直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

神经活动中内在思想的逻辑演算

回答

以下是关于您提到的“神经活动中内在思想的逻辑演算”的相关内容:

在神经网络和深度学习的发展历程中,沃伦·麦卡洛克(Warren McCulloch)和沃尔特·皮兹(Walter Pitts)曾表明,把二进制输入值加起来,并在和大于一个阈值时输出 1,否则输出 0 的神经元模型,可以模拟基本的或/与/非逻辑函数。这为后续对神经活动中内在思想的研究奠定了基础。

同时,在相关研究中,弗兰克·罗森布拉特(Frank Rosenblatt)构想了感知机,它作为简化的数学模型解释大脑神经元如何工作。感知机取一组二进制输入值,将每个输入值乘以一个连续值权重,并设立一个阈值,如果这些加权输入值的和超过这个阈值,就输出 1,否则输出 0 。

此外,1986 年提出的构想让人们广泛理解了应该如何训练多层神经网络解决复杂学习问题,使得神经网络得以回归和发展。

参考文献:

  • Christopher D.Manning. (2015). Computational Linguistics and Deep Learning Computational Linguistics, 41(4), 701–707.↩
  • F.Rosenblatt. The perceptron, a perceiving and recognizing automaton Project Para. Cornell Aeronautical Laboratory, 1957.↩
  • W.S.McCulloch and W.Pitts. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.↩
  • The organization of behavior: A neuropsychological theory. D.O.Hebb. John Wiley And Sons, Inc., New York, 1949 ↩
  • B.Widrow et al. Adaptive ”Adaline” neuron using chemical ”memistors”. Number Technical Report 1553-2. Stanford Electron. Labs., Stanford, CA, October 1960.↩
  • “New Navy Device Learns By Doing”, New York Times, July 8, 1958.↩
  • Perceptrons. An Introduction to Computational Geometry. MARVIN MINSKY and SEYMOUR PAPERT. M.I.T. Press, Cambridge, Mass., 1969.↩
  • Linnainmaa, S. (1970). The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors. Master’s thesis, Univ. Helsinki.↩
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

深度|神经网络和深度学习简史(第一部分):从感知机到BP算法

[title]深度|神经网络和深度学习简史(第一部分):从感知机到BP算法[heading1]人工智能冬天的复苏文章特别谈到了Minsky在《感知机》中讨论过的问题。尽管这是过去学者的构想,但是,正是这个1986年提出的构想让人们广泛理解了应该如何训练多层神经网络解决复杂学习问题。而且神经网络也因此回来了!第二部分,我们将会看到几年后,《Learning internal representations by error propagation》探讨过的BP算法和其他一些技巧如何被用来解决一个非常重要的问题:让计算机识别人类书写。(待续)参考文献Christopher D.Manning.(2015).Computational Linguistics and Deep Learning Computational Linguistics,41(4),701–707.↩F.Rosenblatt.The perceptron,a perceiving and recognizing automaton Project Para.Cornell Aeronautical Laboratory,1957.↩W.S.McCulloch and W.Pitts.A logical calculus of the ideas immanent in nervous activity.The bulletin of mathematical biophysics,5(4):115–133,1943.↩The organization of behavior:A neuropsychological theory.D.O.Hebb.John Wiley And Sons,Inc.,New York,1949 ↩B.Widrow et al.Adaptive ”Adaline” neuron using chemical ”memistors”.Number Technical Report 1553-2.Stanford Electron.Labs.,Stanford,CA,October 1960.↩“New Navy Device Learns By Doing”,New York Times,July 8,1958.↩Perceptrons.An Introduction to Computational Geometry.MARVIN MINSKY and SEYMOUR PAPERT.M.I.T.Press,Cambridge,Mass.,1969.↩Linnainmaa,S.(1970).The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors.Master’s thesis,Univ.Helsinki.↩

