直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

文生图lora微调

回答

以下是关于文生图 lora 微调的详细内容:

定主题:明确您需要生成的图片的主题、风格和要表达的信息。

选择基础模型 Checkpoint:根据主题选择内容贴近的 checkpoint,如麦橘、墨幽的系列模型,如麦橘写实、麦橘男团、墨幽人造人等。

选择 lora:基于生成内容寻找重叠的 lora,以控制图片效果和质量,可参考广场上优秀帖子中使用的 lora。

ControlNet:可控制图片中特定图像,如人物姿态、生成特定文字或艺术化二维码等,属于高阶技能。

局部重绘:下篇再教。

设置 VAE:无脑选择 840000 即可。

Prompt 提示词:用英文写需求,使用单词和短语组合,不用管语法,单词、短语间用英文半角逗号隔开。

负向提示词 Negative Prompt:同样用英文写要避免的内容,单词和短语组合,用英文半角逗号隔开。

采样算法:一般选 DPM++ 2M Karras 较多,也可参考 checkpoint 详情页上模型作者推荐的采样器。

采样次数:选 DPM++ 2M Karras 时,采样次数通常在 30 - 40 之间。

尺寸:根据个人喜好和需求选择。

以下是一个简笔水彩风格插画的示例: 使用大模型“Flat - 2D Animerge”,适合生成卡通动漫图片,官方建议 CFG 值在 5 或 6(使用动态阈值修复可拉到 11)。搭配两个 lora,“Chinese painting style”可增加中国画水彩风格效果,权重设为 0.4;“Crayon drawing”可添加简单线条和小孩子笔触,权重设为 0.8。将图片丢到标签器中反推关键词,发送到“文生图”。在正向提示词末尾添加这两个 lora,尺寸按参考图设置,重绘幅度开 0.5 让 AI 更自由发挥,若想更接近原图可降低数值。将图放入 ControlNet 中,选择 tile 模型,权重为 0.5,控制模式选择“更注重提示词”。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

Tusiart简易上手教程

[title]Tusiart简易上手教程[heading1]简明操作流程[heading2]文生图定主题:你需要生成一张什么主题、什么风格、表达什么信息的图。选择基础模型Checkpoint:按照你需要的主题,找内容贴近的checkpoint。一般我喜欢用模型大佬麦橘、墨幽的系列模型,比如说麦橘写实、麦橘男团、墨幽人造人等等,效果拔群。选择lora:在你想要生成的内容基础上,寻找内容重叠的lora,帮助你控制图片效果及质量。可以多看看广场上做得好看的帖子里面,他们都在用什么lora。ControlNet:控制图片中一些特定的图像,可以用于控制人物姿态,或者是生成特定文字、艺术化二维码等等。也是高阶技能,后面再学不迟。局部重绘:下篇再教,这里不急。设置VAE:无脑选择前面提到的840000这个即可。Prompt提示词:用英文写你想要AI生成的内容,不用管语法也不要写长句,仅使用单词和短语的组合去表达你的需求。单词、短语之间用英文半角逗号隔开即可。负向提示词Negative Prompt:用英文写你想要AI避免产生的内容,也是一样不用管语法,只需单词和短语组合,中间用英文半角逗号隔开。采样算法:这玩意儿还挺复杂的,现在我一般选DPM++ 2M Karras比较多。当然,最稳妥的是留意checkpoint的详情页上,模型作者是否有推荐采样器,使用他们推荐的采样器会更有保障。采样次数:要根据你采样器的特征来,一般我选了DPM++ 2M Karras之后,采样次数在30~40之间,多了意义不大还慢,少了出图效果差。尺寸:看你喜欢,看你需求。

【SD】简笔水彩风格插画

[title]【SD】简笔水彩风格插画作者:白马少年介绍:SD实践派,出品精细教程发布时间:2023-06-20 20:04原文网址:https://mp.weixin.qq.com/s/TPSturdv9fdGRLAxEG2rKg今天给大家推荐一个大模型和lora的组合运用,可以生成一些类似简笔水彩风格的插画。首先是这个大模型“Flat-2D Animerge”,适合生成一些卡通动漫的图片。官方建议CFG值在5或6比较好。(如果使用动态阈值修复的话,可以拉到11)还有两个lora,一个是“Chinese painting style”,这个可以增加一些中国画水彩风格的效果。还有一个lora是“Crayon drawing”,它可以给画面添加一些简单的线条和小孩子的笔触。接下来,我们使用这三者的组合,将下面这张图片转换为简笔水彩风格吧。将图片丢到标签器中,反推出关键词,然后发送到“文生图”。在正向提示词的末尾,添加上这两个lora,“Chinese painting style”权重设置为0.4,“Crayon drawing”权重设置为0.8。尺寸按照参考图设置好,重绘幅度开0.5可以让AI更自由发挥一点,如果想和原图更接近,可以降低数值。将图放入controlnet中,选择tile模型,权重为0.5,控制模式选择“更注重提示词”。这里的权重主要会影响画面的复杂度,数值越高,细节越多,数值太低的话,会和图像差得比较远。点击生成,这样一幅简笔水彩风格的插画就完成了,是不是很治愈呢?

