辑网站,在提升分辨率方面表现出色,网址是。 7. AI 抠图 pixian.ai:图像编辑网站,网址为。 8. 。 9. 美图设计室:图像编辑网站,网址为。 10. Facetune:图像编辑网站,网址为。 此外,还有以下在图像编辑方面表现较好的网站: 1. Remove.bg:图像编辑网站,4 月访问量为 5870 万次,网址未知。 2. Fotor:图像编辑网站,4 月访问量为 1477 万次,网址未知。 3. Photoroom:图像编辑网站,4 月访问量为 1260 万次,网址未知。 4. Pixlr:图像编辑网站,4 月访问量为 1210 万次,网址未知。 5. PicWish:图像编辑网站,4 月访问量为 713 万次,网址未知。 6. QuickTools by Picsart:图像编辑网站,4 月访问量为 417 万次,网址未知。 7. WatermarkRemover.io:图像编辑网站,4 月访问量为 399 万次,网址未知。 8. Clipdrop:图像编辑网站,4 月访问量为 335 万次,网址未知。 9. Cleanup.pictures:图像编辑网站,4 月访问量为 192 万次,网址未知。 10. Magic Studio:图像编辑网站,4 月访问量为 127 万次,网址未知。 11. Luminar Neo:图像编辑网站,4 月访问量为 126 万次,网址未知。 12. magnific.ai:图像编辑网站,4 月访问量为 111 万次,网址未知。 13. PhotoAiD:图像编辑网站,4 月访问量为 106 万次,网址未知。
2025-03-13
我想要系统学习ai大模型应用开发,能帮我制定一个系统学习路线吗?
以下是一个系统学习 AI 大模型应用开发的学习路线: 1. 掌握深度学习和自然语言处理基础: 学习机器学习、深度学习、神经网络等基础理论。 掌握自然语言处理基础,如词向量、序列模型、注意力机制等。 相关课程:吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理: 熟悉 Transformer 模型架构及自注意力机制原理。 掌握 BERT 的预训练和微调方法。 研读相关论文,如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调: 进行大规模文本语料预处理。 熟悉 LLM 预训练框架,如 PyTorch、TensorFlow 等。 微调 LLM 模型进行特定任务迁移。 相关资源:HuggingFace 课程、论文及开源仓库等。 4. LLM 模型优化和部署: 掌握模型压缩、蒸馏、并行等优化技术。 进行模型评估和可解释性研究。 实现模型服务化、在线推理、多语言支持等。 相关资源:ONNX、TVM、BentoML 等开源工具。 5. LLM 工程实践和案例学习: 结合行业场景,进行个性化的 LLM 训练。 分析和优化具体 LLM 工程案例。 研究 LLM 新模型、新方法的最新进展。 6. 持续跟踪前沿发展动态: 关注顶会最新论文、技术博客等资源。 7. 参与相关社区交流和项目实践: 总的来说,AI 大模型应用开发是一个多学科、系统性的领域,需要深入的理论学习和工程实践经验相结合。除了学习基础知识,熟练使用开源框架工具也很关键。保持对前沿动态的跟踪,并实际参与相关项目是获得真知灼见的最佳途径。 此外,以下是一个利用 AI+SMART 安排学习计划的案例: 学习目标与个人或职业发展目标的关系:平时工作中需要经常阅读英文文档。另外,有朋友和客户是英文母语者,想要和他们沟通更加顺畅。其次,希望未来有机会进入大型外企工作。 具体学习内容:首先是词汇需要提高,其次听力、口语、阅读和写作这些方面都进行全面提高。 量化学习进度和成功:以考取雅思 8.0,且可以和朋友或客户流利的交谈为目标。 时间框架:半年内。 现实可行性:目前雅思 6.5,每天可以投入 2 小时。周末可以更多。有访问网络课程的条件,也可以购买书籍或其他学习材料。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-08
有哪些支持超长上下文的大模型
以下是一些支持超长上下文的大模型: Scout:支持 1000 万上下文,适合处理超长文本和复杂推理任务。 Maverick:具有 100 万上下文,长记忆优势适配多场景替代 RAG。 Behemoth:2 万亿参数级别的大模型在训,已超越 GPT4.5 在 STEM 表现。 Claude2100k 模型的上下文上限是 100k Tokens,即 100000 个 token。 ChatGPT16k 模型的上下文上限是 16k Tokens,即 16000 个 token。 ChatGPT432k 模型的上下文上限是 32k Tokens,即 32000 个 token。 需要注意的是,token 限制同时对一次性输入和一次对话的总体上下文长度生效。例如,一次性输入不能超过规定的 token 数量,而且随着对话的进行,当达到上限时,会遗忘最前面的对话内容。
2025-04-08
你都融合了哪些大语言模型?
