Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

想要了解AI的基础知识

Answer

以下是关于 AI 基础知识的介绍:

一、AI 背景知识

  1. 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。
  2. 历史发展:简要回顾 AI 的发展历程和重要里程碑。

二、数学基础

  1. 统计学基础:熟悉均值、中位数、方差等统计概念。
  2. 线性代数:了解向量、矩阵等线性代数基本概念。
  3. 概率论:基础的概率论知识,如条件概率、贝叶斯定理。

三、算法和模型

  1. 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。
  2. 无监督学习:熟悉聚类、降维等算法。
  3. 强化学习:简介强化学习的基本概念。

四、评估和调优

  1. 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。
  2. 模型调优:学习如何使用网格搜索等技术优化模型参数。

五、神经网络基础

  1. 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。
  2. 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。

六、学习建议

  1. 了解 AI 基本概念:建议阅读「从这里启程」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。
  2. 开始 AI 学习之旅:在「入门:AI 学习路径」中,您将找到一系列为初学者设计的课程。这些课程将引导您了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如 Coursera、edX、Udacity)上的课程,您可以按照自己的节奏学习,并有机会获得证书。
  3. 选择感兴趣的模块深入学习:AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。建议您一定要掌握提示词的技巧,它上手容易且很有用。
  4. 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。
  5. 体验 AI 产品:与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。
Content generated by AI large model, please carefully verify (powered by aily)

References

写给不会代码的你:20分钟上手 Python + AI

[title]写给不会代码的你:20分钟上手Python + AI[heading1][heading3]如果希望继续精进...对于AI,可以尝试了解以下内容,作为基础AI背景知识基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。历史发展:简要回顾AI的发展历程和重要里程碑。数学基础统计学基础:熟悉均值、中位数、方差等统计概念。线性代数:了解向量、矩阵等线性代数基本概念。概率论:基础的概率论知识,如条件概率、贝叶斯定理。算法和模型监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。无监督学习:熟悉聚类、降维等算法。强化学习:简介强化学习的基本概念。评估和调优性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。模型调优:学习如何使用网格搜索等技术优化模型参数。神经网络基础网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。激活函数:了解常用的激活函数,如ReLU、Sigmoid、Tanh。

写给不会代码的你:20分钟上手 Python + AI

[title]写给不会代码的你:20分钟上手Python + AI[heading1]完成了一个AI应用[heading2]之后呢?[heading3]如果希望继续精进...对于AI,可以尝试了解以下内容,作为基础AI背景知识基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。历史发展:简要回顾AI的发展历程和重要里程碑。数学基础统计学基础:熟悉均值、中位数、方差等统计概念。线性代数:了解向量、矩阵等线性代数基本概念。概率论:基础的概率论知识,如条件概率、贝叶斯定理。算法和模型监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。无监督学习:熟悉聚类、降维等算法。强化学习:简介强化学习的基本概念。评估和调优性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。模型调优:学习如何使用网格搜索等技术优化模型参数。神经网络基础网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。激活函数:了解常用的激活函数,如ReLU、Sigmoid、Tanh。

问:新手如何学习 AI?