Liblibai简易上手教程

[title]Liblibai简易上手教程[heading1]简明操作流程[heading2]文生图定主题:你需要生成一张什么主题、什么风格、表达什么信息的图。(没错我是喜欢看plmm多点)选择Checkpoint:按照你需要的主题,找内容贴近的checkpoint。一般我喜欢用模型大佬麦橘、墨幽的系列模型,比如说麦橘写实、麦橘男团、墨幽人造人等等,效果拔群。选择lora:在你想要生成的内容基础上,寻找内容重叠的lora,帮助你控制图片效果及质量。可以多看看广场上做得好看的帖子里面,他们都在用什么lora。设置VAE:无脑选840000那一串就行。CLIP跳过层:设成2就行。Prompt提示词:用英文写你想要AI生成的内容,不用管语法也不要写长句,仅使用单词和短语的组合去表达你的需求。单词、短语之间用英文半角逗号隔开即可。负向提示词Negative Prompt:用英文写你想要AI避免产生的内容,也是一样不用管语法,只需单词和短语组合,中间用英文半角逗号隔开。采样方法:这玩意儿还挺复杂的,现在一般选DPM++ 2M Karras比较多。当然,最稳妥的是留意checkpoint的详情页上,模型作者是否有推荐采样器,使用他们推荐的采样器会更有保障迭代步数:要根据你采样器的特征来,一般我选了DPM++ 2M Karras之后,迭代步数在30~40之间,多了意义不大还慢,少了出图效果差。尺寸:看你喜欢,看你需求。生成批次:默认1批。

