Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

关于text2sql的prompt

Answer

以下是一些推荐的 text2sql 相关的 AI 工具及其链接:

  • Text2SQL:将英文转换为 SQL 查询。链接:https://toolske.com/text2sql/?ref=theresanaiforthat
  • ai2sql:高效且无错误的 SQL 构建器。链接:https://www.ai2sql.io/
  • EverSQL:从 SQL 查询翻译英文文本。链接:https://www.eversql.com/sql-to-text/
  • SupaSQL:从 NLP 生成 SQL 查询。链接:https://supasql.com/
  • SQLgenius:使用自然语言的 SQL 查询生成器。链接:https://sqlgenius.app/
  • SQL Chat:与数据库进行自然语言聊天的 SQL 客户端。链接:https://www.sqlchat.ai/
  • SQL Ease:从自然语言输入生成 SQL 查询。链接:https://sqlease.buildnship.in/
  • Talktotables:翻译和查询数据库。链接:https://talktotables.com/

此外,还有以下几个知名的 text2sql 项目:

  • SQLNet:一个使用深度学习方法解决 text2sql 任务的项目。
  • Seq2SQL:一个将自然语言转换为 SQL 查询的序列到序列模型。
  • Spider:一个大规模的 text2sql 数据集及其相关的挑战。
Content generated by AI large model, please carefully verify (powered by aily)

References

数据分析工具集

[title]数据分析工具集以下是一些推荐的text2sql相关的AI工具及其链接:Text2SQL -将英文转换为SQL查询。链接:https://toolske.com/text2sql/?ref=theresanaiforthatai2sql -高效且无错误的SQL构建器。链接:https://www.ai2sql.io/EverSQL -从SQL查询翻译英文文本。链接:https://www.eversql.com/sql-to-text/SupaSQL -从NLP生成SQL查询。链接:https://supasql.com/SQLgenius -使用自然语言的SQL查询生成器。链接:https://sqlgenius.app/SQL Chat -与数据库进行自然语言聊天的SQL客户端。链接:https://www.sqlchat.ai/SQL Ease -从自然语言输入生成SQL查询。链接:https://sqlease.buildnship.in/Talktotables -翻译和查询数据库。链接:https://talktotables.com/我建议查看以下几个知名的text2sql项目:SQLNet -一个使用深度学习方法解决text2sql任务的项目。Seq2SQL -一个将自然语言转换为SQL查询的序列到序列模型。Spider -一个大规模的text2sql数据集及其相关的挑战

