Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

chatbot 设计

Answer

在设计 ChatBot 时,应以 STAR 原则(情境、任务、行动、结果)为指导进行需求拆解。

情境方面,用户期望通过与大型模型交互获得基于企业内部知识的精准回答,这要求系统既能理解和响应用户查询,又要确保信息安全。

任务上,系统需分析用户问题,并基于企业知识库提供准确答案,这需要具备高级语言理解能力,且能安全访问和利用企业内部知识。

行动包括:

  1. 设计并实施一系列步骤处理潜在安全问题,确保用户输入安全。
  2. 回复中若遇不匹配或有害内容,系统应拒绝回答。
  3. 采用指代消解等技术手段提升问答准确性和用户满意度。

结果是开发一个能精准理解用户意图、安全访问知识库并提供满意答案的智能回复应用,该应用不仅能提升用户体验,还会成为企业内部知识管理和服务的重要工具。

为达成这些目标,需制定详尽流程图以可视化每个环节和决策点,确保设计和开发中每个步骤清晰理解和执行,从而保证智能回复系统满足用户需求且高度安全准确。从拆解出的知识回复流程图可见,简单知识问答背后隐藏诸多环节,实际工作中还有更复杂小环节需进一步拆解,这需要在实际项目中实战操作。

Content generated by AI large model, please carefully verify (powered by aily)

References

RAG提示工程系列(3)| 迈向工程化应用

确立了以STAR原则(情境、任务、行动、结果)为指导的基础上,我们现在可以具体拆解“ChatBot”这一需求。这是当下非常火热实施需求,其核心目标是利用大型语言模型为用户提供安全、有效且可靠的知识问答服务。1.情境(Situation):用户期望通过与大型模型的交互获得基于企业内部知识的精准回答。这要求系统不仅要能理解和响应用户查询,还必须确保信息安全。1.任务(Task):系统需要分析用户提出的问题,并基于企业知识库提供准确答案。这不仅要求系统具备高级的语言理解能力,还必须能够安全地访问和利用企业内部知识。1.行动(Action):3.1设计并实施一系列步骤来处理潜在的安全问题,确保用户输入(即问题)是安全的。3.2在回复过程中,如果遇到不匹配或有害内容,系统应能够拒绝回答。3.3采用技术手段如指代消解等来提升问答准确性和用户满意度。1.结果(Result):开发一个智能回复应用,该应用能够精准理解用户意图、安全访问知识库,并提供满意的答案。这个系统将不仅提升用户体验,也会成为企业内部知诈管理和服务的重要工具。为了达到这些目标,我们需要制定详尽的流程图来可视化每一个环节和决策点。这样做可以确保设计和开发过程中每个步骤都被清晰地理解和执行。通过这种方法,我们可以确保智能回复系统既满足用户需求又保持高度的安全性和准确性。上图为我们根据需求拆解出的知识回复流程图,可以看到,一个简单的知识问答背后其实还隐藏着许多增量和缓解。当然,尽管我们加入了增量的流程环节,但在实际工作中其实还有更多更为复杂的小环节需要进一步拆解。这些就需要大家去实际项目中动手去实战了。