其他人在问
用 mj 做文生图,Prompt 模板
以下是使用 MJ 进行文生图的 Prompt 模板: 1. 定主题:明确您需要生成一张什么主题、什么风格、表达什么信息的图。 2. 选择基础模型 Checkpoint:按照主题,找内容贴近的 checkpoint。一般喜欢用模型大佬麦橘、墨幽的系列模型,如麦橘写实、麦橘男团、墨幽人造人等,效果较好。 3. 选择 lora:在想要生成的内容基础上,寻找内容重叠的 lora,以控制图片效果及质量。可多参考广场上好看的帖子中使用的 lora。 4. ControlNet:用于控制图片中特定的图像,如人物姿态、生成特定文字、艺术化二维码等,属于高阶技能,可后续学习。 5. 局部重绘:下篇再教。 6. 设置 VAE:无脑选择 840000 这个即可。 7. Prompt 提示词:用英文写想要 AI 生成的内容,使用单词和短语的组合,不用管语法,单词、短语之间用英文半角逗号隔开。 8. 负向提示词 Negative Prompt:用英文写想要 AI 避免产生的内容,同样不用管语法,只需单词和短语组合,中间用英文半角逗号隔开。 9. 采样算法:较复杂,一般选 DPM++ 2M Karras 较多。最稳妥的是留意 checkpoint 的详情页上模型作者是否有推荐采样器,使用推荐的采样器更有保障。 10. 采样次数:根据采样器特征,选 DPM++ 2M Karras 后,采样次数一般在 30 40 之间,多了意义不大且慢,少了出图效果差。 11. 尺寸:根据个人喜好和需求选择。 另外,使用 Stability AI 基于 Discord 的媒体生成和编辑工具进行文生图时: 1. 点击链接进入官方 DISCORD 服务器:https://discord.com/invite/stablediffusion 。 2. 进入 ARTISAN 频道,任意选择一个频道。 3. 输入/dream 会提示没有权限,点击链接,注册登录,填写信用卡信息以及地址,点击提交,会免费试用三天,三天后开始收费。 4. 输入/dream 提示词,这部分和 MJ 类似。 5. 和 MJ 手工输入参数不同,可选参数有五类: prompt:提示词,正常文字输入,必填项。 negative_prompt:负面提示词,填写负面提示词,选填项。 seed:种子值,可以自己填,选填项。 aspect:长宽比,选填项。 model:模型选择,SD3,Core 两种可选,选填项。 Images:张数,1 4 张,选填项。完成后选择其中一张。 在 MJ 应用篇儿童绘本制作、人物一致性方面: 1. 生成人物图片:确定人物形象,如“a little girl wearing a yellow floral skirt + 人物动作 + 风格词”,在 mj 中生成直到得到满意的人物图像。垫图 URL + “In the forest,a little girl wearing a yellow floral skirt is playing happily,super high details,HDsmooth,by Jon Burgerman,s 400 ar 3:4 niji 5 style expressive iw 2”,iw 取值范围,不填写默认 iw = 1,iw 值越大越接近垫的图像,反之更接近提示词。为确保人物一致性,取 iw 2 。 2. 合成人物和场景,垫图并重新生成:使用 PS 或者 Canva 将人物和场景合成到一张图,若色调不和谐(若画面和谐或 PS 技术足够,也可不用图生图),将合成后的图作为垫图(iw 2),mj 重新生图,如“prompt:垫图 url + Little girl wearing a yellow floral skirt,and her friend brown bear,taking shelter in the cave,rainstorm,super high details,HDsmooth,by Jon Burgerman,s 400 ar 3:4 niji 5 style expressive iw 2”。 3. 绘本展示。
2024-11-15
文生图的 Prompt 模板
以下是关于文生图的 Prompt 模板的相关内容: 通常描述逻辑包括人物及主体特征(如服饰、发型发色、五官、表情、动作),场景特征(如室内室外、大场景、小细节),环境光照(如白天黑夜、特定时段、光、天空),画幅视角(如距离、人物比例、观察视角、镜头类型),画质(如高画质、高分辨率),画风(如插画、二次元、写实)。通过这些详细的提示词,能更精确地控制 Stable Diffusion 的绘图。 对于新手,有功能型辅助网站帮助书写提示词,如 http://www.atoolbox.net/ ,可通过选项卡方式快速填写关键词信息;https://ai.dawnmark.cn/ ,每种参数有缩略图参考,方便直观选择提示词。还可以去 C 站(https://civitai.com/)抄作业,复制每一张图的详细参数并粘贴到正向提示词栏,然后点击生成按钮下的第一个按键,不过要注意图像作者使用的大模型和 LORA,不然即使参数一样,生成的图也会不同,也可只取其中较好的描述词使用。 在 Tusiart 中,文生图的操作流程如下: 定主题:确定要生成的图的主题、风格和表达的信息。 选择基础模型 Checkpoint:找内容贴近主题的 checkpoint,如麦橘、墨幽的系列模型。 选择 lora:寻找内容重叠的 lora 控制图片效果及质量。 ControlNet:控制图片中特定的图像,如人物姿态、特定文字、艺术化二维码等。 设置 VAE:无脑选择 840000 。 Prompt 提示词:用英文写需求,单词和短语组合,用英文半角逗号隔开,不用管语法和长句。 负向提示词 Negative Prompt:用英文写要避免的内容,单词和短语组合,用英文半角逗号隔开。 采样算法:如选 DPM++ 2M Karras,留意 checkpoint 详情页上模型作者推荐的采样器。 采样次数:根据采样器特征,如选 DPM++ 2M Karras 采样次数在 30 40 之间。 尺寸:根据喜好和需求选择。 在一些提示词中,括号和“:1.2”等是用来增加权重的,权重越高在画面中体现越充分,提示词的先后顺序也会影响权重。同时还有反向提示词,告诉 AI 不要的内容。
