直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

sora 是什么工具

回答

Sora 是一个大型视觉模型,具有以下应用和原理:

  • 应用:
    • 教育:能将文本描述或课程大纲转化为针对个别学习者特定风格和兴趣量身定制的动态、引人入胜的视频内容,还能将静态教育资产转换为互动视频,支持一系列学习偏好,增加学生参与度,使复杂概念更易于理解和吸引人。
    • 游戏:生成动态、高保真视频内容和实时效果的真实声音,克服传统游戏开发的限制,为开发者提供创建响应玩家行动和游戏事件的不断发展的游戏环境的工具,创造前所未有的沉浸式体验,为叙事、互动和沉浸打开新的可能性。
  • 原理:
    • 类似于 DALLE3,在处理用户提供的文本提示时,可以利用 GPT 模型来扩展或优化提示。GPT 模型将简短的用户提示转化成更详细、更富有描述性的文本,有助于 Sora 更准确地理解并生成符合用户意图的视频。
    • 用户提供文本提示,Sora 根据提示在潜在空间中初始化视频的生成过程。利用训练好的扩散模型,从初始化的时空潜伏斑块开始,逐步生成清晰的视频内容。
    • 使用与视频压缩相对应的解码器将潜在空间中的视频转换回原始像素视频,并对生成的视频进行可能的后处理,如调整分辨率、裁剪等,以满足发布或展示的需求。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

Sora:大型视觉模型的背景、技术、局限性和机遇综述 【官方论文】

教育内容的格局长期以来一直被静态资源所主导,尽管它们具有价值,但往往无法满足当今学生多样化的需求和学习风格。视频扩散模型站在教育革命的前沿,提供了前所未有的机会,以显著增强学习者的参与度和理解力,定制和动态化教育材料。这些先进技术使教育者能够将文本描述或课程大纲转化为针对个别学习者的特定风格和兴趣量身定制的动态、引人入胜的视频内容[136,137,138,139]。此外,图像到视频编辑技术[140,141,142]提供了将静态教育资产转换为互动视频的创新途径,从而支持一系列学习偏好,并有可能增加学生的参与度。通过将这些模型整合到教育内容创作中,教育者可以就广泛的主题制作视频,使复杂概念对学生更加易于理解和吸引人。Sora在教育领域的应用体现了这些技术的变革潜力。这种转向个性化、动态教育内容的转变预示着教育的新时代。[heading2]4.3游戏[content]游戏行业不断寻求推动现实主义和沉浸感的界限,然而传统游戏开发经常与预渲染环境和脚本事件的限制作斗争。扩散模型生成的动态、高保真视频内容和实时效果的真实声音,承诺克服现有限制,为开发者提供创建响应玩家行动和游戏事件的不断发展的游戏环境的工具[143,144]。这可能包括生成变化的天气条件、变换的景观,甚至即兴创造全新的设置,使游戏世界更加沉浸和响应。一些方法[145,146]还从视频输入中合成真实的冲击声音,增强游戏音频体验。通过将Sora整合到游戏领域,可以创造前所未有的沉浸式体验,吸引并吸引玩家。游戏的开发、玩法和体验将得到创新,同时为叙事、互动和沉浸打开新的可能性。

Sora 原理解释

[title]Sora原理解释[heading1]Sora:可作为世界模拟器的视频生成模型[heading2]辅助工具[heading3]精简版[heading3]问题:从原始视频数据到模型训练再到模型生成视频全流程"类似于DALLE3,Sora在处理用户提供的文本提示时,也可以利用GPT模型来扩展或优化这些提示。GPT模型可以将简短的用户提示转化成更详细、更富有描述性的文本,这有助于Sora更准确地理解并生成符合用户意图的视频。8.生成视频:用户提供一个文本提示,Sora根据这个提示在潜在空间中初始化视频的生成过程。·利用训练好的扩散模型,Sora从这些初始化的时空潜伏斑块开始,逐步生成清晰的视频内容。9.视频解码和后处理:使用与视频压缩相对应的解码器将潜在空间中的视频转换回原始像素视频。对生成的视频进行可能的后处理,如调整分辨率、裁剪等,以满足发布或展示的需求。通过以上步骤,从视频数据的收集和高度描述性标注的生成(利用DALLE3技术),到视频的压缩、处理(利用Transformer架构和时空潜伏斑块),再到基于用户文本提示的视频生成(结合GPT模型进行文本优化),每一个环节都是精心设计的,确保生成的视频不仅在视觉上高质量,而且能准确反映用户的意图