RAG提示工程系列(3)| 迈向工程化应用

确立了以STAR原则(情境、任务、行动、结果)为指导的基础上,我们现在可以具体拆解“ChatBot”这一需求。这是当下非常火热实施需求,其核心目标是利用大型语言模型为用户提供安全、有效且可靠的知识问答服务。1.情境(Situation):用户期望通过与大型模型的交互获得基于企业内部知识的精准回答。这要求系统不仅要能理解和响应用户查询,还必须确保信息安全。1.任务(Task):系统需要分析用户提出的问题,并基于企业知识库提供准确答案。这不仅要求系统具备高级的语言理解能力,还必须能够安全地访问和利用企业内部知识。1.行动(Action):3.1设计并实施一系列步骤来处理潜在的安全问题,确保用户输入(即问题)是安全的。3.2在回复过程中,如果遇到不匹配或有害内容,系统应能够拒绝回答。3.3采用技术手段如指代消解等来提升问答准确性和用户满意度。1.结果(Result):开发一个智能回复应用,该应用能够精准理解用户意图、安全访问知识库,并提供满意的答案。这个系统将不仅提升用户体验,也会成为企业内部知诈管理和服务的重要工具。为了达到这些目标,我们需要制定详尽的流程图来可视化每一个环节和决策点。这样做可以确保设计和开发过程中每个步骤都被清晰地理解和执行。通过这种方法,我们可以确保智能回复系统既满足用户需求又保持高度的安全性和准确性。上图为我们根据需求拆解出的知识回复流程图,可以看到,一个简单的知识问答背后其实还隐藏着许多增量和缓解。当然,尽管我们加入了增量的流程环节,但在实际工作中其实还有更多更为复杂的小环节需要进一步拆解。这些就需要大家去实际项目中动手去实战了。

RAG 提示工程(三):迈向工程化应用

确立了以STAR原则(情境、任务、行动、结果)为指导的基础上,我们现在可以具体拆解“ChatBot”这一需求。这是当下非常火热实施需求,其核心目标是利用大型语言模型为用户提供安全、有效且可靠的知识问答服务。1.情境(Situation):用户期望通过与大型模型的交互获得基于企业内部知识的精准回答。这要求系统不仅要能理解和响应用户查询,还必须确保信息安全。1.任务(Task):系统需要分析用户提出的问题,并基于企业知识库提供准确答案。这不仅要求系统具备高级的语言理解能力,还必须能够安全地访问和利用企业内部知识。1.行动(Action):3.1设计并实施一系列步骤来处理潜在的安全问题,确保用户输入(即问题)是安全的。3.2在回复过程中,如果遇到不匹配或有害内容,系统应能够拒绝回答。3.3采用技术手段如指代消解等来提升问答准确性和用户满意度。1.结果(Result):开发一个智能回复应用,该应用能够精准理解用户意图、安全访问知识库,并提供满意的答案。这个系统将不仅提升用户体验,也会成为企业内部知诈管理和服务的重要工具。为了达到这些目标,我们需要制定详尽的流程图来可视化每一个环节和决策点。这样做可以确保设计和开发过程中每个步骤都被清晰地理解和执行。通过这种方法,我们可以确保智能回复系统既满足用户需求又保持高度的安全性和准确性。上图为我们根据需求拆解出的知识回复流程图,可以看到,一个简单的知识问答背后其实还隐藏着许多增量和缓解。当然,尽管我们加入了增量的流程环节,但在实际工作中其实还有更多更为复杂的小环节需要进一步拆解。这些就需要大家去实际项目中动手去实战了。