[title]问:新手如何学习AI?了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

Others are asking
帮我找一些具有文件上传功能的AI智能体或应用的搭建教程
以下是一些具有文件上传功能的 AI 智能体或应用的搭建教程: 使用 Coze 搭建: 方法一:直接使用 Coze 的 API 对接前端 UI 框架,将工作流逻辑集中在工程模板端,实现前后端分离的处理方式。 方法二:直接调用大模型 API,并通过前端代码实现提示词处理和逻辑控制,将交互流程完全放入前端代码中。 实现文件上传:通过 Coze 的,用户可将本地文件上传至 Coze 的云存储。在消息或对话中,文件上传成功后可通过指定 file_id 来直接引用该文件。 Coze 的 API 与工作流执行:关于 API 的使用及工作流执行流程可以参考。 设计界面:搭建 Demo 最简单的方式是首先绘制草图,然后借助多模态 AI 工具(如 GPT/Claude)生成初步的前端结构代码。前端开发语言包括 HTML 用于构建网页基础框架,定义整体页面结构;CSS 负责网页布局样式美化;JavaScript 实现交互逻辑,如信息处理、网络请求及动态交互功能。 Stuart 教学 coze 应用中的“上传图片”: 传递上传图片地址:首先,把工作流的入参设置为 File>Image。然后,注意代码内容,其中 ImageUpload1 部分是可以替换成实际的文件上传组件的组件名称的,一个引号,一个大括号都不能错。 获得图片 URL:接下来就比较简单了,工作流中可以直接用这个 image 变量,也可以用 string 模式输出,它会在工作流中变成图片的 URL。 无企业资质也能 coze 变现: 以 API 形式链接 Zion 和 Coze:同理也可以为 dify、kimi 等给任何大模型&Agent 制作收费前端。参考教程: 自定义配置:变现模版 UI 交互、API、数据库等拓展功能,支持在 Zion 内自由修改,可参考文档配置。相关链接:支付: 微信小程序变现模版正在开发中,不久将会上线。目前实现小程序端可以通过 API 形式搭建。 Zion 支持小程序,Web,AI 行为流全栈搭建,APP 端全栈搭建 2025 上线。
2025-02-16
c端的用户如何应对AI幻觉
对于 C 端用户应对 AI 幻觉,可以参考以下方法: 1. 在商业化问答场景中,落地时需直面幻觉问题。非技术从业者可从配置入手,如问答机器人界面左侧的 AI 模型、提示词、知识库等。 2. 对于 Claude ,可以尝试以下故障排除方法: 允许 Claude 在不知道答案时说“我不知道”。 告诉 Claude 只有在非常确信回答正确时才回答问题。 让 Claude 在回答问题之前“逐步思考 think step by step”。 给 Claude 留出思考的空间,例如让其在<thinking></thinking>标签内思考,然后从最终输出中删除该部分。 让 Claude 在长篇文档中找到相关引文,然后使用这些引用来回答。 3. 对于提示词污染与不良用户行为,Claude 本身具有一定抵抗力,为实现最大程度保护,可以进行无害性筛选,例如运行“无害性筛选”查询评估用户输入内容是否恰当,若检测到有害提示则拦截查询响应。 4. 在实际应用中,如面对央企等对幻觉零容忍的大客户,可引入 LLM 之外的东西如传统搜索或 hard code 的一些东西去强行控制,但希望流程能在场内完成,同时与客户建立共生的数据。
2025-02-16
AI提示词怎么写
写 AI 提示词(prompt)是一个关键步骤,决定了 AI 模型如何理解并生成文本。以下是一些编写提示词的要点和方法: 1. 明确任务:清晰定义任务,如写故事时包含背景、角色和主要情节。 2. 提供上下文:若任务需特定背景知识,在提示词中提供足够信息。 3. 使用清晰语言:尽量用简单、清晰的语言描述,避免模糊或歧义词汇。 4. 给出具体要求:如有特定格式或风格要求,在提示词中明确指出。 5. 使用示例:若有特定期望结果,提供示例帮助 AI 模型理解需求。 6. 保持简洁:提示词简洁明了,过多信息可能导致模型困惑。 7. 使用关键词和标签:有助于模型更好理解任务主题和类型。 8. 测试和调整:生成文本后仔细检查结果,根据需要调整提示词,可能需多次迭代达到满意结果。 不同的 AI 工具在提示词的输入和处理上可能存在差异。例如,星流一站式 AI 设计工具中: 输入语言方面,通用大模型与部分基础模型使用自然语言,部分基础模型使用单个词组,且支持中英文输入。 写好提示词方面: 内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等。 可调整负面提示词,帮助 AI 理解不想生成的内容。 利用“加权重”功能让 AI 明白重点内容,还能对已有提示词权重进行编辑。 有辅助功能,如翻译、删除所有提示词、会员加速等。 对于小白用户,还可以点击提示词上方官方预设词组进行生图。希望这些内容能帮助您更好地编写提示词。