深度|神经网络和深度学习简史(第一部分):从感知机到BP算法

[title]深度|神经网络和深度学习简史(第一部分):从感知机到BP算法[heading1]虚假承诺的荒唐显然这里话题是神经网络,那我们前言里为何要扯线性回归呢?呃,事实上线性回归和机器学习一开始的方法构想,弗兰克·罗森布拉特(Frank Rosenblatt)的感知机,有些许相似性。Perceptron心理学家Rosenblatt构想了感知机,它作为简化的数学模型解释大脑神经元如何工作:它取一组二进制输入值(附近的神经元),将每个输入值乘以一个连续值权重(每个附近神经元的突触强度),并设立一个阈值,如果这些加权输入值的和超过这个阈值,就输出1,否则输出0(同理于神经元是否放电)。对于感知机,绝大多数输入值不是一些数据,就是别的感知机的输出值。但有一个额外的细节:这些感知机有一个特殊的,输入值为1的,「偏置」输入,因为我们能补偿加权和,它基本上确保了更多的函数在同样的输入值下是可计算的。这一关于神经元的模型是建立在沃伦·麦卡洛克(Warren McCulloch)和沃尔特·皮兹(Walter Pitts)工作上的。他们曾表明,把二进制输入值加起来,并在和大于一个阈值时输出1,否则输出0的神经元模型,可以模拟基本的或/与/非逻辑函数。这在人工智能的早期时代可不得了——当时的主流思想是,计算机能够做正式的逻辑推理将本质上解决人工智能问题。另一个图表,显示出生物学上的灵感。激活函数就是人们当前说的非线性函数,它作用于输入值的加权和以产生人工神经元的输出值——在罗森布拉特的感知机情况下,这个函数就是输出一个阈值操作

构建外脑 / 智变时代的个人知识管理

[title]构建外脑/智变时代的个人知识管理[heading2]1.大脑之外[heading3]1.2 ExoBrain的概念为了更好的表述这种在大脑之外,利用软件工具还有大语言模型相关的技术,来扩展我们记忆和智力的新机制或者系统,我将其称之为ExoBrain -外脑。后文都用中文外脑来表述ExoBrain。配图01:ExoBrain Concept语言模型是心智界面对话是最简洁的人机界面,ChatGPT的流行让真正的人机对话成为了可能,现在Google的[Bard](https://bard.google.com/?ref=indigox.me),Anthropic的[Claude](https://claude.ai/?ref=indigox.me)还有inflection的[Pi.ai](https://pi.ai/?ref=indigox.me)都卷入了这场智能入口之争。这些语言模型除了可以用它们储备的全人类的知识库来响应我们的任何问题之外,还能够快速理解复杂的文档,生成想法甚至驱动其它的软件来自动化的完成任务,语言模型就是我们的心灵副驾(Mind Copilot),自然语言输入,自然语言输出。语言代表了人类的智能,当我们思考的时候实际上是在进行内心独白和基于语言的逻辑推理。同样,我们用和LLM之间的对话来实现快速理解,记忆唤起、想法连接和驱动外部软件自动完成工作,LLM就像一个智能引擎一样成为了我们和外脑之间的心智界面。容易唤醒的数字记忆