前Sora时代我最想做的AI短片——使用Pika、Pixverse、Runway、SVD四大AI视频工具

[title]前Sora时代我最想做的AI短片——使用Pika、Pixverse、Runway、SVD四大AI视频工具除了使用GPT4/Claude/Kimi/智谱清言/文心一言等AI工具之外,更重要的是你想写一个什么故事,故事可以从哪里来。路径一:原创(直接经验):你或你周围人的经历/你做过的梦/你想象的故事等等路径二:改编(间接经验):经典IP/名著改编/新闻改编/二创等等剧本写作:老实说,编剧是一门看似门槛低但还是挺有成活门槛的手艺,所以三言两语要把如何写好剧本这件事情讲明白是很难的。而且剧作有一个悖论是,你看的所有剧作书,都是结果,从结果反推成因,这是一件很玄学的事情。就像一道数学公式,老师告诉你,公式就是这么写,你就往里套就行,简单的题目这么做是可以的,但放到稍微复杂的环境里,你就不会了。因为公式的结果是死板,套剧作理论和模版,写出来的故事也会很死板。当然不是说看书没用,而是不论写剧本、写作、还是写什么都好,第一步的开始,永远就是写。咔咔写和哐哐实践,再去看书,看完继续完善实践,再总结经验,循环往复,才可能会有所体悟。虽然我觉得剧作很复杂,但短片创作的好处,在于篇幅比较小,涉及到的情节设计和角色也相对简单,简单的东西建议可以从自己或者朋友的经历改编入手,有情感投射可能会比较好上手。或者是那些触动你的短篇故事,对短篇的故事进行改编也是比较好的练手方式。多跟别人讨论你的故事,也是一种很好的修改和进步方式,可以听听别人对你故事的感受,千万不要怕别人会窃取你的创意,老实讲,大部分你能想到的故事,可能都被拍过了,所以根本不用怕别人会剽窃你,商业合作除外,毕竟商业项目还是要签保密协议的。