2025-02-16
你能回答关于AI以外的事情吗?有关于AI的方面你又知道多少。
以下是关于 AI 的相关知识: 1. 基础方面: 背景知识:包括人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 2. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 3. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 4. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 关于 WaytoAGI 网站,它提供以下功能: 1. 和 AI 知识库对话:您可以在这里问任何关于 AI 的问题。 2. AI 网站:集合了精选的 AI 网站,按需求找到适合您的工具。 3. AI 提示词:集合了精选的提示词,可以复制到 AI 对话网站来使用。 4. 知识库精选:将每天知识库的精华内容呈现给大家。 请注意,我只能为您提供与 AI 相关的知识和指导,对于其他非 AI 领域的内容,我的知识库中没有相关信息。
2025-02-16
我想学习可灵ai的提示词
以下是一些关于可灵 AI 提示词的相关资源和信息: 提示词模板相关网站: 生成新年场景的提示词示例: 戴着醒狮帽,双手抱拳,红色背景,新年喜庆。背景中有金粉,碎花,3d 爆竹显得热闹而喜庆 拿着"福"字,新年气氛,红色背景,新年喜庆。背景中有金粉,碎花,3d 爆竹显得热闹而喜庆 关于律师如何写好提示词用好 AI 的观点: 不能期待设计一个完美的提示词,然后 AI 百分百给到一个完美的符合要求的答案,中间不能有谬误,否则就是一个需要修复的“BUG”。 要给到 AI 的提示词实际上是一个关于此项问题的相对完善的“谈话方案”,真正的成果需要在对话中产生,并且在对话中限缩自己思维中的模糊地带。
2025-02-16
非计算机专业出身,怎样快速入门ai
对于非计算机专业出身想要快速入门 AI 的人,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,对于不会代码的您,20 分钟上手 Python + AI 的方法如下: 在深入学习 AI 时,许多朋友发现需要编程,变得头大。同时,各类教程都默认您会打命令行,导致入门十分困难。鉴于此,就有了这份简明入门,旨在让大家更快掌握 Python 和 AI 的相互调用,并使您在接下来的 20 分钟内,循序渐进的完成以下任务: 1. 完成一个简单程序。 2. 完成一个爬虫应用,抓取公众号文章。 3. 完成一个 AI 应用,为公众号文章生成概述。 一些背景: 1. 关于 Python: Python 就像哆拉 A 梦,它拥有一个百宝袋,装满了各种道具,被称为标准库。当遇到问题时,都可以拿出来直接使用。 如果百宝袋里的道具不够用,还可以打电话给未来百货,去订购新道具。在这里:打电话对应 pip 一类的工具,可以用来订购任何的道具;未来百货对应 GitHub 一类的分享代码的平台,里面啥都有。 Python 被全世界广泛使用,尤其是在 AI 领域,所以遍地是大哥。 2. 关于 OpenAI API: OpenAI 通过两种方式提供服务:其一,通过 ChatGPT,提供开箱即用的服务,直接对话即可,简单直观;其二,通过 OpenAI API,提供更加灵活的服务,通过代码调用,来完成更多自动化任务,比如全自动将本地的 1 万本小说,从中文翻译成英文。 欢迎来到“AI 企业落地应用”专栏,在这里,我们将分享 AI 技术在真实商业场景中落地应用的有趣案例故事和实战经验教训。做为铺垫和开始,这是一篇能带你快速搞懂本轮 AI 大模型革命相关核心知识信息的文章,我们将从历史到今天,从原理到应用,从产业到趋势,用尽可能通俗易懂但又不失专业严谨的方式,带你快速走入 AI 的世界,跟上 AI 大势。阅读提示:为了方便没有计算机学习背景但又热衷学习 AI 应用的伙伴更好的阅读,下面的内容可能会使用打比方、作类比的方式来让那些晦涩枯燥的知识变得更为有趣和更容易入心入脑,帮助于您在学习应用 AI 的路上走得更加顺畅和稳健,但这也势必会一定程度带来专业性上的不严谨,我们将会显性的做出标注提示,方便您识别,您可以关注文末的论文推荐导引,去了解真实的技术细节。此外,文章中可能还会涉及一些相对专业和可能超纲的知识内容,我们也将会显性的做出标注提示,告诉您这部分内容即使不懂,也完全没关系,可以放心跳过,不必焦虑。
2025-02-16
我是AI小白,希望到这里学习AI基础知识