2024-11-15
请推荐一下文生PPT好用的免费软件
以下为您推荐几款文生 PPT 好用的免费软件: 1. 歌者 PPT(gezhe.com): 功能:话题生成(一键生成 PPT 内容)、资料转换(支持多种文件格式转 PPT)、多语言支持(生成多语言 PPT)、模板和案例(海量模板和案例库)、在线编辑和分享(生成结果可自由编辑并在线分享)、增值服务(自定义模板、字体、动效等)。 产品优势:免费使用(所有功能永久免费)、智能易用(通过 AI 技术简化 PPT 制作流程,易于上手)、海量案例(大量精美模板和优秀案例可供选择和下载)、资料转 PPT 很专业(支持多种文件格式,转换过程中尊重原文内容)、AI 翻译(保持 PPT 原始排版不变,多语言在线即时翻译)。 推荐理由:完全免费,智能化程度高,模板和案例库丰富,对多语言支持好,适合不太擅长制作 PPT 或者时间紧张的人群。 2. Gamma: 作为在各种交流群中频繁推荐的产品,以其卓越的性能和用户体验赢得广泛认可。免费版本也能生成质量非常高的 PPT,随着不断优化和改进,能满足大多数用户的需求。个人使用体验良好,生成效果令人满意,在内容组织、设计美观度和整体专业感方面表现出色。 目前市面上大多数 AI 生成 PPT 按照以下思路完成设计和制作: 1. AI 生成 PPT 大纲 2. 手动优化大纲 3. 导入工具生成 PPT 4. 优化整体结构 推荐 2 篇市场分析的文章供参考: 1. 《》 2. 《》 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-13
论文全文生成摘要
以下是关于您问题的回答: “Chain of Density”(CoD)是一种通过建立一系列相互关联的紧密提示来指导 AI 生成具体和连续输出的方法。它由美国哥伦比亚大学、麻省理工和 Salesforce 公司的研究人员共同发表。具体来说,是使用 GPT4 生成初始的稀疏摘要,然后通过迭代加入缺失的重要内容,在不增加摘要长度的情况下,添加更多实体信息,让摘要更具细节和丰富性、可读性及抽象性。这些提示相互链接,形成一个“密度链”,更有针对性地引导 AI 达到预期的输出。论文以“如何从文章提炼萃取出最合适的摘要”为重点,发布后有网友实测将 CoD 提示法用于翻译,翻译质量有飞跃提升。 在论文写作方面,有以下常用的 AI 工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,自动提取文献信息,帮助管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,精简和优化内容。 3. 研究和数据分析: Google Colab:提供云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,进行复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 使用这些工具时,要结合自身写作风格和需求,选择最合适的辅助工具。需注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-12
文生图
以下是关于文生图的相关知识: 简明操作流程: 定主题:明确生成图片的主题、风格和要表达的信息。 选择基础模型 Checkpoint:根据主题选择贴近的模型,如麦橘、墨幽的系列模型。 选择 lora:寻找与生成内容重叠的 lora 以控制图片效果和质量。 ControlNet:可控制图片中特定图像,如人物姿态、特定文字等,属于高阶技能。 局部重绘:下篇再教。 设置 VAE:可无脑选择 840000。 Prompt 提示词:用英文写需求,单词和短语组合,用英文半角逗号隔开。 负向提示词 Negative Prompt:用英文写避免产生的内容,单词和短语组合,用英文半角逗号隔开。 采样算法:一般选 DPM++ 2M Karras,也可参考模型作者推荐的采样器。 采样次数:选 DPM++ 2M Karras 时,一般在 30 40 次。 尺寸:根据需求和喜好选择,注意尺寸并非越大越好。 提示词写作: 分为内容型提示词和标准化提示词,内容型提示词用于描述想要的画面。 例如选择 anythingV5 模型,输入“1 个女孩,黑发,长发,校服,向上看,短袖,粉红色的花,户外,白天,蓝色的天空,云,阳光,上身,侧面”等描述,并翻译成英文。 采样迭代步数通常控制在 20 40 之间。 常用采样方法有 Euler a、DPM++2S a Karras、DPM++2M Karras、DPM++ SDE Karras、DDIM 等,有的模型有指定算法,搭配使用效果更好。 比例设置为 800:400,高宽比尽量接近 512x512,太大的数值可能导致奇怪构图,如需高清图可使用高清修复放大图像倍率。 常见工具: DALL·E:OpenAI 推出,可根据文本描述生成逼真图片。 StableDiffusion:开源,能生成高质量图片,支持多种模型和算法。 MidJourney:图像生成效果好,界面用户友好,在创意设计人群中流行。 更多工具可在 WaytoAGI 网站(https://www.waytoagi.com/category/104 )查看。