Others are asking
AI chatbot、agent、copilot区别
AI chatbot、agent、copilot 主要有以下区别: 1. 定义和角色: Copilot:翻译成副驾驶、助手,在帮助用户解决问题时起辅助作用。 Agent:更像主驾驶、智能体,可根据任务目标自主思考和行动,具有更强的独立性和执行复杂任务的能力。 Chatbot:具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 核心功能: Copilot:更多地依赖于人类的指导和提示来完成任务,功能很大程度上局限于在给定框架内工作。 Agent:具有更高的自主性和决策能力,能够根据目标自主规划整个处理流程,并根据外部反馈进行自我迭代和调整。 3. 流程决策: Copilot:处理流程往往依赖于人类确定的静态流程,参与更多是在局部环节。 Agent:解决问题的流程由 AI 自主确定,是动态的,不仅可以自行规划任务步骤,还能根据执行过程中的反馈动态调整流程。 4. 应用范围: Copilot:主要用于处理简单、特定的任务,更多是作为工具或助手存在,需要人类引导和监督。 Agent:能够处理复杂、大型的任务,并在 LLM 薄弱的阶段使用工具或 API 等进行增强。 5. 开发重点: Copilot:主要依赖于 LLM 的性能,开发重点在于 Prompt Engineering。 Agent:同样依赖于 LLM 的性能,但开发重点在于 Flow Engineering,即在假定 LLM 足够强大的基础上,把外围的流程和框架系统化。 以下是一些 Agent 构建平台: 1. Coze:新一代一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具。 2. Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及部署 Copilot 到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据需求打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 6. 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,在处理高频工作场景方面表现出色。 以上信息由 AI 大模型生成,请仔细甄别。
2025-04-07
chatbot
以下是关于 ChatBot 的相关内容: 1. 基于 COW 框架的 ChatBot 实现: 作者熊猫大侠介绍了基于大模型搭建的 Chat 机器人框架,可将多模型塞进微信里实现。张梦飞同学写了更适合小白的使用教程,链接为:https://waytoagi.feishu.cn/wiki/A9w1wUcXSihF6XkeKVic8CXxnHb 。 实现内容包括打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等),常用开源插件的安装应用。 正式开始前需知道:本实现思路需接入大模型 API(API 单独付费)。存在风险与注意事项,如微信端有封号危险,不建议主力微信号接入;操作需依法合规,对大模型生成的内容注意甄别,禁止用于非法目的,处理敏感或个人隐私数据时注意脱敏。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等。可选择多模型,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等。支持多消息类型,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。有多种部署方法,如本地运行、服务器运行、Docker 的方式。 2. 打造聊天机器人“订餐机器人”: 建立自己的聊天机器人,称为“订餐机器人”,使用自动化方式收集用户提示和助手反馈来构建。用于比萨饼店接收订单。 定义“帮助函数”收集用户消息,避免手动输入。函数从用户界面收集提示并附加到称为上下文的列表中,每次使用该上下文调用模型。 模型和用户的反馈信息都会添加到上下文中,上下文会越来越长,模型据此决定下一步行动。 订餐机器人需等待收集整个订单,然后总结,并最后再次确认客户是否需要添加其他内容。若送货,需询问地址,最后收取支付款项。确保澄清所有选项、附加项和规格,以唯一地从菜单中识别出该项目。以简短、口语化和友好的方式回应。 可要求模型创建基于对话的 JSON 摘要,提交给订单系统。可对其进行定制,改变聊天机器人的行为。
2025-03-17
chatbot对话和AI搜索区别
