Kimi 在长文本分析方面具有显著优势,其最突出的特点是拥有超长上下文能力。最初支持 20 万字的上下文,如今已提升至 200 万字,这对于处理长文本或大量信息的任务极为有利。比如从事文案工作,需要处理大量文字或文件时,Kimi 能帮助更有效地处理和分析大量信息,提高工作效率。对于需要长期记忆或参考大量背景信息的任务,Kimi 的这一特性也很有用。
使用 Kimi Chat 查询问题时,它会在互联网上检索相关内容,并基于检索结果进行总结分析,最后给出结论,这是大模型利用“网页搜索”工具的典型例子。
但 Kimi 也存在一些不足,在文字生成和语义理解、文字生成质量方面可能不如国内其他产品,且不支持用户自定义智能体。
谈到聊天对话类的AI产品,我首推的是Kimi。Kimi最显著的特点就是它的超长上下文能力,这一特性在国内的AI聊天对话产品中可以说是独树一帜的。Kimi最初支持20万字的上下文,而现在已经提升到了惊人的200万字。这对于需要处理长文本或大量信息的任务来说是一个巨大的优势。因此,如果你从事文案工作,特别是需要处理大量文字或文件的工作,我强烈推荐使用Kimi。它的超长上下文能力可以帮助你更有效地处理和分析大量信息,提高工作效率。对于需要长期记忆或需要参考大量背景信息的任务,Kimi的这一特性尤其有用。但是,Kimi也有一些不足之处。经过使用,我发现它在文字生成和语义理解、和文字生成质量方面的能力可能不如国内其它产品好,并且它不支持用户自定义智能体。但尽管如此,我仍然强烈推荐Kimi给刚入门AI的朋友们。[heading3]2.1.2智谱清言[content]接下来,让我们来谈谈智谱清言。在中国AI领域,智谱AI的模型可以说是开创性的(22年就和清华一起自研了GLM130B)。这主要归功于其背后的技术,源自清华大学研发团队的科研成果转化。从模型质量来看,智谱AI的表现相当出色。在产品设计方面,智谱AI明显以ChatGPT为对标,努力打造类似的用户体验。值得一提的是,智谱AI是国内首批开放智能体应用的AI公司之一。这意味着他们在智能体开发和模型优化方面已经积累了丰富的经验和技术。特别是在逻辑推理和处理复杂提示词方面,智谱AI表现出了明显的优势,这使得它在处理需要深度思考和分析的任务时表现出色。
[title]Inhai:Agentic Workflow:AI重塑了我的工作流如果大家使用Kimi Chat来查询某个问题,你会发现它会在互联网上检索相关内容,并基于检索结果进行总结分析,最后给出结论。这其实是大模型利用「网页搜索」工具的一个典型例子,同时你也会看到PPT中介绍了非常多的不同领域类型的工具,它其实是为大模型在获取、处理、呈现信息上做额外的补充。PlanningAgent通过自行规划任务执行的工作流路径,面向于简单的或者一些线性流程的运行。比如下图中:Agent会先识别男孩的姿势,并可能找到一个姿势提取模型来识别姿势,在接下来要找到一个姿势图像模型来合成一个新的女孩图像,然后再使用图像理解文本的模型,并在最后使用语音合成输出,完成这个流程任务。Multiagent Collaboration吴恩达通过开源项目ChatDev进行举例,你可以让一个大语言模型扮演不同的角色,比如让一个Agent扮演公司CEO、产品经理、设计师、代码工程师或测试人员,这些Agent会相互协作,根据需求共同开发一个应用或者复杂程序。AI Agent基本框架OpenAI的研究主管Lilian Weng曾经写过一篇博客叫做《LLM Powered Autonomous Agents》,其中就很好的介绍了Agent的设计框架,她提出了“Agent = LLM +规划+记忆+工具使用”的基础架构,其中大模型LLM扮演了Agent的“大脑”。Planning(规划)主要包括子目标分解、反思与改进。将大型任务分解为较小可管理的子目标处理复杂的任务。而反思和改进指可以对过去的行动进行自我批评和自我反思,从错误中学习并改进未来的步骤,从而提高最终结果的质量。Memory(记忆)
[title]ChatGPT是在做什么,为什么它有效?[heading2]ChatGPT的内部如果看一下ChatGPT的最长路径,涉及大约400(关键的)层——在某些方面【和其他某些神经网络相比】不算很多。但是它有数百万个神经元,共计1750亿个连接,因此有1750亿个权重。需要认识到的一件事是,每次ChatGPT生成新token时,都必须进行一次涉及所有这些权重的计算。从实现角度来看,这些计算可以按照高度并行,可以方便地在GPU上完成。但对于每个生成的token,仍然必须进行1750亿次计算(实际比这还要多一点)——因此,不足为奇的是,使用ChatGPT生成一长段文本可能需要一些时间。但最终,值得注意的是,所有这些操作——虽然它们本身非常简单——却可以一起以如此出色的“类似于人类”的方式生成文本。必须再次强调(至少就我们所知),没有“终极理论”可以预见到ChatGPT的设计对类似于对于自然语言这样的任何问题必然有效【但是事实上它就是很有效】。实际上,正如我们将要讨论的那样,我认为我们必须将其视为一项——潜在惊人的——科学发现:在像ChatGPT这样的神经网络中,以某种方式捕捉到了人类大脑在生成语言方面所能做到的本质。