2024-11-12
文生图?
以下是关于文生图的详细介绍: 定主题:明确您想要生成的图片的主题、风格和表达的信息。 选择基础模型 Checkpoint:根据主题选择贴近的模型,如麦橘、墨幽的系列模型,如麦橘写实、麦橘男团、墨幽人造人等。 选择 lora:寻找与生成内容重叠的 lora,以控制图片效果和质量,可参考广场上优秀帖子中使用的 lora。 ControlNet:用于控制图片中的特定图像,如人物姿态、生成特定文字或艺术化二维码等,属于高阶技能。 设置 VAE:一般选择 840000 即可。 Prompt 提示词:用英文书写想要 AI 生成的内容,使用单词和短语组合,无需考虑语法,用英文半角逗号隔开。 负向提示词 Negative Prompt:同样用英文书写想要 AI 避免产生的内容,单词和短语组合,用英文半角逗号隔开。 采样算法:常用 DPM++ 2M Karras,也可参考 checkpoint 详情页上模型作者推荐的采样器。 采样次数:使用 DPM++ 2M Karras 时,采样次数一般在 30 40 之间。 尺寸:根据个人喜好和需求选择。 对于提示词,分为内容型提示词和标准化提示词,用于描述想要的画面。采样迭代步数通常控制在 20 40 之间,步数越高绘画越清晰但速度越慢。采样方法常用的有 Euler a、DPM++2S a Karras、DPM++2M Karras、DPM++ SDE Karras、DDIM,部分模型有指定算法,搭配效果更佳。比例设置为 800:400,尺寸并非越大越好,模型练图多基于 512x512 框架,过大尺寸可能导致奇怪构图,若想要高清图,可使用高清修复功能放大图像倍率,同时注意控制画面比例。
2024-11-12
lora是什么
Lora 全称 LowRank Adaptation Models,即低阶自适应模型。它的作用在于影响和微调画面,能够再现人物或物品的特征。大模型的训练通常复杂且对电脑配置要求高,而 LoRA 采用在原模型中插入新的数据处理层的方式,避免了修改原有模型参数。LORA 模型训练是用特定特征替换大模型中的对应元素,从而生成不同于底模的图片。Lora 训练较为轻量化,所需显存较少,硬件门槛显存达到 6G 即可开启训练。例如,有利用新版 SDXL 生成的如针线娃娃的 lora,还有如“KIDS ILLUSTRATION”这样用于生成儿童绘本风格插画的 lora 等。
2024-11-01
Lora模型训练数据集
以下是关于 Lora 模型训练数据集的相关内容: 创建数据集: 1. 进入厚德云模型训练数据集(https://portal.houdeyun.cn/sd/dataset)。 2. 在数据集一栏中,点击右上角创建数据集,输入数据集名称。 3. 可以上传包含图片+标签 txt 的 zip 文件,也可以只有图片(之后可在 c 站使用自动打标功能),还可以一张一张单独上传照片,但建议提前把图片和标签打包成 zip 上传。 4. Zip 文件里图片名称与标签文件应当匹配,例如:图片名“1.png”,对应的达标文件就叫“1.txt”。 5. 上传 zip 以后等待一段时间,确认创建数据集。返回到上一个页面,等待一段时间后上传成功,可以点击详情检查,能预览到数据集的图片以及对应的标签。 Lora 训练: 1. 点击 Flux,基础模型会默认是 FLUX 1.0D 版本。 2. 选择数据集,点击右侧箭头,会跳出所有上传过的数据集。 3. 触发词可有可无,取决于数据集是否有触发词。模型效果预览提示词则随机抽取一个数据集中的标签填入即可。 4. 训练参数这里可以调节重复次数与训练轮数,厚德云会自动计算训练步数。如果不知道如何设置,可以默认 20 重复次数和 10 轮训练轮数。 5. 可以按需求选择是否加速,点击开始训练,会显示所需要消耗的算力。然后等待训练,会显示预览时间和进度条。训练完成会显示每一轮的预览图。鼠标悬浮到想要的轮次模型,中间会有个生图,点击会自动跳转到使用此 lora 生图的界面。点击下方的下载按钮则会自动下载到本地。 用 SD 训练一套贴纸 LoRA 模型的工作流: 1. 原始形象:MJ 初步产出符合设计想法的贴纸原始形象。 2. 二次加工:完成贴纸的白色边线等细节加工。 3. 处理素材:给训练集图片打 tag,修改 tag。 4. 训练模型:将上述处理好的数据集做成训练集,进行训练。 用 SD 训练一套贴纸 LoRA 模型的原始形象:MJ 关键词: A drawing for a rabbit stickers,in the style of hallyu,screenshot,mori kei,duckcore plush doll art exaggerated poses,cry/happy/sad/...ar 3:4 niji 5 style cute s 180 。会得到不同风格的贴图,我们可以先看看自己喜欢哪一种。出图过程可以有意识地总结这一类贴图的特征,比如都是可爱的兔子,有不同的衣服和头饰,都有一双大大的卡通眼睛,会有不同的面部表情。 注意事项: 1. 关键词中限制了颜色,因此 MJ 生成的图片会一种情绪对应一种颜色,所以同一种情绪最好多生成几张不同色系的,可以减少后续训练中模型把情绪和颜色做挂钩(如果需要这样的话,也可以反其道而行之)。 2. 数据集中正面情绪与负面情绪最好比例差不多,如果都是正面积极的,在出一些负面情时(sad,cry)的时候,可能会出现奇怪的问题(如我们训练的是兔子形象,但 ai 认知的 sad 可能是人的形象,可能会出现人物特征)。 3. 如果训练 256266 大小的表情包,这样的素材就已经够用了。如果要训练更高像素的图片,则需要进一步使用 MJ 垫图和高清扩展功能。 高清化: 左(256)→右(1024),输入左图,加入内容描述,加入风格描述,挑选合适的,选出新 30 张图片(卡通二次元类型的 lora 训练集 30 张差不多,真人 60100 张)。