其他人在问
神经网络
神经网络是机器学习文献中的一类模型,受到生物神经网络的启发,是一种特定的算法,能应用于从输入到输出空间复杂映射的各类机器学习问题。 神经网络的发展历程如下: 早期,康奈尔航天实验室的 Mark I 感知机是第一台感知机的硬件,罗森布拉特用定制硬件的方法实现了感知机的想法,展示出它可对简单形状进行正确分类,自此机器学习问世。 神经网络本质上是多层感知机,在早期只有一层输出层。例如分辨手写数字时,输入是图像像素,有 10 个输出神经元,分别对应 10 个可能的数字,权值最高的和被视为正确输出。 神经网络的架构主要分为三类: 前馈神经网络:这是实际应用中最常见的类型。第一层是输入,最后一层是输出。若有多个隐藏层,则称为“深度”神经网络。各层神经元的活动是前一层活动的非线性函数。 循环网络:在连接图中有定向循环,可按箭头回到起始点。其动态复杂,训练难度大,但更具生物真实性。 Geoffrey Hinton 对神经网络的发展做出了重要贡献。早在 80 年代初期,他和同事开展研究时,因电脑性能限制成果有限,且当时 AI 主流研究方向不同,处境艰难。但他们坚持下来,到 2004 年创立了 Neural Computation and Adaptive Perception 项目。随着时间推移和计算机能力发展,神经网络更加快速、灵活、高效和可扩展。 神经网络可用于解决分类和回归等问题,在多个输出值的函数或具有多个类别的分类任务中,多输出函数能用位于同一层的多个感知机来学习。
2024-11-01
AIGC的底层科学原理是神经网络吗?
AIGC 的底层科学原理包含神经网络。 神经网络是一种模仿生物神经网络的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。它由大量的人工神经元联结进行计算,是一种自适应系统,具备学习功能。 在 AI 领域,神经网络是一种重要的技术。深度学习就是一种参照人脑结构,包含神经网络和神经元的方法(因层数较多而称为深度)。神经网络可以用于监督学习、无监督学习、强化学习等多种学习方式。 同时,Transformer 模型的出现也对 AIGC 产生了重要影响,它完全基于自注意力机制处理序列数据,比循环神经网络更适合处理文本的长距离依赖性。
2024-10-30
神经网络和深度学习简史
神经网络和深度学习有着丰富的发展历史: 1. 1958 年感知机神经网络诞生。 2. 70 年代经历了人工智能寒冬。 3. 1986 年 BP 算法让神经网络再度流行。 4. 尽管取得了一些成功,但在人工智能寒冬期间,用于神经网络研究的资金很少,人工智能一词近乎成为伪科学的代名词。 5. 1997 年,Hochreiter 和 Schmidhuber 为递归神经网络开发了长短期记忆(LSTM),但在当时被忽视。 6. 随着计算机变得更快和图形处理单元(GPU)的引入,神经网络逐渐与支持向量机相竞争。 7. 训练大型、深层网络存在梯度消失问题,解决方法包括逐层预训练,如 Schmidhuber 于 1992 年为递归神经网络开发的预训练方法,以及 Hinton 和 Salakhutdinov 于 2006 年为前馈网络开发的预训练方法。1997 年提出的长短期记忆(LSTM)也是解决递归神经网络中梯度消失问题的方案之一。
2024-10-23
AIGC如何处理情绪神经质问题
以下是关于 AIGC 处理情绪神经质问题的相关内容: Pink Piko 是一款互动心情跟踪应用,旨在将情绪反思日常化。应用中的角色 Piko Cat 会提出深刻问题,帮助用户了解自身情绪及其触发因素,还能识别日常活动对情绪状态的影响,清楚什么能让人振奋或沮丧。该应用运用人工智能技术,解读心情日志、标签和日记条目,提供清晰、个性化的情感洞察,超越传统的图表和图形,并结合积极心理学原则,通过规律性的反思和练习帮助增强情感韧性。
2024-09-13
神经网络的简单理解
神经网络是一种模仿生物神经网络结构和功能的数学模型或计算模型,用于分析图像、视频、音频和文本等复杂数据类型。 对于不同类型的数据有专门优化的神经网络,如分析图像时常用卷积神经网络,其模仿人脑处理视觉信息的方式。 在 2017 年推出 Transformer 之前,理解文本常用循环神经网络。而 Transformer 完全基于自注意力机制处理序列数据,比 RNN 更适合处理文本的长距离依赖性,在处理每个词时会注意输入序列里所有其他的词,并给予不同的注意力权重以捕获依赖关系和相关性,且具有自注意力机制和位置编码(因语言顺序很重要)。 神经网络由大量人工神经元联结进行计算,大多数情况下能在外界信息基础上改变内部结构,是一种自适应系统,具备学习功能。它是一种非线性统计性数据建模工具,通常通过基于数学统计学类型的学习方法得以优化,也是数学统计学方法的实际应用,能通过统计学方法让人 工神经网络具有类似人的简单决定和判断能力,这种方法比正式的逻辑学推理演算更具优势。 神经网络可用于监督学习、无监督学习、强化学习。