以下是为您整理的 AI 基础知识学习内容: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能、机器学习、深度学习的定义及其之间的关系,以及其主要分支和联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 6. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 7. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 8. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 9. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2025-02-12
对于编程纯小白,如果我想使用cursor之类的AI软件进行编程,实现自己的一些想法,那么我需要具备哪些编程或者计算机方面的基础知识
对于编程纯小白,如果想使用 Cursor 之类的 AI 软件进行编程实现自己的想法,需要具备以下编程或计算机方面的基础知识: 1. 下载 Cursor:访问 https://www.cursor.com/ 进行下载。 2. 注册账号:可以使用自己的邮箱(如 google、github、163、qq 邮箱)直接登录,接受二维码登录。 3. 安装中文包插件。 4. 在设置中进行 Rule for AI 配置。 5. 清晰表达需求:例如做一个贪吃蛇游戏,在网页中玩。需要明确游戏的规则和逻辑,如游戏界面是在矩形网格上进行,玩家控制蛇的移动方向(上、下、左、右),游戏界面上会随机出现食物,蛇吃到食物身体增长,存在撞墙或撞自己的死亡条件,吃到食物可得分,游戏难度会递增,游戏结束时能看到得分等。 对于纯小白,如果需求远比 AI 直出的内容复杂,无法一次性直出,那就需要耐下性子,在 AI 的帮助下一步一步来,并在这个过程中学会一点点编程。
2025-02-08
大模型的基础知识
大模型的基础知识包括以下方面: 知识类型: 内置知识:又可细分为常识知识、专业知识和语言知识。常识知识涵盖日常生活中的事实和逻辑规则;专业知识涉及特定领域的详细信息;语言知识包含语法规则、句型结构、语境含义及文化背景等。 模型架构: encoderonly:适用于自然语言理解任务,如分类和情感分析,代表模型是 BERT。 encoderdecoder:同时结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,代表是 Google 的 T5。 decoderonly:更擅长自然语言生成任务,众多 AI 助手采用此架构。 大模型的特点: 预训练数据量大,往往来自互联网,包括论文、代码和公开网页等,通常用 TB 级别的数据进行预训练。 参数众多,如 Open 在 2020 年发布的 GPT3 就已达到 170B 的参数。 数字化与 embedding:为让计算机理解 Token 之间的联系,需将 Token 表示成稠密矩阵向量,即 embedding,常见算法有基于统计的 Word2Vec、GloVe,基于深度网络的 CNN、RNN/LSTM,基于神经网络的 BERT、Doc2Vec 等。以 Transform 为代表的大模型采用自注意力机制来学习不同 token 之间的依赖关系,生成高质量 embedding。大模型的“大”主要指用于表达 token 之间关系的参数多,如 GPT3 拥有 1750 亿参数。
2025-02-07
你觉得作为一个普通不懂得程序的人来说,在面对未来的AI时代,需要学习编程的基础知识吗?系统性的学习Python或者你觉得学习Python哪些主要知识注音对了。
对于普通不懂得程序的人来说,在面对未来的 AI 时代,学习编程的基础知识是有一定必要的。如果想系统性地学习 Python,以下是一些需要重点关注的主要知识: 1. Python 基础: 基本语法:了解 Python 的基本语法规则,如变量命名、缩进等。 数据类型:熟悉字符串(String)、整数(Integer)、浮点数(Float)、列表(List)、元组(Tuple)、字典(Dictionary)等基本数据类型。 控制流:学会使用条件语句(if)、循环语句(for 和 while)来控制程序执行流程。 2. 函数: 定义和调用函数:学习如何定义自己的函数以及调用现有的函数。 参数和返回值:理解函数接收参数和返回结果的方式。 作用域和命名空间:了解局部变量和全局变量的概念及工作方式。 3. 模块和包: 导入模块:学习如何导入 Python 标准库中的模块或第三方库。 使用包:理解如何安装和使用 Python 包来扩展程序功能。 4. 面向对象编程(OOP): 类和对象:了解类的定义和实例化等基本概念。 属性和方法:学习为类定义属性和方法,并通过对象调用。 继承和多态:了解类之间的继承关系及实现多态的方法。 5. 异常处理: 理解异常:了解异常的概念及在 Python 中的工作原理。 异常处理:学会使用 try 和 except 语句处理程序中可能出现的错误。 6. 文件操作: 文件读写:学习如何打开文件、读取文件内容和写入文件。 文件与路径操作:理解如何使用 Python 处理文件路径及列举目录下的文件。