Others are asking
用文生图来画插画风格的系统流程图、概念图有哪些快速上手的prompt、平台和教程
以下是关于用文生图来画插画风格的系统流程图、概念图的快速上手的 prompt、平台和教程: 平台:Tusiart Prompt 提示词: 用英文写您想要 AI 生成的内容,不用管语法,仅使用单词和短语的组合去表达需求,单词、短语之间用英文半角逗号隔开。 描述逻辑通常包括人物及主体特征(服饰、发型发色、五官、表情、动作),场景特征(室内室外、大场景、小细节),环境光照(白天黑夜、特定时段、光、天空),画幅视角(距离、人物比例、观察视角、镜头类型),画质(高画质、高分辨率),画风(插画、二次元、写实)。 教程: 1. 定主题:确定您需要生成的图的主题、风格和要表达的信息。 2. 选择基础模型 Checkpoint:按照主题找内容贴近的 checkpoint,如麦橘、墨幽的系列模型。 3. 选择 lora:在生成内容基础上,寻找内容重叠的 lora 以控制图片效果及质量。 4. ControlNet:可控制图片中特定图像,如人物姿态、特定文字等,高阶技能可后续学习。 5. 局部重绘:下篇再教。 6. 设置 VAE:无脑选择 840000 这个即可。 7. 负向提示词 Negative Prompt:用英文写您想要 AI 避免产生的内容,单词和短语组合,中间用英文半角逗号隔开。 8. 采样算法:一般选 DPM++2M Karras,也可留意 checkpoint 详情页上模型作者推荐的采样器。 9. 采样次数:选 DPM++2M Karras 时,采样次数在 30 40 之间。 10. 尺寸:根据喜好和需求选择。 辅助网站: 1. http://www.atoolbox.net/ :通过选项卡方式快速填写关键词信息。 2. https://ai.dawnmark.cn/ :每种参数有缩略图参考,更直观选择提示词。 3. https://civitai.com/ :可抄作业,复制图片的详细参数用于生成。 下次作图时,可先选择模板,点击倒数第二个按钮快速输入标准提示词。
2025-03-28
prompt提示词教学文档
以下是为您提供的 prompt 提示词教学文档: 一、Prompt 的专场教程 基础篇 1. 解释了什么是 prompt(提示词)以及为何其被称为咒语,使用 AI 的人被称为魔法师。 2. 阅读完本教程可迅速入门 prompt 的使用,达到一般公司设计岗所需的 AI 绘图水准。 3. 阅读时长约 30 分钟,建议打开任意一款 SD 产品分屏对照使用。若有不清晰之处,可在评论区发言或添加微信 designurlife1st 沟通(备注来意:ai 绘图交流)。 二、集合 Deepseek 提示词方法论 1. 核心原理认知 AI 特性定位:支持多模态理解,包括文本/代码/数学公式混合输入。 动态上下文:对话式连续记忆(约 8K tokens 上下文窗口,约 4000 汉字)。 任务适应性:可切换创意生成/逻辑推理/数据分析模式。 系统响应机制:采用意图识别+内容生成双通道,自动检测 prompt 中的任务类型/输出格式/知识范围,对位置权重(开头/结尾)、符号强调敏感。 2. 基础指令框架 可套用框架指令,包括四要素模板。 格式控制语法:强制结构使用```包裹格式要求,占位符标记用{{}}标注需填充内容,优先级符号>表示关键要求,!表示禁止项。 三、小七姐:Prompt 喂饭级系列教程小白学习指南(一) 1. 认为对于 prompt 新手教程的帖子比较零散,不成体系,进行了统一收集和整理。 2. 学习 prompt 的第一步要有一个大模型帐号,并熟悉与之对话的方式,推荐 ChatGPT4 及国产平替:。 3. 第二步要看 OpenAI 的官方文档,包括。
2025-03-28
怎么写给 Claude 的 prompts
以下是关于如何写给 Claude 的 prompts 的相关内容: 1. 提示简介:提示是您给 Claude 的文本,用于引发相关输出,通常以问题或指示的形式出现。例如,“User|Why is the sky blue? 为什么天空是蓝色的?”,Claude 回答的文本被称为“响应”,有时也被称为“输出”或“完成”。 2. 构建 Prompt:可以用 Lisp 或 Markdown 格式来构建 prompt,让 Claude 根据用户输入的领域和产品(也可自定义产品特点)直接输出情绪营销语句。用 Lisp 这种编程语言更为凝练和简洁,Markdown 格式的效果也一样。对于 GPT 等模型,在卡片生成这步可能需要一些调整,不稳定,最好自定义 html/css 样式来进行强约束。直接打开 Claude 首页,把上述提示词发送即可初始化,然后进行使用。 3. 控制输出格式(JSON 模式):控制 Claude 输出的简单方法之一是说明想要的格式,Claude 可以理解并遵循与格式相关的指示,并格式化输出,如 JSON、XML、HTML、Markdown、CSV 等,甚至自定义格式。例如,如果想让 Claude 以 JSON 格式生成一首俳句,可以使用相应的提示。
2025-03-28
有关学习的prompt