2024-09-06
卷积神经网络
卷积神经网络,也称为卷积网络,使用卷积层来过滤输入以获取有用信息。卷积层具有可学习的参数,能自动调整滤波器以提取对应任务的最有用特征。例如在一般目标识别中侧重对象形状信息,鸟类识别中更倾向于鸟的颜色信息,它会自动适配以找到最佳特征。 通常,多个卷积层依次作用,在每一层后对图像进行过滤,获取越来越多的抽象信息,形成层次特征。 卷积网络还常使用池层,以实现有限的平移和旋转不变性,即便对象出现在异常位置也能检测到,同时能减少内存消耗,从而支持使用更多卷积层。 近期的卷积网络采用初始模块,利用 1×1 卷积核进一步降低内存消耗并加快计算速度,提高训练效率。 例如在自动驾驶汽车场景中,可将驾驶员当前视野的图像输入到卷积神经网络,训练其预测下一个可能行动的奖励。相似状态的图像相似,行动也相似,网络能针对不同情况进行微调。 相关附加材料: 。 图 5 展示了一个交通标志的图像被 4 个 5×5 的卷积核过滤,生成 4 个特征图,再通过最大池化进行二次采样。下一层将 10 个 5×5 的卷积核应用于这些子采样图像,并再次将特征映射集中在一起。最后一层是完全连接的层,用于组合所有生成的特征并用于分类器(本质上是逻辑回归)。图像由提供。
2024-07-20
ai的底层逻辑是什么
AI 的底层逻辑包括以下几个方面: 1. 决策方面:AI 在越来越多的场景落地,成为企业管理和决策的重要工具。然而,AI 的决策过程并非真正的“理解”,而是基于复杂计算和模式匹配,其本质存在局限性,是个“黑盒”,输出结果可见但决策过程难以理解,这种不透明性给企业决策带来风险。 2. 大模型方面:大模型依靠概率计算逐字接龙工作,参数规模的增加使其实现量变到质变的突破,从而“涌现”出智能。大模型的知识是通过预训练预先学习和存储的,但在没有外部帮助时,其知识信息可能不完备和滞后。 3. 神经网络方面:计算机科学家以人脑神经元细胞结构为灵感,利用概览模型在计算机上实现对人脑结构的模仿,但大模型内部如同人类大脑一样是混沌系统,即使是开发者也无法解释其微观细节。
2024-11-13
ai的底层逻辑
AI 的底层逻辑主要涉及以下几个方面: 1. 大模型的底层原理: 大语言模型依靠概率计算逐字接龙的方式工作,平时看到的逐字输出并非特效,而是其真实的工作方式。 大模型参数规模的增加,如从 GPT1 的 1.5 亿到 GPT3.5 的 1750 亿,实现了量变到质变的突破,从而“涌现”出智能。这种“涌现”结构在人类的进化和个体学习成长中也存在。 预训练是大模型获取知识的方式,其需要大量时间和算力资源。在没有外部帮助的情况下,大模型的知识信息可能不完备且滞后。 GPT 是生成式预训练转换器模型(Generative Pretrained Transformer),生成式指大模型根据已有输入不断计算生成下一个字词,直至计算出概率最大时结束输出。 2. 必须理解的核心概念: LLM 是 Large language model 的缩写,即大语言模型。 Prompt 是提示词,即输入给大模型的文本内容,其质量会显著影响回答质量。 Token 是大模型语言体系中的最小单元,不同厂商对中文的切分方法不同,通常 1Token≈12 个汉字,大模型的收费和输入输出长度限制以 token 为单位。 上下文指对话聊天内容的前后信息,其长度和窗口会影响大模型回答质量。
2024-11-06
搭建一个数据解读的ai工具,文字描述要有逻辑性,符合金字塔原则
很抱歉,目前知识库中没有关于搭建一个数据解读的 AI 工具且文字描述要符合金字塔原则的相关内容。但一般来说,搭建这样一个工具需要以下几个关键步骤: 1. 明确数据来源和类型:确定您要处理的数据是来自数据库、文件、网络等,以及数据的格式和特点,例如结构化数据、非结构化数据等。 2. 选择合适的技术框架:根据需求和技术能力,选择适合的 AI 框架和工具,如 TensorFlow、PyTorch 等。 3. 数据预处理:对原始数据进行清洗、转换、归一化等操作,以提高数据质量和模型的训练效果。 4. 特征工程:提取有意义的特征,以便模型能够更好地理解和处理数据。 5. 选择模型:根据数据特点和任务需求,选择合适的 AI 模型,如决策树、神经网络等。 6. 训练模型:使用预处理后的数据对模型进行训练,并不断调整参数以优化性能。 7. 评估模型:使用合适的指标对训练好的模型进行评估,如准确率、召回率等。 8. 优化和改进:根据评估结果对模型进行优化和改进。 9. 设计文字描述逻辑:按照金字塔原则,先给出结论或主要观点,然后逐步展开支持性的细节和论据。 需要注意的是,这只是一个大致的框架,实际搭建过程中可能会遇到各种技术和业务上的挑战,需要不断探索和优化。