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习:可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台:使用 ChatGPT、Midjourney 等 AI 生成工具体验应用场景,探索如百度的“文心智能体平台”、Coze 智能体平台等面向中学生的教育平台。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习),学习其在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态:关注权威媒体和学者,了解最新进展,思考 AI 技术对未来社会的影响,培养思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。但需注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-24
ai 基础知识学习
以下是新手和中学生学习 AI 基础知识的方法和建议: 新手学习 AI : 1. 了解 AI 基本概念:阅读「」,熟悉术语和基础概念,了解主要分支及联系。 2. 浏览入门文章:了解 AI 的历史、应用和发展趋势。 3. 开始学习之旅:在「」中找到初学者课程,推荐李宏毅老师的课程。也可通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获取证书。 4. 选择感兴趣模块深入:AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块,掌握提示词技巧。 5. 实践和尝试:理论学习后进行实践,巩固知识,尝试使用各种产品创作,分享实践成果。 6. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 中学生学习 AI : 1. 从编程语言入手:学习 Python、JavaScript 等编程语言,掌握编程语法、数据结构、算法等基础知识。 2. 尝试使用工具和平台:使用 ChatGPT、Midjourney 等生成工具,探索百度“文心智能体平台”、Coze 智能体平台等面向中学生的教育平台。 3. 学习基础知识:了解 AI 基本概念、发展历程、主要技术及在各领域的应用案例。 4. 参与实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试用 AI 技术解决实际问题,培养动手能力。 5. 关注前沿动态:关注权威媒体和学者,了解最新进展,思考 AI 对未来社会的影响。 对于希望继续精进的学习者,还可以尝试了解以下 AI 基础内容: 1. AI 背景知识:包括基础理论、历史发展。 2. 数学基础:统计学基础(如均值、中位数、方差)、线性代数(向量、矩阵)、概率论(条件概率、贝叶斯定理)。 3. 算法和模型:监督学习(线性回归、决策树、支持向量机)、无监督学习(聚类、降维)、强化学习。 4. 评估和调优:性能评估(交叉验证、精确度、召回率)、模型调优(网格搜索)。 5. 神经网络基础:网络结构(前馈网络、卷积神经网络、循环神经网络)、激活函数(ReLU、Sigmoid、Tanh)。
2025-01-16
作为一名小学班主任,我想将AI作为辅助班级管理的工具,我可以怎么做?需要学习哪些基础知识,如何创建AI工具呢?
作为一名小学班主任,若想将 AI 作为辅助班级管理的工具,您可以参考以下建议: 基础知识学习: 1. AI 背景知识:了解人工智能、机器学习、深度学习的定义及其之间的关系。 2. 历史发展:简要回顾 AI 的发展历程和重要里程碑。 3. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 4. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 5. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 6. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 创建 AI 工具: 1. 了解 AI 基本概念:首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅:在「」中,您将找到一系列为初学者设计的课程。这些课程将引导您了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如 Coursera、edX、Udacity)上的课程,您可以按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。建议您一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品:与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 需要注意的是,AI 技术在不断发展,您需要持续学习和探索,以更好地将其应用于班级管理中。
2025-01-15