其他人在问
sora模型不同于其他同类模型的优势
Sora 模型不同于其他同类模型的优势主要体现在以下几个方面: 1. 视频生成能力:能够根据文本提示生成长达 1 分钟的高质量视频,而早期模型通常只能生成短视频片段。生成的长视频具有高视觉质量和引人入胜的视觉连贯性,从第一帧到最后一帧有良好的视觉一致性。 2. 处理复杂指令:展示了准确解释和执行复杂人类指令的显著能力,能生成包含多个执行特定动作的角色以及复杂背景的详细场景。 3. 数据预处理:能够在原始尺寸上训练、理解和生成视频及图像,拥抱视觉数据的多样性,在从宽屏 1920x1080p 视频到竖屏 1080x1920p 视频以及之间的任何格式上采样,而不会损害原始尺寸。在原始尺寸上训练数据显著改善了生成视频的构图和框架,实现更自然和连贯的视觉叙事。 4. 符合规模化定律:作为大型视觉模型,符合规模化原则,揭示了文本到视频生成中的几种新兴能力,是第一个展示确认新兴能力的视觉模型,标志着计算机视觉领域的一个重要里程碑。此外,还展示了包括遵循指令、视觉提示工程和视频理解等显著能力。
2024-10-30
Sora是什么
Sora 是 OpenAI 发布的一个文本到视频的生成模型。 其能力标志着人工智能在创意领域的重大飞跃,能够根据描述性的文本提示生成高质量的视频内容。它不仅可以创造出逼真且充满想象力的场景,还能生成长达 1 分钟的一镜到底的超长视频,视频中的人物和场景具有很高的一致性和稳定性。 本技术报告侧重于:(1)将各类视觉数据转换为统一表示的方法,使大规模训练生成模型成为可能;(2)对 Sora 能力和局限性的定性评估。但模型和实现细节未在报告中包括。 目前 OpenAI 并没有公开发布 Sora 的计划,而是选择仅向少数研究人员和创意人士提供有限的访问权限,以便获取他们的使用反馈并评估技术的安全性。
2024-08-26
微软 Sora 的论文
以下是关于微软 Sora 论文的相关信息: 论文标题:Sora:A Review on Background,Technology,Limitations,and Opportunities of Large Vision Models 作者:Yixin Liu,Kai Zhang,Yuan Li,Zhiling Yan,Chujie Gao,Ruoxi Chen,Zhengqing Yuan,Yue Huang,Hanchi Sun,Jianfeng Gao,Lifang He,Lichao Sun 期刊:arXiv 发表时间:2024/02/27 数字识别码:arXiv:2402.17177 摘要:Sora 是一个文本到视频生成的人工智能模型,由 OpenAI 于 2024 年 2 月发布。该模型经过训练,可以根据文本指令生成逼真或富有想象力的场景的视频,并显示出模拟物理世界的潜力。基于公开的技术报告和逆向工程,本文全面回顾了文本到视频人工智能模型的背景、相关技术、应用、剩余挑战和未来方向。我们首先追踪索拉的发展,并研究用于构建这个“世界模拟器”的底层技术。然后,我们详细描述了索拉在从电影制作、教育到营销等多个行业的应用和潜在影响。我们讨论了广泛部署索拉需要解决的主要挑战和局限性,例如确保安全、公正的视频生成。最后,我们讨论了索拉和视频生成模型的未来发展,以及该领域的进步如何能够实现人类人工智能交互的新方式,提高视频生成的生产力和创造力。 背景:Sora 是一项重大突破,类似于 ChatGPT 在 NLP 领域的影响。Sora 是第一个能够根据人类指令生成长达一分钟视频的模型,同时保持较高的视觉质量和引人注目的视觉连贯性,从第一帧到最后一帧都具有渐进感和视觉连贯性。这是一个里程碑,对生成式 AI 的研究和发展产生了深远影响。如图 2 所示,Sora 在准确解读和执行复杂的人类指令方面表现出非凡的能力。该模型可以生成包含多个角色的详细场景,这些角色在错综复杂的背景下执行特定的动作。研究人员认为,Sora 不仅能熟练处理用户生成的文本提示,还能辨别场景中各种元素之间复杂的相互作用。此外,Sora 的进步还体现在它能够生成具有细微运动和交互描绘的扩展视频序列,克服了早期视频生成模型所特有的短片段和简单视觉渲染的限制。这种能力代表了人工智能驱动的创意工具的飞跃,使用户能够将文字叙述转换成丰富的视觉故事。总之,这些进步显示了 Sora 作为世界模拟器的潜力,它可以提供对所描绘场景的物理和背景动态的细微洞察。为了方便读者查阅视觉生成模型的最新进展,研究者在论文附录汇编了近期的代表性工作成果。 您可以通过以下链接阅读论文原文:https://arxiv.org/abs/2402.17177
2024-08-08
sora背后的核心技术是啥
Sora 是一种基于扩散模型的视频生成模型,其核心技术是一个预训练的扩散变换器。扩散模型是一种生成式模型,通过学习输入数据的分布来生成新的数据。在 Sora 中,扩散模型被用来学习视频的分布,从而生成新的视频。 Sora 的核心技术源自 Diffusion Transformers(DiT),它结合了 VAE、ViT、DDPM 技术,优化了视频生成。具体来说,Sora 将原始输入视频压缩成一个时空潜在表示,然后从压缩视频中提取一系列时空潜在补丁,以封装短时间间隔内的视觉外观和运动动态。这些补丁类似于语言模型中的单词标记,为 Sora 提供了用于构建视频的详细视觉短语。Sora 的文本到视频生成是通过扩散变换器模型执行的。从一个充满视觉噪声的帧开始,模型迭代地去除噪声并根据提供的文本提示引入特定细节。本质上,生成的视频通过多步精炼过程出现,每一步都使视频更加符合期望的内容和质量。 总的来说,Sora 的核心技术是一个预训练的扩散变换器,它能够解析文本并理解复杂的用户指令,然后通过扩散模型生成视频。