2024-10-22
Lora模型训练
以下是关于 Lora 模型训练的相关内容: 一、用 SD 训练一套贴纸 LoRA 模型的要点 1. 训练数据集准备:包括训练素材处理、图像预处理、打标优化。 2. 训练环境参数配置:选择本地或云端训练环境,进行训练环境配置和训练参数配置。 3. 模型训练:基于 kohyass 训练模型。 4. 模型测试:通过 XYZ plot 测试模型。 二、郑敏轩:Flux 的 Lora 模型训练 1. 所需模型下载:t5xxl_fp16.safetensors、clip_l.safetensors、ae.safetensors、flux1dev.safetensors。 注意事项: 不使用时,模型放置位置不限,只要知道路径即可。 训练时,建议使用 flux1dev.safetensors 版本的模型和 t5xxl_fp16.safetensors 版本的编码器。 2. 下载脚本: 夸克网盘链接:https://pan.quark.cn/s/ddf85bb2ac59 百度网盘链接:https://pan.baidu.com/s/1pBHPYpQxgTCcbsKYgBi_MQ?pwd=pfsq 提取码:pfsq 三、100 基础训练大模型 1. 步骤一·创建数据集 进入厚德云模型训练数据集:https://portal.houdeyun.cn/sd/dataset 在数据集一栏中,点击右上角创建数据集,输入数据集名称。 可以上传包含图片+标签 txt 的 zip 文件,也可以只有图片(之后可在 c 站使用自动打标功能),或者一张一张单独上传照片。 Zip 文件里图片名称与标签文件应当匹配,例如:图片名"1.png",对应的达标文件就叫"1.txt"。 上传 zip 以后等待一段时间,确认创建数据集,返回到上一个页面,等待一段时间后上传成功,可点击详情检查,预览数据集的图片以及对应的标签。 2. 步骤二·Lora 训练 点击 Flux,基础模型会默认是 FLUX 1.0D 版本。 选择数据集,点击右侧箭头,选择上传过的数据集。 触发词可有可无,取决于数据集是否有触发词。 模型效果预览提示词则随机抽取一个数据集中的标签填入即可。 训练参数可调节重复次数与训练轮数,厚德云会自动计算训练步数,若不知如何设置,可默认 20 重复次数和 10 轮训练轮数。 可按需求选择是否加速,点击开始训练,会显示所需要消耗的算力,然后等待训练,会显示预览时间和进度条。 训练完成后会显示每一轮的预览图,鼠标悬浮到想要的轮次模型,中间会有个生图,点击会自动跳转到使用此 lora 生图的界面。点击下方的下载按钮则会自动下载到本地。
2024-10-22
使用人物Lora生成的图片中有多个人物时,怎么让人物的形象各不相同?
在 Stable Diffusion 中,若使用人物 Lora 生成的图片中有多个人物并想让人物形象各不相同,可参考以下方法: 1. 在提示词中输入数量词(如 2girls 或 3boys 等),再加上各自的描述提示词。若刷图成功率不高,可配合 openpose 控制,做一个多人骨架,以生成多人物构图。 2. 需使用不同的 Lora 来区分人物,但单纯靠提示词可能行不通。 3. 分区控制思路: Multidiffusion 的做法:启用 Tiled Diifusion,打开分区提示词控制,创建文生图画布。启用不同区域,分别填写背景、不同人物的描述词和 Lora。增加 controlnet 的 openpose 控制来稳定人物,但可能存在分区生成的人物连续性低、lora 控制不强等问题。 Latent Couple 的做法(文中未提及,需进一步探索)。 此外,关于 Lora 模型: 1. Lora 可以固定照片的特征,如人物特征、动作特征和照片风格。 2. 点击“生成”下面的第三个按钮,找到 Lora 选项,可添加下载保存到电脑的 Lora 模型,Lora 可叠加使用,但新手不建议使用太多,且 Lora 之间用英文逗号隔开,每个 Lora 后面的数字用于调整权重,一般只会降低权重。选择 Lora 应根据最初想要生成的照片类型决定。
2024-09-27
AI 增量训练 Lora
以下是关于 AI 增量训练 Lora 的相关知识: 参数理解: 1. 学习步数:指 AI 对每张图片的学习次数。二次元图片的 repeat 一般在 10 15,写实人物图片的 repeat 一般在 30 50,真实世界的景观场景可能要达到 100。理论上讲,图片精细度越高,学习步数越高。 2. 循环次数:AI 将所有图片按照学习步数学习一轮为一次循环,循环次数一般在 10 20 之间。次数并非越多越好,过多会导致过拟合,即画什么都和样图一样。 3. 效率设置:主要控制电脑的训练速度。可保持默认值,也可根据电脑显存微调,但要避免显存过载。 总的训练步数为:图片张数×学习步数×循环次数。 此外,沃尔夫勒姆提到人工智能是基于机器学习(通常通过神经网络实现),根据给出的示例进行增量训练,且这些示例包括大量人类生成的科学文本等,或者关于世界上发生的事情的实际经验。
2024-09-13
Lora简单介绍