2024-11-03
生成逻辑图或结构图的工具
以下是一些可以用于绘制逻辑视图、功能视图和部署视图的工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,用户可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图创建,可与 Archi 工具配合使用,该工具提供图形化界面创建 ArchiMate 模型。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建相关视图。 6. draw.io(现称为 diagrams.net):免费的在线图表软件,允许创建各种类型图表,包括逻辑视图和部署视图。 7. PlantUML:文本到 UML 转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。 请注意,虽然这些工具可以辅助创建架构视图,但它们不都是基于 AI 的。AI 在绘图工具中的应用通常涉及到智能推荐布局、自动生成图表代码或识别图表中的模式和关系。在选择工具时,您应该考虑您的具体需求,比如是否需要支持特定的建模语言、是否需要与特定的开发工具集成、是否偏好在线工具或桌面应用程序等。
2024-11-03
我想让AI帮我润色两句话,让其符合科研论文的用语习惯,并且有逻辑,可以适当改变语序、及表达方式,也允许添加或删除部分内容,该怎么下指令
以下是关于让 AI 润色两句话使其符合科研论文用语习惯且有逻辑的指令建议: 首先,明确您要润色的两句话的具体内容,并清晰地向 AI 描述您的需求。例如:“请将以下两句话按照科研论文的用语习惯进行润色,使其逻辑清晰、表达准确。句子 1:。” 在指令中,可以强调一些具体的要求,比如:“适当调整语序和表达方式,在不改变原意的基础上,优化句子结构,使其更具学术性和专业性。” 同时,您还可以补充一些相关的背景信息或特定的学科领域,以便 AI 更好地理解您的需求并进行更精准的润色。 常见的适合文章润色的 AI 工具包括: 1. Wordvice AI:集校对、改写转述和翻译等功能于一体的 AI 写作助手,基于大型语言模型提供全面的英文论文润色服务。 2. ChatGPT:由 OpenAI 开发的大型语言模型,可用于学生和写作人员的多方面写作辅助。 3. Quillbot:人工智能文本摘要和改写工具,可用于快速筛选和改写文献资料。 4. HyperWrite:基于 AI 的写作助手和大纲生成器,可帮助用户在写作前进行头脑风暴和大纲规划。 5. Wordtune:AI 驱动的文本改写和润色工具,可以帮助用户优化文章的语言表达。 6. Smodin:提供 AI 驱动的论文撰写功能,可以根据输入生成符合要求的学术论文。 总的来说,这些 AI 工具涵盖了文章润色的各个环节,包括校对、改写、大纲生成、内容生成等,可以有效提高写作效率和质量。科研人员和学生可以根据自身需求选择合适的工具进行使用。
2024-10-20
AI搜索的底层逻辑是怎样的
AI 搜索的底层逻辑主要是“检索增强生成(RAG)”,具体包括以下步骤: 1. 检索(Retrieve):使用用户的查询(query)调用搜索引擎 API,获取搜索结果。 2. 增强(Augmented):设置提示词,将检索结果作为挂载的上下文。 3. 生成(Generation):大模型回答问题,并标注引用来源。 在检索过程中,还涉及以下原理: 1. 信息筛选与确认:对检索器提供的信息进行评估,筛选出最相关和最可信的内容,并验证信息的来源、时效性和相关性。 2. 消除冗余:识别和去除多个文档或数据源中的重复信息,避免在生成回答时出现重复或矛盾。 3. 关系映射:分析不同信息片段之间的逻辑和事实关系,如因果、对比、顺序等,构建结构化的知识框架。 4. 上下文构建:将筛选和结构化的信息组织成连贯的上下文环境,包括排序、归类和整合。 5. 语义融合:必要时合并意义相近但表达不同的信息片段,减少语义重复并增强表达力。 6. 预备生成阶段:将整合好的上下文信息编码成适合生成器处理的格式,如转化为适合输入到生成模型的向量形式。 最后,全新的上下文被传递给大语言模型,大语言模型根据提供的信息生成准确和连贯的答案。影响 AI 搜索的关键因素包括挂载的上下文信息密度和基座模型的智能程度。在响应速度方面,Retrieve 要求联网检索信息的速度快,Generation 要求大模型生成内容的速度快,同时为提高准确度可能存在耗时的重排和获取内容详情步骤。
2024-10-16