以下是一些融合的大语言模型: 1. LuotuoChineseLLM: 地址: 简介:囊括一系列中文大语言模型开源项目,包含基于已有开源模型(ChatGLM、MOSS、LLaMA)进行二次微调的语言模型、指令微调数据集等。 2. Linly: 地址: 简介:提供中文对话模型 LinlyChatFlow、中文基础模型 LinlyChineseLLaMA 及其训练数据。中文基础模型以 LLaMA 为底座,利用中文和中英平行增量预训练。项目汇总了目前公开的多语言指令数据,对中文模型进行了大规模指令跟随训练,实现了 LinlyChatFlow 对话模型。 3. ChatYuan: 地址: 简介:元语智能发布的一系列支持中英双语的功能型对话语言大模型,在微调数据、人类反馈强化学习、思维链等方面进行了优化。 4. ChatRWKV: 地址: 简介:开源了一系列基于 RWKV 架构的 Chat 模型(包括英文和中文),发布了包括 Raven,NovelChnEng,NovelCh 与 NovelChnEngChnPro 等模型,可以直接闲聊及进行诗歌、小说等创作,包括 7B 和 14B 等规模的模型。 此外,还有以下相关信息: 1. 本地部署资讯问答机器人: Ollama 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,可用于不同应用场景。 Ollama 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 cpu 和 gpu。 Ollama 提供模型库,用户可从中下载不同模型,有不同参数和大小以满足需求和硬件条件,可通过 https://ollama.com/library 查找。 用户可通过简单步骤自定义模型,如修改温度参数调整创造性和连贯性,或设置特定系统消息。 Ollama 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 Ollama 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 2. AIGC 落地应用大全中的案例: Poe(强烈推荐): 推荐指数:🌟🌟🌟🌟🌟 由 Quora 开发,有 APP 版本,支持跨端使用。 集成了 Chat GPT、GPT4、Claude+、Claude、Dragonfly 等模型,同时支持用户自建 Chatbot。 不同语言模型回复效果有差异,适合需要调用多种大语言模型的用户。 Dragonfly 擅长给出较短回答,并擅长在输入中给出示例时遵循指示。 Claude 更擅长创造性回复,配合 Poe 中的提问引导,非常适合在查阅资料时使用,有时能够给出超越直接使用 Chat GPT 时的体验(但和 Chat GPT 一样,Claude 也时常会给出一些错误回复,一些问题可在两个模型中都问一遍提升信息准确性)。 此外支持分享用户和模型的对话内容。但 GPT4、Claude+产品需要付费订阅使用。 访问地址: Poe 中的提问引导真的能够启发到用户。 支持 Explore Chatbot,但丰富度不如后续要介绍的 Character。 midjourney prompt 扩写 Chatbot 能力很惊人。
2025-04-08
你好,你是基于哪个大语言模型的人工智能?
我并非基于某个特定的大语言模型。AI 领域中的语言模型众多,例如 GPT3 等。大语言模型通常是使用深度学习和神经网络创建的,基于人类训练数据来理解单词、代码语法等。像生成式 AI 可以生成文本、图片、音频、视频等内容形式,其中包括大语言模型。2017 年 6 月,谷歌团队发表的论文《Attention is All You Need》首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖于循环神经网络或卷积神经网络。
2025-04-08
开源flux模型如何快速使用
以下是关于开源 Flux 模型快速使用的方法: 1. 模型的下载: 如果因为环境问题,可以在网盘中下载。 siglipso400mpatch14384(视觉模型):siglip 由 Google 开发的视觉特征提取模型,负责理解和编码图像内容。工作流程包括接收输入图像、分析图像的视觉内容并将这些视觉信息编码成一组特征向量。打开 ComfyUI\models\clip,在地址栏输入 CMD 回车,打开命令行,输入下面的命令拉取模型(也可以在网盘里下载)。 image_adapter.pt(适配器):连接视觉模型和语言模型,优化数据转换。工作流程包括接收来自视觉模型的特征向量、转换和调整这些特征,使其适合语言模型处理。通过 https://huggingface.co/spaces/fancyfeast/joycaptionprealpha/tree/main/wpkklhc6 下载,放到 models 的 Joy_caption 文件夹里,如果该文件夹不存在,就新建一个。 MetaLlama3.18Bbnb4bit(语言模型):大型语言模型,负责生成文本描述。工作流程包括接收经过适配器处理的特征、基于这些特征生成相应的文本描述、应用语言知识来确保描述的连贯性和准确性。打开 ComfyUI\models\LLM,地址栏输入 CMD 回车,在命令行里面输入下面命令。 2. 下载地址: ae.safetensors 和 flux1dev.safetensors 下载地址:https://huggingface.co/blackforestlabs/FLUX.1dev/tree/main 。 准备了夸克和百度的网盘链接,方便部分同学下载: flux 相关模型(体积较大)的夸克网盘链接:https://pan.quark.cn/s/b5e01255608b 。 flux 相关模型(体积较大)的百度网盘链接:https://pan.baidu.com/s/1mCucHrsfRo5SttW03ei0g?pwd=ub9h 提取码:ub9h 。 如果 GPU 性能不足、显存不够,底模可以使用 fp8 的量化版模型,速度会快很多,下载地址:https://huggingface.co/Kijai/fluxfp8/tree/main 。 3. 工作流下载: 最后我们再下载 dev 的工作流: 。或者下面官方原版的图片链接,图片导入 comfyUI 就是工作流:https://comfyanonymous.github.io/ComfyUI_examples/flux/flux_dev_example.png 。我们打开 ComfyUI,把工作流或图片拖拽到 ComfyUI 里。
2025-04-08
大模型应用开发岗位需要掌握什么
大模型应用开发岗位通常需要掌握以下内容: 1. 编程思维和 Python 基础。 2. 认识大模型 Embedding 技术,包括理论知识和代码实战。 3. 在构建模型应用方面: 根据项目需求选择合适的开发框架。 了解业务背后的深层次需求,设定流程环节以确保模型能解决实际问题。 在每个环节精心设计提示词,引导模型提供准确有用的回复。 确保应用在提供服务时遵守安全和伦理标准。 通过不断测试和迭代优化模型性能和用户体验。 成功部署应用后持续维护和更新以适应需求变化。 4. 提示词的精细设计和调试,因为其直接影响模型的输出质量和应用效果。 5. 对于智能体构建,了解动态推理智能体情感设定,以制作更有情商的智能体。
2025-04-08