我想要AI文案生成视频
以下是关于 AI 文案生成视频的相关信息: 在视频工作流中,前期策划和后期制作是核心环节,都可以借助 AIGC 提升效率。前期可利用 ChatGPT 生成文案,后期利用 AI 工具进行自动化视频制作。目前,倒入文案一键自动化生成视频可能尚未达到直接使用的程度,很多素材仍需人工替换,但在短视频账号建立初期,用于批量生产以快速低成本测试某一垂直领域短视频关键词热门情况较为合适。未来视频制作的整体趋势会更轻量更高效。 具体步骤如下: 1. 生产视频脚本:把选题告诉 ChatGPT,它能在数十秒内生成完整的视频脚本,包括具体场景和转场画面。利用 GPT4 生成的脚本虽在创意上有待提升,但对非专业人士入手视频创作有一定帮助。 2. 筛选 BGM:告诉 ChatGPT 视频的情绪,它能在海量背景音乐中为您筛选,节省时间。期待未来能与音源网站结合,实现同步预览,提升体验。 文字生成视频的 AI 产品有: 1. Pika:擅长动画制作,支持视频编辑。 2. SVD:若熟悉 Stable Diffusion,可安装此最新插件,在图片基础上生成视频,由 Stability AI 开源。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频功能,但收费。 4. Kaiber:视频转视频 AI,能将原视频转换成各种风格。 5. Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看: 另外,在 Adobe 的的 Advanced 部分,您可以使用 Seed 选项添加种子编号,控制 AI 创建内容的随机性。相同的种子、提示和控制设置可重新生成类似的视频剪辑,然后选择 Generate 进行生成。
2025-02-16
我想要一份前10耗用的AI工具总结或介绍的PPT或链接
以下为您提供一些关于 AI 工具的总结和介绍: 1. 在通往 AGI 之路知识库中: AI 音乐创作:通过输入更高级的词汇与 AI 音乐对话能产生更好效果,有 AI 音乐的版块、挑战、分享会和教程,可通过王贝加入 AI 音乐社区。 数字人语音合成:介绍了声音克隆技术,提到了微软、阿里等的相关成果,常用的是 JPT service。 Config UI 的应用:能降低成本、提高效率,在图书出版、引流等方面有应用,岗位稀缺,社区有相关共学课程。 社区共创项目:包括东京的 confii 生态大会、AI 文旅视频、娃卡奖、李普村共创故事、AI 春晚等活动。 作业与报名:作业是询问对 AI 方向的兴趣和想做的项目,活动报名可通过填写名字和申请新增学校参与。 线下寄送物料组织活动:会给大家寄送线下活动物料,在学校内组织。 AIPO 活动及相关挑战:10 月 20 日的 AIPO 活动,可提前构思展示项目,有会话和视频相关的挑战赛。 共学活动与技能提升:接下来 10 天有从零基础到建站等内容的讲解,回放会放在链接里,可先从练习提示词入手。 硬件机器人材料购买:若搞硬件机器人,部分材料需尽快购买。 自媒体发布与流量扶持:在小红书发布活动内容带特定标签有流量扶持,作品也可发布在 GitHub 等平台。 活动奖项与历史玩法:设最佳创业奖和最佳投资奖各四个,有线下摆摊展示交流、IPO 路演等玩法,之前在多个城市举办过 AI 切磋大会。 工具使用与新大赛预告:可使用多种 AI 工具,新的大赛即将开启,有百万奖金池,相关动态会在社区活动栏目公布。 2. ShowMeAI 周刊 No.10 中: Brev.AI:能生成更好听的中文歌。 妙刷:突如其来的「出圈」与莫名其妙地「被骂」。 当我们一起围观 Cursor 限时编程项目(的大型翻车现场)hhh。 网传「国产 AI 产品 Q3 投放金额统计」:不是真的!没这么多! 把大模型输出的数据搞成 Excel 表格,一共有几种方法? 完成「得到 AI 产品好用榜」发布会 PPT,一共用到了以下几款 AI 工具: 沉浸式翻译 可灵 AI 办公小浣熊 秘塔 AI 搜索 通义效率助手 Kimi 九章随时问 智谱清言 Get 笔记 ModelJudge:快速测评多个 AI 模型的回答结果,并帮助做出选择。 关于大模型、复杂剧情、内容创作、AI 陪伴的一些想法@AI 投什么。 妙用 AI:把照片里的 PPT「提取」出来的小技巧。 您可以通过以下途径获取更详细的信息:公众号菜单栏底部有星球入口,添加南乔(AhaNanQiao)好友进社群!
2025-02-13
我想要做一首歌,请给我推荐免费的AI大模型