2024-06-10
sora是什么
Sora 是 OpenAI 发布的一个文本到视频的生成模型,可以根据描述性的文本提示生成高质量的视频内容。其能力标志着人工智能在创意领域的重大飞跃,有望将简单的文本描述转变为丰富的动态视频内容。 Sora 模型的发布,在技术界引起了广泛的关注和讨论,但目前 OpenAI 并没有公开发布 Sora 的计划,而是选择仅向少数研究人员和创意人士提供有限的访问权限,以便获取他们的使用反馈并评估技术的安全性。 We explore largescale training of generative models on video data.Specifically,we train textconditional diffusion models jointly on videos and images of variable durations,resolutions and aspect ratios.We leverage a Transformer architecture that operates on spacetime patches of video and image latent codes.Our largest model,Sora,is capable of generating a minute of high fidelity video.Our results suggest that scaling video generation models is a promising path towards building general purpose simulators of the physical world. This technical report focuses onqualitative evaluation of Sora’s capabilities and limitations.Model and implementation details are not included in this report. Sora is a diffusion model; given input noisy patches,it’s trained to predict the original “clean” patches.Importantly,Sora is a diffusion transformer.Transformers have demonstrated remarkable scaling properties across a variety of domains,including language modeling,computer vision,and image generation. In this work,we find that diffusion transformers scale effectively as video models as well.Below,we show a comparison of video samples with fixed seeds and inputs as training progresses.Sample quality improves markedly as training compute increases.Base compute32x compute
2024-06-04
什么是 Sora 能否简单介绍一下?
Sora 是 OpenAI 发布的一个文本到视频的生成模型,可以根据描述性的文本提示生成高质量的视频内容。从核心本质上看,Sora 是一个具有灵活采样维度的扩散变压器,有三个部分:时空压缩器、ViT 和类似 CLIP 的条件机制。Sora 将视觉数据转换成补丁,通过一个专门的网络来降低视觉数据的维度,提取一系列的时空补丁,作为变换器模型的输入令牌,然后通过预测输入噪声补丁的原始“干净”版本进行训练,结合了变换器架构,从而生成新的视频内容。
2024-05-20
开源的数字人工具