以下是关于学习提示词运用的全面指导: 一、理解提示词的作用 提示词向模型提供上下文和指示,其质量直接影响模型输出的质量,能让模型更准确地理解并完成所需任务。 二、学习提示词的构建技巧 1. 明确任务目标,用简洁准确的语言描述。 2. 给予足够的背景信息和示例,帮助模型理解语境。 3. 使用清晰的指令,如“解释”“总结”“创作”等。 4. 对特殊要求应给予明确指示,如输出格式、字数限制等。 三、参考优秀案例 研究和学习已有的优秀提示词案例,可在领域社区、Github 等资源中找到大量案例。 四、实践、迭代、优化 多与语言模型互动,根据输出提高提示词质量。尝试各种变体,比较分析输出差异,持续优化提示词构建。 五、活用提示工程工具 目前已有一些提示工程工具可供使用,如 Anthropic 的 Constitutional AI。 六、跟上前沿研究 提示工程是当前最前沿的研究领域之一,持续关注最新的研究成果和方法论。 七、相关网站 1. 文本类 Prompt 网站: Learning Prompt:授人以渔,非常详尽的 Prompt 学习资源,包括 ChatGPT 和 MidJourney,网址: FlowGPT:国外做的最大的 prompt 站,内容超全面,更新快,网址: ChatGPT Shortcut:ChatGPT 提示词网站,提供了非常多使用模板,简单修改即可指定输出,网址: ClickPrompt:轻松查看、分享和一键运行模型,创建 Prompt 并与其他人分享,网址: Prompt Extend:让 AI 帮你自动拓展 Prompt,网址: PromptPerfect:帮你自动优化提示词,你可以看到优化前后的对比,网址: PromptKnit:The best playground for prompt designers,网址: PromptPort(支持中文):AI Prompt 百科辞典,其中 prompts 是聚合了市场上大部分优质的 prompt 的词库,快速的寻找到用户需求 prompt,网址: Prompt Engineering Guide:GitHub 上点赞量非常高的提示工程指南,网址: 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-26
12个精选prompt框架
以下是 12 个精选的 prompt 框架: 1. ICIO 框架: 指令:执行的具体任务。 背景信息:提供执行任务的背景信息、上下文内容,让大模型更好地回答。 输入信息:大模型需要用到的一些信息。 输出信息:明确输出的具体信息的要求,比如字数、风格、格式。 2. BROKE 框架:通过 GPT 的设计提示,来提升整体反馈的效率。 背景:提供足够背景信息,让大模型可以理解问题的上下文。 角色设定:特定的角色,让 GPT 根据特定的角色能力的特点来形成响应。 目标:明确任务的目标,让大模型知道您想让它做什么。 结果定义:明确可以衡量的结果,让大模型清楚自己做的情况。 调整:根据具体的情况,来调整具体的结果。 3. CRISPIE 框架: 能力和角色:您期望大模型扮演的角色洞察,提供幕后洞察力、背景信息和上下文。 声明:简洁明了的说明希望完成的任务。 个性:回应的风格、个性或者方式。 实验:提供多个回答的示例。 另外,在潘帅分享的法律人如何用好 AI—Prompt 篇中,也提到了 Prompt 的建议框架及格式,如 CRISPE 框架: 能力与角色(Capacity and Role):比如您希望它的角色和能力,如您是一名专注于民商事法律领域的律师,擅长案例研究、法律条文检索以及案件策略分析。 洞察(Insight):提供背景信息和上下文,比如处理一起复杂的合同纠纷案件,向 AI 提供案件的关键事实、相关法律以及案件涉及的背景。 陈述(Statement):您希望 AI 做什么,比如直接明确期望 AI 完成的任务是什么。 个性(Personality):您希望 AI 以什么风格或方式回答您。 举例:以合同纠纷案件为例,要求 AI 总结此案件中双方的诉求、检索法条、预测可能的判决结果。
2025-03-26
学习Prompt Engineering
提示工程(Prompt Engineering)是人工智能领域中,特别是在自然语言处理(NLP)和大型语言模型(LLMs)的上下文中一个相对较新的概念。 其关键点包括: 1. 精确性:通过精确的提示,提高 AI 模型输出的相关性和准确性。 2. 创造性:需要创造性地思考如何构建问题或请求,以激发 AI 模型的特定能力。 3. 迭代:通常需要多次尝试和调整提示,以获得最佳结果。 4. 上下文理解:提示需要包含足够的上下文信息,以便 AI 模型能够理解并执行所需的任务。 提示词通常指的是直接输入到 AI 模型中的问题、请求或指示,它们是提示工程的一部分。提示词可以简单,也可以复杂。 提示工程与提示词的区别在于:提示词是实际输入到 AI 系统中的具体文本,用以引导模型的输出。提示工程则是一个更广泛的概念,不仅包括创建提示词,还涉及理解模型的行为、优化提示以获得更好的性能、以及创造性地探索模型的潜在应用。提示工程的目标是最大化 AI 模型的效用和性能,而提示词是实现这一目标的手段之一。 在实际应用中,提示工程的提示开发生命周期包括: 1. 开发测试用例:在定义任务和成功标准之后,创建一组多样化的测试用例,涵盖应用程序的预期用例,包括典型示例和边界情况,以确保提示具有鲁棒性。提前定义好的测试用例将使您能够客观地衡量提示与成功标准的表现。 2. 设计初步提示:制定一个初步的提示,概述任务定义、良好响应的特征,以及所需的上下文。理想情况下,添加一些规范输入和输出的示例供参考。这个初步提示将作为改进的起点。 3. 根据测试用例测试提示:使用初步提示将测试用例输入到模型中。仔细评估模型的响应与预期的输出和成功标准是否一致。使用一致的评分标准,无论是人工评估、与答案标准的比较,甚至是基于评分标准的模型判断。关键是要有一种系统性的评估性能的方式。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-25