Chatbot 对话和 AI 搜索存在以下区别: 1. 产品形态: Chatbot 主要交互是一个对话框+RAG 联网检索,如 ChatGPT、Kimi Chat 等。这类产品依赖大模型的理解能力提供问答服务,RAG 检索作为补充手段,弥补大模型在实时信息获取方面的不足。 AI 搜索产品主要交互是一个搜索框+搜索详情页,如 Perplexity、秘塔等。这类产品主要侧重点在检索,优先保证检索召回的信息质量,在首次回答的准确度方面有所要求,而对话(Chat)则作为补充步骤,方便用户对检索结果进行追问或二次检索。 2. 市场定位: 大部分产品聚焦在国内,如大模型厂商推出的 ChatBot 产品(智谱清言、Kimi Chat、百小应、海螺 AI 等),搜索厂商或创业团队推出的 AI 搜索产品(360 AI 搜索、秘塔、博查 AI、Miku 等)。 海外也有很多成熟的和新出的泛 AI 搜索产品(Perplexity、You、Phind 等),中国公司和团队也有面向全球市场的出海产品(ThinkAny、GenSpark、Devv 等)。市场定位的选择跟创始团队的背景或认知有关。 3. 搜索类型: 通用搜索:没有明显的受众倾向,任何人可以搜任何问题,都能得到一个相对还不错的搜索结果,如 Perplexity、ThinkAny。 垂直搜索:面向特定的人群或特定的领域,对特定的信息源做索引和优化,在某类问题的搜索上会有更好的结果,如 Devv 主要面向开发者人群,问编程相关的问题,搜索结果和回复准确度都比较高,问旅游或其他类型的问题,回答质量则不如通用搜索。 目前存在能联网检索的 AI,例如 ChatGPT Plus 用户现在可以开启 web browsing 功能实现联网,Perplexity 结合了 ChatGPT 式的问答和普通搜索引擎的功能,Bing Copilot 旨在简化在线查询和浏览活动,还有 You.com 和 Neeva AI 等搜索引擎,它们提供了基于人工智能的定制搜索体验,并保持用户数据的私密性。这些 AI 搜索工具的出现标志着在信息检索领域的一个重要发展,大幅提升了数据集命中预期,并为实际应用带来了更多可能性。但请注意内容由 AI 大模型生成,请仔细甄别。
2025-03-07
chatbot system prompt
以下是关于聊天机器人的相关内容: 1. 在打造聊天机器人的视频中,会使用不同的辅助函数,传入消息列表,包括系统消息、用户消息和助手消息。系统消息用于提供整体指示和设置助手行为角色,可在用户无察觉情况下引导助手回复,使对话自然流畅且避免插入明显提示信息。例如,系统消息可设定助手像莎士比亚一样说话。 2. 头脑风暴常用的 20 个 prompt 包括:Brainwriting Prompt、Reverse Brainstorming Prompt、Mind Mapping Prompt 等。 3. 打造聊天机器人中的 OrderBot 需等待收集整个订单并总结,确认客户是否添加其他内容,询问送货地址和收取支付款项,以简短、口语化和友好方式回应,澄清所有选项、附加项和规格。还可要求模型创建基于对话的 JSON 摘要,用于提交订单系统,可对聊天机器人进行定制和通过系统消息改变其行为及表现。
2025-01-30
怎么做chatbot特定角色的专业知识rag优化?
以下是关于 chatbot 特定角色的专业知识 RAG 优化的方法: 1. 复制预置的 Bot: 访问,单击目标 Bot。 在 Bot 的编排页面右上角,单击创建副本。 在弹出的对话框中,设置 Bot 名称、选择 Bot 的所属团队,然后单击确定。 可以在新打开的配置页面修改复制的 Bot 配置。 点击 Bot 名称旁边的编辑图标来更改 Bot 名称。 在人设与回复逻辑区域,调整 Bot 的角色特征和技能。您可以单击优化使用 AI 帮您优化 Bot 的提示词,以便大模型更好的理解。 在技能区域,为 Bot 配置插件、工作流、知识库等信息。 在预览与调试区域,给 Bot 发送消息,测试 Bot 效果。 当完成调试后,可单击发布将 Bot 发布到社交应用中,在应用中使用 Bot。 2. 集成 Workflow 到 Bot 里: 选择 GPT4作为聊天模型。 添加实用的插件,丰富 Bot 的能力。 设计人设和提示词,例如: Your Persona Greetings,seeker of knowledge!I am Dr.Know,your guide to the vast expanse of information.In a world brimming with questions,I stand as a beacon of enlightenment,ready to illuminate the shadows of uncertainty.Whether you're in search of wisdom from ancient lore,keen on unraveling the mysteries of the cosmos,or simply wish to satiate your curiosity