以下为您推荐一些免费的 AI 大模型及获取方式: 1. 国内: 阿里的通义千问大模型接口:您可以打开链接创建 API key。 智谱 AI(ChatGLM)、科大讯飞(SparkDesk)也有免费接口,但国内的大模型大多限制一定免费额度的 Token。 2. 国外: 谷歌的 Gemini 大模型(gemini 1.5)。 海外版 Coze 的 GPT4 模型,此模型免费且能图片识别,但需要给服务器挂梯子。想使用的话,推荐参考张梦飞同学写的教程:,里面有手把手教您如何给服务器科学上网以及如何使用海外版 coze。 另外,为了帮助您更好地理解 AI 大模型的相关知识,以下是一些概念和原理的介绍: 1. 生成式 AI 生成的内容叫做 AIGC。 2. 相关技术名词: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习,电脑通过找规律进行学习。 监督学习使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习使用的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元的方法(因有很多层所以叫深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 即大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。Transformer 比 RNN 更适合处理文本的长距离依赖性。
2025-02-11
我想要学习coze等智能体 你可以给我推荐高质量的免费课程吗
以下是为您推荐的学习 Coze 智能体的高质量免费课程: 通识篇: 现有常见 AI 工具小白扫盲: AI 常见名词、缩写解释: 基础教程: 大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库: 大聪明:保姆级教程:Coze 打工你躺平: 安仔:Coze 全方位入门剖析 免费打造自己的 AI Agent 基础教程:Coze“图像流”抢先体验: YoYo:Coze 图像流小技巧:探索视觉艺术的隐藏宝藏: 【智能体】让 Coze 智能体机器人连上微信和微信群详细配置文档: 【智能体搭建共学课】一步步教你玩转 Coze 智能体,新手 0 门槛教学特邀讲师:元子:[https://www.bilibili.com/video/BV1mXqGY1EwJ/?spm_id_from=333.999.0.0&vd_source=84aaf5d504fda49d36287bb4930a47a2)(1 小时 32 分开始)
2025-02-08
想要对deepseek进行提问需要什么技巧吗?有没有什么高校组织给出的方案?
对 DeepSeek 进行提问时,以下是一些技巧: 1. 身份定位技巧:目的是让 AI 理解您的背景和专业水平。例如,差的表述是“帮我写一篇营销方案”,好的表述是“作为一名刚入职的电商运营,需要为天猫美妆店铺制定 618 活动方案”。 2. 场景描述技巧:提供具体的应用场景和限制条件。比如,差的表述是“写一篇新品发布文案”,好的表述是“为新上市的儿童智能手表写一篇朋友圈文案,目标用户是 25 35 岁的年轻父母,预算 3000 以内,需强调安全定位功能”。 3. 结构化输出技巧:指定具体的输出格式和内容结构。例如,差的表述是“分析最近的新能源汽车销量数据”,好的表述是“请用表格对比 2024 年 Q1 特斯拉、比亚迪的销量数据,包含以下维度:月度销量、同比增长、市场份额,并在表格下方总结三个关键发现”。 4. 分步骤提问技巧:将复杂问题拆解为可管理的小任务。比如,差的表述是“怎么做短视频运营?”,好的表述是“请分三步指导新手做美食短视频:前期准备:需要哪些设备和技能 拍摄阶段:关键场景和机位选择 后期制作:剪辑节奏和音乐配合建议”。 5. 反馈优化技巧:通过追问获得更精准的答案。例如,第一轮“帮我做一份产品分析报告”,追问 1:“内容太专业了,能用更通俗的语言解释吗?”追问 2:“可以增加一些具体的用户案例来支撑观点吗?” 6. 深度思考引导技巧:目的是获得更深入的分析和见解。
2025-02-07
我想要搭建一个可以视频和图片识别宠物猫品种和品相的智能体
以下是为您提供的关于搭建可以视频和图片识别宠物猫品种和品相的智能体的相关信息: 目前有一种技术叫 PixelLLM,它是由 Google 开发的新型视觉语言模型。其完善后在弱视(眼疾)用户方面会有较好的应用场景。这个模型不仅能够对图片进行详细描述,还能精确指出图片中每个词汇对应的具体位置。例如,若图片中有一只猫和一只狗,PixelLLM 不仅能识别出“猫”和“狗”,还能指出它们在图片中的具体位置。这种能力使得模型在处理需要图像和文字紧密结合的任务时表现出色,比如在一张图片中找到特定的物体或区域,并对其进行描述。 主要特点包括: 1. 像素级词汇对齐:不仅能告知图片里有什么,还能准确指出这些东西在图片的具体位置。 2. 多种功能:具备多种处理图像和文字结合任务的能力。 您可以考虑基于类似的技术来搭建您所需的智能体。
2025-02-06
我想了解diffusion技术相关的重要论文
以下是一些与 diffusion 技术相关的重要论文: 《HighResolution Image Synthesis with Latent Diffusion Models》:https://arxiv.org/abs/2112.10752 《Denoising Diffusion Probabilistic Models》:作者为 Ho、Jain、Abbeel,出自 Berkeley (2020)