Lora 全称 LowRank Adaptation Models,即低阶自适应模型,其作用在于影响和微调画面,能够再现人物或物品的特征。大模型的训练通常复杂且对电脑配置要求高,而 LoRA 采用在原模型中插入新的数据处理层的方式,避免了修改原有模型参数。LORA 模型训练是用特定特征替换大模型中的对应元素,从而生成不同于底模的图片,比如固定的人物相貌、特定的服装或者特定的风格。Lora 训练较为轻量化,所需显存较少,硬件门槛显存达到 6G 即可开启训练。 同时,模型微调方面,提供了 LoRA 微调和全量参数微调代码,关于 LoRA 的详细介绍可参考论文“。 此外,还有利用新版 SDXL 生成的如针线娃娃这样的 lora,它可以把一些常见形象制作成毛线编制的样子,需要使用 SDXL1.0 的模型,触发词是 BJ_Sewing_doll。
2024-09-09
大模型微调
大模型微调是在较小的、特定领域的数据集上继续大模型的训练过程,具有重要意义和多种方式: 意义: 提高模型在特定任务中的性能:可以输入更多示例,经过微调的模型在特定任务中表现更好,但可能会失去一些通用性。 提高模型效率:实现更低的延迟和成本,可通过专门化模型使用更小的模型,以及舍弃示例或指令来改善。 方式: 从参数规模的角度,分为全量微调 FFT(Full Fine Tuning)和 PEFT(ParameterEfficient Fine Tuning)。全量微调是对全量的模型参数进行全量的训练,而 PEFT 只对部分模型参数进行训练。从成本和效果综合考虑,PEFT 是目前业界较流行的微调方案。 对于 Llama3 的微调,需要下载数据集,如可参考文档: 。有了数据集后,将其上传到服务器,编写并执行微调代码,大概 15 分钟左右可完成微调。 此外,通俗来讲,大模型是输入大量语料,让计算机获得类似人类的“思考”能力,能进行文本生成、推理问答、对话、文档摘要等工作。大模型的训练、使用过程可类比上学参加工作:找学校(需要大量 GPU 进行训练)、确定教材(需要大量数据)、找老师(选择合适算法)、就业指导(即微调)、搬砖(推导)。在 LLM 中,Token 被视为模型处理和生成的文本单位,会对输入进行分词并数字化形成词汇表。 OpenAI 官方微调教程:
2024-11-16
我想了解一下关于模型微调的知识
以下是关于模型微调的知识: 介绍:微调可让您从 API 提供的模型中获得更多收益,比如比即时设计更高质量的结果、能够训练比提示中更多的例子、由于更短的提示而节省了 Token、更低的延迟请求。GPT3 已在大量文本上预训练,微调通过训练更多示例改进小样本学习,让您在大量任务中取得更好结果。对模型微调后,无需在提示中提供示例,可节省成本并降低延迟。在高层次上,微调涉及准备和上传训练数据、训练新的微调模型、使用微调模型。 哪些模型可以微调:微调目前仅适用于以下基础模型:davinci、curie、babbage 和 ada。还可以继续微调微调模型以添加其他数据,无需从头开始。 微调的概念和意义:在人工智能领域,通常根据应用领域将大模型分为通用大模型和领域特定模型。通用大模型如 GPT4.0、GPT3.5 等具有广泛的自然语言理解能力,但在特定领域表现可能不理想。对大模型针对特定领域进行的训练过程称为微调,通过在特定领域数据上训练,优化所有层参数,提高在该领域的专业性。微调可节省成本、加快模型部署和应用速度。 相关应用开发:除了调用 ChatGPT 之外,还需学会模型微调、设计 Prompt、优化用户交互的解决方案等。在开发中,程序读取结构化数据,如 JSON 格式。通过稳定的提示词设计及一些模型参数(如温度 Temperature 等)来让 ChatGPT 保持稳定输出。
2024-11-12
如何做大模型的云端部署与微调
做大模型的云端部署与微调,主要包括以下步骤: 1. 选择合适的部署方式: 本地环境部署。 云计算平台部署。 分布式部署。 模型压缩和量化。 公共云服务商部署。需根据自身的资源、安全和性能需求进行选择。 2. 准备训练所需的数据和计算资源: 确保有足够的训练数据覆盖目标应用场景。 准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础: 可以使用开源的预训练模型如 BERT、GPT 等。 也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练: 根据具体应用场景对预训练模型进行微调训练。 优化模型结构和训练过程以提高性能。 5. 部署和调试模型: 将训练好的模型部署到生产环境。 对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护: 大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 例如,对于 SDXL 的大模型,本地部署时要注意模型分为 base+refiner 以及配套的 VAE 模型,需将其放入对应文件夹,并在秋叶启动器中将 webUI 的版本升级到 1.5 以上。而对于 Llama3 的部署和微调,实操分两部分,包括本地部署并通过 webdemo 对话,以及使用特定数据集进行微调,具体流程为购买服务器、安装代码环境、下载通用模型和数据集、挑选微调框架、编写微调程序和验证结果。 总的来说,部署和微调大模型需要综合考虑多方面因素,根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。
2024-10-26
使用主模型及微调模型进行图像生成的过程是什么?