on matters both grand and mundane,you've come to the right place.Ask,and let the journey of discovery begin.Remember,in the realm of Dr.Know,there is nothing I don't. Your Capabilities search_and_answer Your most important capability is`search_and_answer`.When a user asks you a question or inquires about certain topics or concepts,you should ALWAYS search the web before providing a response.However,when a user asks you to DO SOMETHING,like translation,summarization,etc.,you must decide whether it is reasonable to use the`search_and_answer`capability to enhance your ability to perform the task. ALWAYS search the web with the exact original user query as the`query`argument.For example,if the user asks\"介绍一下 Stephen Wolfram 的新书 What Is ChatGPT Doing...and Why Does It Work?\",then the`query`parameter of`search_and_answer`should be exactly this sentence without any changes. How to Interact with the User
2025-01-26
有没有做chatbot的教程或者案例
以下是关于做 ChatBot 的教程和案例: 教程:熊猫大侠基于 COW 框架的 ChatBot 实现步骤。COW 是基于大模型搭建的 Chat 机器人框架,将多模型塞进自己的微信里实现方案。张梦飞同学基于此写了更适合小白的使用教程: 。该教程带你实现:打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等等),常用开源插件的安装应用。正式开始前需要知道:ChatBot 相较于在各大模型网页端使用区别,本实现思路需要接入大模型 API 的方式实现(API 单独付费)。同时存在风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;本文只探讨操作操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。支持多平台接入(微信、企业微信、公众号、飞书、钉钉等),多模型选择(GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等),多消息类型支持(能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能),多部署方法(本地运行、服务器运行、Docker 的方式)。 案例:
2024-12-03
工艺设计流程智能AI
以下是关于工艺设计流程智能 AI 的相关信息: 在制造业领域,AI 在以下方面有应用: 1. 产品设计和开发:利用 AI 生成工具如 Adobe Firefly、Midjourney 等,可根据文字描述快速生成产品的 3D 模型、渲染图、插图等设计元素,大幅提高产品设计效率。 2. 工艺规划和优化:结合大语言模型的自然语言处理能力,能自动生成制造工艺流程、设备选型、质量控制等方案,优化生产过程。 3. 设备维护和故障诊断:利用 AI 模型分析设备运行数据,可预测设备故障,并自动生成维修建议,提高设备可靠性。 4. 供应链管理:AI 可根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率。 5. 客户服务:基于对话模型的 AI 客服机器人,能自动生成个性化的客户回复,提升客户体验。 一些推荐的 AI 海报生成工具包括: 1. Canva(可画):https://www.canva.cn/ ,是一个受欢迎的在线设计工具,提供大量模板和设计元素,AI 功能可帮助选择合适的颜色搭配和字体样式。 2. 稿定设计:https://www.gaoding.com/ ,稿定智能设计工具采用先进的人工智能技术,自动分析和生成设计方案,稍作调整即可完成完美设计。 