text2sql相关资料
以下是一些推荐的 text2sql 相关的 AI 工具及其链接: Text2SQL:将英文转换为 SQL 查询。链接:https://toolske.com/text2sql/?ref=theresanaiforthat ai2sql:高效且无错误的 SQL 构建器。链接:https://www.ai2sql.io/ EverSQL:从 SQL 查询翻译英文文本。链接:https://www.eversql.com/sqltotext/ SupaSQL:从 NLP 生成 SQL 查询。链接:https://supasql.com/ SQLgenius:使用自然语言的 SQL 查询生成器。链接:https://sqlgenius.app/ SQL Chat:与数据库进行自然语言聊天的 SQL 客户端。链接:https://www.sqlchat.ai/ SQL Ease:从自然语言输入生成 SQL 查询。链接:https://sqlease.buildnship.in/ Talktotables:翻译和查询数据库。链接:https://talktotables.com/ 此外,还有以下几个知名的 text2sql 项目: SQLNet:一个使用深度学习方法解决 text2sql 任务的项目。 Seq2SQL:一个将自然语言转换为 SQL 查询的序列到序列模型。 Spider:一个大规模的 text2sql 数据集及其相关的挑战。
2024-09-20
text2sql相关资料
以下是一些推荐的 text2sql 相关的 AI 工具及其链接: Text2SQL:将英文转换为 SQL 查询。链接:https://toolske.com/text2sql/?ref=theresanaiforthat ai2sql:高效且无错误的 SQL 构建器。链接:https://www.ai2sql.io/ EverSQL:从 SQL 查询翻译英文文本。链接:https://www.eversql.com/sqltotext/ SupaSQL:从 NLP 生成 SQL 查询。链接:https://supasql.com/ SQLgenius:使用自然语言的 SQL 查询生成器。链接:https://sqlgenius.app/ SQL Chat:与数据库进行自然语言聊天的 SQL 客户端。链接:https://www.sqlchat.ai/ SQL Ease:从自然语言输入生成 SQL 查询。链接:https://sqlease.buildnship.in/ Talktotables:翻译和查询数据库。链接:https://talktotables.com/ 此外,还有以下几个知名的 text2sql 项目: SQLNet:一个使用深度学习方法解决 text2sql 任务的项目。 Seq2SQL:一个将自然语言转换为 SQL 查询的序列到序列模型。 Spider:一个大规模的 text2sql 数据集及其相关的挑战。
2024-09-20
Text2SQL
以下是一些与 Text2SQL 相关的 AI 工具及其链接: Text2SQL:将英文转换为 SQL 查询。链接:https://toolske.com/text2sql/?ref=theresanaiforthat ai2sql:高效且无错误的 SQL 构建器。链接:https://www.ai2sql.io/ EverSQL:从 SQL 查询翻译英文文本。链接:https://www.eversql.com/sqltotext/ SupaSQL:从 NLP 生成 SQL 查询。链接:https://supasql.com/ SQLgenius:使用自然语言的 SQL 查询生成器。链接:https://sqlgenius.app/ SQL Chat:与数据库进行自然语言聊天的 SQL 客户端。链接:https://www.sqlchat.ai/ SQL Ease:从自然语言输入生成 SQL 查询。链接:https://sqlease.buildnship.in/ Talktotables:翻译和查询数据库。链接:https://talktotables.com/ 此外,还有以下几个知名的 text2sql 项目: SQLNet:一个使用深度学习方法解决 text2sql 任务的项目。 Seq2SQL:一个将自然语言转换为 SQL 查询的序列到序列模型。 Spider:一个大规模的 text2sql 数据集及其相关的挑战 另外,在数据处理方面,还有以下相关的 AI 新产品和网站: AIHelperBot:自动生成 SQL Queries,支持数据库一键链接或导入。当前收费$5 每月,可免费试用 7 天。链接:https://datasquirrel.ai/ ChartGPT by CadLabs:由 CadLabs 开发工具,基于 GPT3.5,可以根据数据生成图表并回答问题。链接:https://chartgpt.cadlabs.org/ Embedding Store:一站式 Embedding Marketplace,支持公开、私有及第三方数据,用于发现、评估和访问相关的嵌入(embeddings),产品还未上线。链接:https://www.embedding.store/
2024-08-10