以下是一些开源的数字人工具: 1. HeyGen:这是一个 AI 驱动的平台,能创建逼真的数字人脸和角色,使用深度学习算法生成高质量肖像和角色模型,适用于游戏、电影和虚拟现实等应用。 2. Synthesia:AI 视频制作平台,允许创建虚拟角色并进行语音和口型同步,支持多种语言,可用于教育视频、营销内容和虚拟助手等场景。 3. DID:提供 AI 拟真人视频产品服务和开发,上传人像照片和输入内容,平台的 AI 语音机器人能自动转换成语音并合成逼真的说话视频。 此外,还有一些相关的开源算法代码仓库: 1. ASR 语音识别: openai 的 whisper:https://github.com/openai/whisper wenet:https://github.com/wenete2e/wenet speech_recognition(语音识别的接口集合):https://github.com/Uberi/speech_recognition 2. AI Agent: 大模型部分包括 ChatGPT、Claude、ChatGLM、文星一言、千帆大模型、通义千问等。 Agent 部分可使用 LangChain 的模块自定义,包含了 Agent 实现的几个组件:https://www.langchain.com/ 3. TTS: 微软的 edgetts:https://github.com/rany2/edgetts,只能使用预设人物声音,目前接口免费。 VITS:https://github.com/jaywalnut310/vits,还有很多分支版本。 sovitssvc:https://github.com/svcdevelopteam/sovitssvc,专注于唱歌。 请注意,这些工具的具体功能和可用性可能会随时间和技术发展而变化。在使用时,请确保遵守相关使用条款和隐私政策,并注意保持对生成内容的版权和伦理责任。更多数字人工具请访问网站查看:https://www.waytoagi.com/category/42 。上周 HeyGen 工具创始人的演示视频刷屏,效果很好。LKS 也有相关的数字人介绍视频:https://www.bilibili.com/video/BV1vm4y1x7nm/?share_source=copy_web&vd_source=6c09aa7f53b69992e1cd572bbd2dbf94 。斯坦福 AI 小镇上周正式开源,相关论文链接:https://arxiv.org/abs/2304.03442 。
2024-11-19
设计研究的AI工具
以下是一些可以用于设计研究的 AI 工具: 在软件架构设计中,绘制逻辑视图、功能视图和部署视图的工具: Lucidchart:流行的在线绘图工具,支持多种图表创建,用户可通过拖放界面轻松创建架构图。 Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能。 ArchiMate:开源建模语言,与 Archi 工具配合使用,支持逻辑视图创建。 Enterprise Architect:强大的建模、设计和生成代码工具,支持多种架构视图创建。 Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板。 draw.io(diagrams.net):免费在线图表软件,支持多种类型图表创建。 PlantUML:文本到 UML 转换工具,可通过描述文本自动生成相关视图。 Gliffy:基于云的绘图工具,提供创建架构图功能。 Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 Rational Rose:IBM 的 UML 工具,支持多种视图创建。 在建筑设计中审核规划平面图的工具: HDAidMaster:云端工具,在建筑、室内和景观设计领域表现出色,搭载建筑大模型。 Maket.ai:面向住宅行业,在户型和室内软装设计方面有探索。 ARCHITEChTURES:AI 驱动的三维建筑设计软件,能引入标准和规范约束设计结果。 Fast AI 人工智能审图平台:形成全自动智能审图流程,实现数据汇总与管理。 需要注意的是,每个工具都有其特定的应用场景和功能,建议根据具体需求选择合适的工具。同时,部分内容由 AI 大模型生成,请仔细甄别。
2024-11-19
适合logo设计的工具
以下是一些适合 logo 设计的工具: 1. Looka:是一个在线 Logo 设计平台,使用 AI 理解用户的品牌信息和设计偏好,生成多个设计方案供选择和定制。 2. Tailor Brands:AI 驱动的品牌创建工具,通过用户回答问题生成 Logo 选项。 3. Designhill:其 Logo 制作器使用 AI 技术创建个性化设计,用户可选择元素和风格。 4. LogoMakr:提供简单易用的设计工具,用户能拖放设计,利用 AI 建议的元素和颜色方案。 5. Canva:广受欢迎的在线设计工具,提供 Logo 设计模板和元素,有 AI 辅助设计建议。 6. LogoAI by Tailor Brands:Tailor Brands 推出的 AI Logo 设计工具,根据输入快速生成方案。 7. 标小智:中文 AI Logo 设计工具,利用人工智能技术帮助创建个性化 Logo。 使用这些工具时,用户通常可根据品牌理念和视觉偏好,通过简单交互获得一系列设计方案,并进一步定制和优化,直到满意为止。另外,您还可以访问网站的 AI 生成 Logo 工具版块获取更多好用的工具: 。 此外,还有关于生成 logo 的相关教程和案例拆解,如超强 LOGO 生成器的使用方法:设计一个 logo 生成工具,允许用户上传多张 logo 图片作为参考,若无法处理多张图片,需将四张合成一张处理。