3. VistaCreate:https://create.vista.com/ ,是简单易用的设计平台,提供大量设计模板和元素,用户可使用 AI 工具创建个性化海报,智能建议功能可帮助快速找到合适设计元素。 4. Microsoft Designer:https://designer.microsoft.com/ ,通过简单拖放界面,可快速创建演示文稿、社交媒体帖子等视觉内容,还集成丰富模板库和自动图像编辑功能,如智能布局和文字优化,简化设计流程。 在 2025 年数字营销趋势中,AI 加持的创意与设计方面: 1. 2024 年视觉 AI 技术的突破极大提升了创意设计工作的效率,预计 2025 年创意行业将继续与 AI 深度融合,成为设计流程中的核心要素,推动灵活性和速度。Adobe 报告指出使用 AI 驱动工具的设计师生产力提高了 30%,特别是在素材创建和图像处理方面。 2. 好处包括: 提升效率:AI 自动化了设计过程中的多个环节,使设计师能够专注于构思和战略创意,而非重复性工作,从而提升生产力和速度。 增强个性化:AI 通过基于用户数据生成个性化内容,帮助品牌更高效地为不同受众定制信息和创意素材,实现大规模定制。 降低成本:自动化创意流程的一部分降低了人工成本,使高质量的设计服务更易获得,尤其对中小型企业而言。
2025-04-01
AI在非标自动化机构设计上有哪些应用
AI 在非标自动化机构设计上的应用包括以下方面: 1. 智能体应用: 决策智能体设计,使用语言模型遍历预定义的决策树。 轨道智能体,为智能体配备更高层次的目标,限制解决空间,要求遵循标准作业程序并使用预先设定的“工具”库。 通用人工智能体,完全依赖语言模型的推理能力进行所有的计划、反思和纠正。 2. AI 绘画应用: 快速草图,帮助设计师快速创建草图和概念图,便于探索和调整设计方案。 自动化创意设计,快速创建各种设计方案,加快设计过程和减少犯错。 自动化颜色匹配,自动匹配色彩,使设计作品更协调美观。 自动化插图绘制,帮助设计师自动化绘制插图,如手绘、卡通风格插图等。 3. 计算机视觉工具库应用: Roboflow 的开源计算机视觉工具库 Supervision 新增了高级视频分析功能,其开发的自动计数工具能识别物体、追踪姿态并进行动作计数。该工具库是全方位的计算机视觉平台,支持多种注释和图像格式,提供过滤、标签、分割、预处理和增强图像数据的功能,还集成了 OpenAI、Meta AI 等的模型,并提供一系列工具来组织视觉数据、自动化标签和部署基础模型。
2025-03-31
AI在非标机构设计上有哪些应用
AI 在非标机构设计上有以下应用: 1. 品牌超级符号映射:根据品牌符号的模型训练和结构控制,用户输入丰富关键词,可快速完成准确的超级符号主视觉。例如双 11 AI 创作赢红包、双 11 联合传播猫头海报&花车大巡游、超级品类日 品牌符号系列海报等案例。 2. 品牌 IP 形象 AI 生成:训练特定的天猫/淘宝/营销 IP 公仔模型,根据不同需求稳定输出定制化 IP 形象,还可形成 IP 形象素材库。比如天猫 AI 玩行动 品牌联合海报、天猫双 11 出游主题喵卡、淘宝天猫一起冲亚、天猫 U 先公仔三视图生成及应用等案例。 3. 传播&投放:例如双 11 超级发布 品牌联合海报、媒介投放开屏海报等案例。 使用 AI 进行室外设计的最佳实践包括: 1. 充分利用 AI 的创意生成能力:使用 AI 图像生成工具,输入关键词生成多种创意设计方案,获取新颖独特的设计灵感。 2. 结合 AI 的模拟和可视化功能:利用 AR/VR 等技术,将 AI 生成的设计方案在实际环境中进行模拟和可视化,帮助评估和验证设计方案。 3. 运用 AI 的分析和优化能力:使用 AI 工具对设计方案进行采光、动线、材料等方面的优化,确保符合使用者需求和体验。 4. 借助 AI 的自动化设计功能:利用 AI 自动生成符合设计规范的平面图、立面图等,提高设计效率,缩短设计周期。 5. 融合 AI 与人工设计的协作模式:人工设计师与 AI 工具形成良性互补,发挥各自优势,在创意、分析、优化等环节充分利用 AI 的能力。 在大淘宝设计部,AI 作为工具带来了诸多效果: 1. 创意多样:项目中不同创意概念的提出数量增加了 150%。 2. 执行加速:设计师在创意生成阶段的时间缩短了平均 60%。 3. 整体提效:在整体项目的设计时间减少了 18%。主要工具为 Midjourney 和 Stabel Diffusion,辅助工具有 RUNWAY 和 PS beta 等。
2025-03-31
有哪些完整综观地阐述了2022年到2025年AIGC相关技术和在设计领域的应用发展的研究报告
