以下是关于您提到的“神经活动中内在思想的逻辑演算”的相关内容:
在神经网络和深度学习的发展历程中,沃伦·麦卡洛克(Warren McCulloch)和沃尔特·皮兹(Walter Pitts)曾表明,把二进制输入值加起来,并在和大于一个阈值时输出 1,否则输出 0 的神经元模型,可以模拟基本的或/与/非逻辑函数。这为后续对神经活动中内在思想的研究奠定了基础。
同时,在相关研究中,弗兰克·罗森布拉特(Frank Rosenblatt)构想了感知机,它作为简化的数学模型解释大脑神经元如何工作。感知机取一组二进制输入值,将每个输入值乘以一个连续值权重,并设立一个阈值,如果这些加权输入值的和超过这个阈值,就输出 1,否则输出 0 。
此外,1986 年提出的构想让人们广泛理解了应该如何训练多层神经网络解决复杂学习问题,使得神经网络得以回归和发展。
参考文献:
[title]深度|神经网络和深度学习简史(第一部分):从感知机到BP算法[heading1]人工智能冬天的复苏文章特别谈到了Minsky在《感知机》中讨论过的问题。尽管这是过去学者的构想,但是,正是这个1986年提出的构想让人们广泛理解了应该如何训练多层神经网络解决复杂学习问题。而且神经网络也因此回来了!第二部分,我们将会看到几年后,《Learning internal representations by error propagation》探讨过的BP算法和其他一些技巧如何被用来解决一个非常重要的问题:让计算机识别人类书写。(待续)参考文献Christopher D.Manning.(2015).Computational Linguistics and Deep Learning Computational Linguistics,41(4),701–707.↩F.Rosenblatt.The perceptron,a perceiving and recognizing automaton Project Para.Cornell Aeronautical Laboratory,1957.↩W.S.McCulloch and W.Pitts.A logical calculus of the ideas immanent in nervous activity.The bulletin of mathematical biophysics,5(4):115–133,1943.↩The organization of behavior:A neuropsychological theory.D.O.Hebb.John Wiley And Sons,Inc.,New York,1949 ↩B.Widrow et al.Adaptive ”Adaline” neuron using chemical ”memistors”.Number Technical Report 1553-2.Stanford Electron.Labs.,Stanford,CA,October 1960.↩“New Navy Device Learns By Doing”,New York Times,July 8,1958.↩Perceptrons.An Introduction to Computational Geometry.MARVIN MINSKY and SEYMOUR PAPERT.M.I.T.Press,Cambridge,Mass.,1969.↩Linnainmaa,S.(1970).The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors.Master’s thesis,Univ.Helsinki.↩
[title]深度|神经网络和深度学习简史(第一部分):从感知机到BP算法[heading1]虚假承诺的荒唐显然这里话题是神经网络,那我们前言里为何要扯线性回归呢?呃,事实上线性回归和机器学习一开始的方法构想,弗兰克·罗森布拉特(Frank Rosenblatt)的感知机,有些许相似性。Perceptron心理学家Rosenblatt构想了感知机,它作为简化的数学模型解释大脑神经元如何工作:它取一组二进制输入值(附近的神经元),将每个输入值乘以一个连续值权重(每个附近神经元的突触强度),并设立一个阈值,如果这些加权输入值的和超过这个阈值,就输出1,否则输出0(同理于神经元是否放电)。对于感知机,绝大多数输入值不是一些数据,就是别的感知机的输出值。但有一个额外的细节:这些感知机有一个特殊的,输入值为1的,「偏置」输入,因为我们能补偿加权和,它基本上确保了更多的函数在同样的输入值下是可计算的。这一关于神经元的模型是建立在沃伦·麦卡洛克(Warren McCulloch)和沃尔特·皮兹(Walter Pitts)工作上的。他们曾表明,把二进制输入值加起来,并在和大于一个阈值时输出1,否则输出0的神经元模型,可以模拟基本的或/与/非逻辑函数。这在人工智能的早期时代可不得了——当时的主流思想是,计算机能够做正式的逻辑推理将本质上解决人工智能问题。另一个图表,显示出生物学上的灵感。激活函数就是人们当前说的非线性函数,它作用于输入值的加权和以产生人工神经元的输出值——在罗森布拉特的感知机情况下,这个函数就是输出一个阈值操作
[title]构建外脑/智变时代的个人知识管理[heading2]1.大脑之外[heading3]1.2 ExoBrain的概念为了更好的表述这种在大脑之外,利用软件工具还有大语言模型相关的技术,来扩展我们记忆和智力的新机制或者系统,我将其称之为ExoBrain -外脑。后文都用中文外脑来表述ExoBrain。配图01:ExoBrain Concept语言模型是心智界面对话是最简洁的人机界面,ChatGPT的流行让真正的人机对话成为了可能,现在Google的[Bard](https://bard.google.com/?ref=indigox.me),Anthropic的[Claude](https://claude.ai/?ref=indigox.me)还有inflection的[Pi.ai](https://pi.ai/?ref=indigox.me)都卷入了这场智能入口之争。这些语言模型除了可以用它们储备的全人类的知识库来响应我们的任何问题之外,还能够快速理解复杂的文档,生成想法甚至驱动其它的软件来自动化的完成任务,语言模型就是我们的心灵副驾(Mind Copilot),自然语言输入,自然语言输出。语言代表了人类的智能,当我们思考的时候实际上是在进行内心独白和基于语言的逻辑推理。同样,我们用和LLM之间的对话来实现快速理解,记忆唤起、想法连接和驱动外部软件自动完成工作,LLM就像一个智能引擎一样成为了我们和外脑之间的心智界面。容易唤醒的数字记忆