2025-02-16
从0开始了解AI
以下是为您提供的从 0 开始了解 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 如果希望继续精进,对于 AI,可以尝试了解以下内容作为基础: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-02-14
我几乎是一个AI小白,只能日常跟AI对话,让AI回答我的问题,我希望能系统的了解AI,认识AI,学会正确使用AI,让AI帮助我提高效率,希望你能给出学习建议
以下是为您提供的系统学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 与大语言模型交流的技巧: 对话尽量具体、丰富、少歧义,多说有用的。 假想特定场景,明确希望获得的内容。 把大模型当作大学生,指明方向,拆解任务,教其一步一步操作。 7. AI 教育方面: 以 Khanmigo AI 为例,AI 教师应具有友善和支持的性格,语言简明,不直接给答案,而是通过适当提问帮助学生独立思考,根据学生知识水平调整问题,检查学生是否理解,警惕学生滥用帮助等。
2025-02-10
如何尽可能多的了解AI的信息
以下是尽可能多了解 AI 信息的一些方法: 1. 万能公式法:问 AI“一个(xxx 职业)需要具备哪些知识?”,AI 会给出知识框架,然后针对每一个小点继续询问,能帮助您深度思考。 2. 优质信息源:像没有技术背景的普通人,可以在「即刻」App 的“”等免费圈子获取前沿信息线索,很多 Twitter 上的开发者大牛也会在这里分享,必要时可去 Twitter 和相关官网溯源。 3. 信息爆炸做减法的小 tips: 只掌握最好的产品,少关注新产品测评(除非远超 ChatGPT)。 只解决具体问题,不做泛泛了解。从问题中来,到问题中去。 只关注核心能力,不关注花式玩法,用 AI 扬其长避其短。 只关注理清需求和逻辑,不死记硬背提示词。 先关注提升认知/洞察,然后再谈技巧。 4. 持续学习和跟进:AI 发展迅速,新成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 5. 一位投资人的信息源: 简报:TLDR AI。 播客:No Priors podcast hosted by Sarah Guo 和 Elad Gil、Robot Brains Podcast hosted by Pieter Abbeel、Lex Fridman Podcast hosted by Lex Fridman、The Gradient podcast hosted by Daniel Bashir、Generally Intelligent hosted by Kanjun Qiu、Last Week in AI 。 会议:World AI Cannes Festival 。
2025-02-09
如何尽可能多的了解AI
以下是尽可能多了解 AI 的方法: 1. 认识 AI :对于没有理工科背景的人,可以将 AI 当成一个黑箱,只需知道它是能理解和输出自然语言的东西,其生态位是似人而非人的存在。从人类文明传说和古老哲人的智慧中寻找与 AI 相处的原则,比如在让其实现愿望时,要通过清晰的语言文字压缩其自由度,明确告知任务、边界、目标、实现路径和所需知识。 2. 了解基本概念 : 阅读「」部分,熟悉术语和基础概念,了解人工智能及其主要分支(如机器学习、深度学习、自然语言处理等)的联系。 浏览入门文章,了解其历史、应用和发展趋势。 3. 开始学习之旅 : 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习,有机会获得证书。 4. 选择感兴趣模块深入学习 :AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习,掌握提示词技巧。 5. 实践和尝试 :理论学习后,通过实践巩固知识,使用各种产品创作作品,在知识库分享实践成果。 6. 体验 AI 产品 :与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解工作原理和交互方式,获得实际应用体验。 7. 持续学习和跟进 :AI 发展迅速,关注新闻、博客、论坛和社交媒体,加入相关社群和组织,参加研讨会、工作坊和会议,与他人交流。
2025-02-09
我是一名初中老师,我想了解符合我应用的知识图谱的相关知识
很抱歉,目前没有关于初中老师适用的知识图谱的相关具体内容。但一般来说,知识图谱是一种以图形化方式展示知识之间关系的技术。对于初中老师而言,知识图谱可以用于组织和呈现学科知识,帮助学生更好地理解知识点之间的关联。例如在数学学科中,可以将代数、几何等不同领域的知识点通过知识图谱进行关联,让学生清晰看到知识的体系结构。您可以根据教学的具体学科和需求,有针对性地构建和运用知识图谱。
2025-02-09