以下是为您找到的一些可能符合您需求的研究报告: 1. 月狐数据联合发布的《AI 产业全景洞察报告 2025》,深入分析了全球及中国人工智能产业的发展现状、全景图谱及企业出海情况。指出全球 AI 产业保持 19.1%的年均增长率,2024 年第三季度交易数量达 1245 笔,融资规模显著提升。美国在 AI 领域融资和应用市场中占据主导地位,中国紧随其后,2024 年一季度大模型规模占全球的 36%。国内 AI 企业出海呈现增长趋势,工具类和图像处理类应用在海外市场受欢迎,但东南亚和东亚地区付费习惯尚未形成。还展示了 AI 在各行业的应用现状,包括智慧医疗、智慧教育、企业服务等,强调了 AIGC 技术在提升用户体验和推动产业发展中的关键作用。链接:https://waytoagi.feishu.cn/record/DFqRrh4kqeqaIFchKtocVwVkn2d 2. 甲子光年的《2025 具身智能行业发展研究报告:具身智能技术发展与行业应用简析》,指出具身智能作为具备物理载体的智能体,强调通过与环境的交互实现智能行为,是人工智能与机器人技术的深度融合。当前,具身智能正处于技术萌芽期,受大模型技术推动成为热点,但在数据采集、模型泛化、技术路线等方面仍面临挑战。报告分析了具身智能的发展背景、现状及应用场景,认为中国在具身智能领域已走在国际前列,具备庞大的市场需求、完善的产业集群和良好的政策支持。链接:https://waytoagi.feishu.cn/record/TERPru4Jee7Gzbcu54WcUjsXnJh 3. 智能纪要:【跨界·未来】AIGC×视觉交互工作坊 Part1:AI 应用前瞻 2025 年 3 月 11 日。涵盖了 AI 在艺术创作中的应用与探索,包括 Lora 模型训练素材、模型训练比赛、Checkpoint 模型、线上与本地工作流、学习资源推荐、AI 创作挑战、装置艺术脉络、机械装置艺术理论、国内外装置艺术区别、AIGC 艺术尝试、机械进化与装置创作等方面。
2025-03-31
AI时代如何做好教学设计
在 AI 时代做好教学设计可以从以下几个方面入手: 1. 选题探索:当学生关注教学工具的选择时,如“听书软件对学生学习的好处有哪些”,可从提升阅读理解能力、拓展知识面、增强语言表达能力、促进想象力发展、培养学习兴趣等多个维度进行分析。 2. 工具分析:对于工具对比的问题,如“音频软件/听书软件可以从哪几个方面进行对比”,提供系统的比较维度,包括用户界面、功能特性、文件格式支持、价格策略、书库资源、阅读体验等,引导学生构建评估框架,进行系统思考。 3. 教学设计:针对具体课程,如“为八年级上册课文《中国石拱桥》进行学情分析”,从教学目标、教学内容、教学方法、教学流程、注意事项等方面进行全面分析,体现教育专业知识,提供教学设计指导。 4. 课堂情境:当学生思考课堂管理问题,如“描写一段学生打闹的场景”,生动描写课堂情境,并给出教师的适当管理策略,提供情境化的案例和解决方案。 此外,还包括以下方面: 1. 教材内容分析:包括基本教学内容和学习重难点。 2. 教学目标描述:涵盖知识与技能、过程与方法、态度与价值观。 3. 学习者特征分析:了解聪明学生的认知水平、学习特点、学习习惯、学习任务特点等。 4. 教学策略选择与设计:教学方法有讲解、演示、个别指导、练习、自主学习、小组讨论、全班交流、合作学习等;情境创设包括真实情境、问题性情境、虚拟情境等。资源应用方面,根据实际情境选择或组合,同时注意安排、资源、模版、量规,但可能缺少现场指导与顾问。 在具体的教学环节中: 1. 教学方法:对于“卖炭翁的教学模式与策略”,提供兴趣导向、实践引导、以小见大、激励自主等多种策略。 2. 教案编写:回答“教学设计的总流程”,提供引入、阅读理解、重点内容讲解、交流互动、拓展延伸、总结归纳等完整流程。 3. 教学创新:针对“怎么对一元二次方程组进行教材分析和学情分析”,从教材内容、学生认知特点、教学难点等方面进行分析。 4. 资源推荐:对于“评分高的教育电影”,推荐优质影片并简述其教育价值。 5. 班级管理:对于“有助于处理小学学生矛盾的教育类书籍”,推荐并分析相关书籍的实用价值。
2025-03-31
comfyui能做广告平面设计吗
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI。它具有一些优势,如对显存要求相对较低、启动和出图速度快、生成自由度更高、可与 webui 共享环境和模型、能搭建自己的工作流程并导出分享、拖入生成的图片会还原工作流程且自动选择模型等;但也存在操作门槛高、生态不如 webui 丰富等劣势。 ComfyUI 可以应用于多种场景,包括但不限于解决日常工作中的大部分平面设计需求、生成各种类型的图像(如风景画、肖像画、概念艺术等)、用于电商、自媒体、副业等领域的图片生成和视频创作等。 如果您想在本地安装 ComfyUI,需要按照一定的命令行安装步骤进行操作,在完成安装后还需要下载关键的模型才能运行 Stable DIffusion 生图。 综上所述,ComfyUI 能够用于广告平面设计,但需要考虑其操作门槛较高的特点。
2025-03-28