使用主模型及微调模型进行图像生成的过程通常包括以下步骤: 1. 对于像 Video LDM 这样的模型,首先训练一个 LDM(隐扩散模型)图像生成器。 2. 以 OpenAI 的文本到图像模型为例,在大量由图像和描述图像的文本组成的数据集上进行训练。训练时,先将字符串用分词器分解为离散的 token,通过最大化似然函数构建文本语言模型,然后对图像进行调整将其转换为描述生成器。 3. 为改进在图像生成数据集上的描述效果,对描述生成器进行微调。例如,OpenAI 构建小规模描述数据集来描述图像主对象,诱导模型偏向于描述主对象,此为“短合成描述”;或者创建更长、更丰富的文本数据集来描述图像内容。 4. 对于视频生成,如 Video LDM 向解码器添加额外的时间层,并使用用 3D 卷积构建的逐块时间判别器在视频数据上进行微调,同时编码器保持不变,以实现时间上一致的重建。类似于 Video LDM,Stable Video Diffusion(SVD)也是基于 LDM,在每一个空间卷积和注意力层之后插入时间层,并在整个模型层面上执行微调。 5. 在视频生成的微调过程中,长度为 T 的输入序列会被解释成用于基础图像模型的一批图像,然后再调整为用于时间层的视频格式。其中有 skip 连接通过学习到的融合参数导向时间层输出和空间输出的组合。在实践中,实现的时间混合层有时间注意力和基于 3D 卷积的残差模块等。但 LDM 的预训练自动编码器存在只能看见图像、永远看不见视频的问题,直接用于生成视频会产生闪动伪影和时间一致性差的情况,所以需要进行上述微调操作。
2024-10-19
推荐一下国内可以通过对话微调的预训练模型
以下是为您推荐的国内可以通过对话微调的预训练模型相关信息: 为优化 Llama2 的中文能力,可使用以下数据: 网络数据:互联网上公开的网络数据,包括百科、书籍、博客、新闻、公告、小说等高质量长文本数据。 :中文 Wikipedia 的数据。 :中文悟道开源的 200G 数据。 :Clue 开放的中文预训练数据,经过清洗后的高质量中文长文本数据。 竞赛数据集:近年来中文自然语言处理多任务竞赛数据集,约 150 个。 :MNBVC 中清洗出来的部分数据集。 社区提供预训练版本 Atom7B 和基于 Atom7B 进行对话微调的模型参数供开放下载,关于模型的进展详见社区官网 https://llama.family。 另外,关于会话补全(Chat completions): gpt3.5turbo 和 textdavinci003 两个模型能力相似,但前者价格只是后者的十分之一,在大部分情况下更推荐使用 gpt3.5turbo。 gpt3.5turbo 模型不支持微调。从 2023 年 3 月 1 日起,只能对基于 GPT3.5 的模型进行微调。有关如何使用微调模型的更多细节,请参阅微调指南。 从 2023 年 3 月 1 日起,OpenAI 会将您通过 API 发送的数据保留 30 天但不会使用这些数据来提升模型。 关于安仔:Coze 全方位入门剖析 免费打造自己的 AI Agent(国内版): 目前国内版暂时只支持使用“云雀大模型”作为对话引擎,其携带上下文轮数默认为 3 轮,可修改区间是 0 到 30,具体轮数可根据业务需求决定。 在 Bot 编排页面的“技能”区域,可为 Bot 配置所需技能。不懂插件时,可选择区域右上角的“优化”按钮让 AI Bot 根据提示词自动选择插件。也可自定义添加所需插件,点击插件区域的“+”号选择加入具体插件。 在 Bot 编排页面的“预览与调试”区域,可测试 Bot 是否按预期工作,可清除对话记录以开始新的测试,确保 Bot 能理解用户输入并给出正确回应。
2024-10-18
推荐一下个人可以使用的通过对话微调的模型
以下是一些个人可以使用的通过对话微调的模型相关信息: 会话补全(Chat completions): GPT3.5 系列中,gpt3.5turbo 和 textdavinci003 有相似能力,但 gpt3.5turbo 价格仅为 textdavinci003 的十分之一,在多数情况下更推荐使用 gpt3.5turbo。不过,gpt3.5turbo 不支持微调,从 2023 年 3 月 1 日起,只能对基于 GPT3.5 的模型进行微调。 微调(Finetuning): 案例研究: 客户支持聊天机器人:通常包含相关上下文、对话摘要及最近消息,可能需要几千个示例处理不同请求和客户问题,建议审查对话样本确保代理消息质量,可使用单独文本转换微调模型生成摘要。 基于技术属性列表的产品描述:将输入数据转换为自然语言很重要,确保完成基于所提供描述,若常查阅外部内容,自动添加此类内容可提高性能,若描述基于图像,提取图像文本描述可能有帮助。 模型(Models): GPT3.5 模型可理解和生成自然语言或代码,其中功能最强大、最具成本效益且针对聊天优化的型号是 gpt3.5turbo,建议使用它而非其他 GPT3.5 模型,因其成本更低。 gpt3.5turbo:功能强大,针对聊天优化,成本低,会使用最新模型迭代更新,最大 Token 数 4096,训练数据截至 2021 年 9 月。 gpt3.5turbo0301:2023 年 3 月 1 日的快照,不会更新,仅在 2023 年 6 月 1 日结束的三个月内提供支持,最大 Token 数 4096,训练数据截至 2021 年 9 月。 textdavinci003:能完成任何语言任务,支持文本中插入补全,最大 Token 数 4097,训练数据截至 2021 年 6 月。 textdavinci002:与 textdavinci003 类似,使用监督微调而非强化学习训练,最大 Token 数 4097,训练数据截至 2021 年 6 月。 codedavinci002:针对代码完成任务优化,最大 Token 数 8001,训练数据截至 2021 年 6 月。 请注意,OpenAI 模型具有不确定性,相同输入可能产生不同输出,将温度设置为 0 可使输出大部分具有确定性,但可能仍有少量可变性。
2024-10-18