通过提示询问用户是否使用这些图片创建新 logo 设计,可自定义提示词风格,设定每张图片参考权重,利用 GPT4 Vision 识图能力提取关键特征生成新 logo 设计,若用户不满意则重新生成,提示用户下一步操作方法,满意则发送让用户转 LOGO 矢量图操作,默认语言为中文。 如果您想生成一个乐高 logo 的 STL 文件,步骤如下: 1. 使用矢量图形编辑软件(如 Adobe Illustrator 或 Inkscape)创建或获取矢量格式的乐高 logo,确保符合标准。 2. 导入 3D 建模软件(如 Blender、Fusion 360 或 Tinkercad),将矢量图形转换为 3D 模型。 3. 在 3D 建模软件中创建 3D 模型,调整尺寸和厚度,确保可打印。 4. 导出为 STL 文件格式。以下是在 Blender 中使用 Python 脚本创建简单 3D 文本作为乐高 logo 并导出为 STL 文件的步骤: 1. 打开 Blender。 2. 打开脚本编辑器。 3. 输入脚本。 4. 运行脚本。 5. 检查 STL 文件。您可根据需要调整脚本参数以获得满意的 3D 模型。
2024-11-19
最好用的AI工具有哪些
以下是一些好用的 AI 工具: AI 新闻写作工具: Copy.ai:功能强大,提供丰富的新闻写作模板和功能,可快速生成新闻标题、摘要、正文等内容,提高写作效率。 Writesonic:专注写作,提供新闻稿件生成、标题生成、摘要提取等功能,智能算法能生成高质量新闻内容,适合新闻写作和编辑人员。 Jasper AI:主打博客和营销文案,也可用于生成新闻类内容,写作质量较高,支持多种语言。 访问量较大的 AI 工具: ChatGPT:在 2022 年 9 月至 2023 年 8 月期间拥有 146 亿次访问量,在美国使用率最高,其次是印度和巴西,大多数受众通过移动设备访问,性别分布偏向男性用户。 Character AI QuillBot Midjourney Hugging Face Google Bard NovelAI CapCut JanitorAI Civitai 能够帮助建筑设计师审核规划平面图的 AI 工具: HDAidMaster:云端工具,在建筑、室内和景观设计领域表现出色,搭载建筑大模型,软件 UI 和设计成果颜值在线。 Maket.ai:面向住宅行业,在户型和室内软装设计方面有探索,能根据输入需求自动生成户型图。 ARCHITEChTURES:AI 驱动的三维建筑设计软件,提供全新设计模式,可引入标准和规范约束设计结果。 Fast AI 人工智能审图平台:形成全自动智能审图流程,能将建筑全寿命周期内的信息集成,实现数据汇总与管理。 需要注意的是,每个工具都有其特定的应用场景和功能,建议您根据自己的具体需求来选择合适的工具。同时,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-19
生成PPT的AI 工具
以下是关于生成 PPT 的 AI 工具的相关信息: 目前市面上大多数 AI 生成 PPT 的思路是:AI 生成 PPT 大纲,手动优化大纲,导入工具生成 PPT,优化整体结构。 推荐的市场分析文章:《》 常见的相似问题有:有没有生成 PPT 的应用推荐,不用翻墙的;免费生成 PPT 的网站有哪些;推荐一款文字生成 ppt 的工具;免费 ai 制作 ppt 软件;推荐 3 款好用的 AI 制作 ppt 工具。 深入了解了五大 AI PPT 工具:MindShow、爱设计、闪击、Process ON、WPS AI,它们各自有鲜明特色和擅长场景。对于追求高度专业和个性化展示的群体,如软件实施人员和销售人员,选择功能丰富且模板专业的工具更具优势;对于偶尔涉足 PPT 制作的人群,如软件工程师,简洁、直观的工具可能更适合。选择合适的工具要根据实际需求调整,试用和体验比盲目跟风更明智。 作者熊猫 Jay 因企业内部要求编写此文章做内部培训并公开分享。无论您是 PPT 专家还是新手,AI 工具都能提供帮助,如提供多种精美 PPT 模板,节省组织内容和编排思路的时间。文中介绍了 5 款 AI PPT 工具,包括 MindShow、爱设计、闪击、Process ON、WPS AI,每款工具都有独特优势。作者因该培训材料效果不错还获得 1000 元红包奖励,并解决了小伙伴整合 PPT 和 AI 的需求。
2024-11-19
能生成长视频的ai工具
以下是一些能够生成长视频的 AI 工具: 1. LTX Studio:输入文本提示和创意即可生成完整剧本和视频,具有框架控制、AI 叙事、角色一致性、自动剪辑等特点。链接:https://ltx.studio 。 2. invideoAI:输入想法后自动生成脚本和分镜描述,进而生成视频,再经过人工二编合成长视频。 3. Opusclip:可将长视频剪成短视频。 4. Raskai:能将短视频素材直接翻译至多语种。 5. descript:通过屏幕或播客录制,以 PPT 方式做视频。 6. veed.io:具有自动翻译和自动字幕功能。 7. clipchamp:微软的类似于 AI 版剪映的工具。 8. typeframes:与 invideoAI 类似,内容呈现中文本主体比重更多。 需要注意的是,目前部分工具生成的长视频可能在质量或某些方面还存在一定的局限性,仍在不断发展和完善中。
2024-11-19