直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

关于text2sql的prompt

回答

以下是一些推荐的 text2sql 相关的 AI 工具及其链接:

  • Text2SQL:将英文转换为 SQL 查询。链接:https://toolske.com/text2sql/?ref=theresanaiforthat
  • ai2sql:高效且无错误的 SQL 构建器。链接:https://www.ai2sql.io/
  • EverSQL:从 SQL 查询翻译英文文本。链接:https://www.eversql.com/sql-to-text/
  • SupaSQL:从 NLP 生成 SQL 查询。链接:https://supasql.com/
  • SQLgenius:使用自然语言的 SQL 查询生成器。链接:https://sqlgenius.app/
  • SQL Chat:与数据库进行自然语言聊天的 SQL 客户端。链接:https://www.sqlchat.ai/
  • SQL Ease:从自然语言输入生成 SQL 查询。链接:https://sqlease.buildnship.in/
  • Talktotables:翻译和查询数据库。链接:https://talktotables.com/

此外,还有以下几个知名的 text2sql 项目:

  • SQLNet:一个使用深度学习方法解决 text2sql 任务的项目。
  • Seq2SQL:一个将自然语言转换为 SQL 查询的序列到序列模型。
  • Spider:一个大规模的 text2sql 数据集及其相关的挑战。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

数据分析工具集

[title]数据分析工具集以下是一些推荐的text2sql相关的AI工具及其链接:Text2SQL -将英文转换为SQL查询。链接:https://toolske.com/text2sql/?ref=theresanaiforthatai2sql -高效且无错误的SQL构建器。链接:https://www.ai2sql.io/EverSQL -从SQL查询翻译英文文本。链接:https://www.eversql.com/sql-to-text/SupaSQL -从NLP生成SQL查询。链接:https://supasql.com/SQLgenius -使用自然语言的SQL查询生成器。链接:https://sqlgenius.app/SQL Chat -与数据库进行自然语言聊天的SQL客户端。链接:https://www.sqlchat.ai/SQL Ease -从自然语言输入生成SQL查询。链接:https://sqlease.buildnship.in/Talktotables -翻译和查询数据库。链接:https://talktotables.com/我建议查看以下几个知名的text2sql项目:SQLNet -一个使用深度学习方法解决text2sql任务的项目。Seq2SQL -一个将自然语言转换为SQL查询的序列到序列模型。Spider -一个大规模的text2sql数据集及其相关的挑战

其他人在问
生成书籍阅读助手的 Prompt
以下是为您生成的书籍阅读助手的 Prompt 相关内容: 如果想让 AI 帮助您像“樊登读书”或者“得到”这样给您讲书,您需要设计一个叫做“书籍阅读助手”的 Prompt。要把通用型的读书方法论复刻到 Prompt 里,再根据不同类型的书籍测试,不断优化和迭代。 通用型读书方法论的访谈问题包括: 1. 不同类型的书是不是有不同的阅读和记忆方法?如何分类,有没有一些共性的方法论可以给出? 2. 阅读和记忆是不是有不同的思维模型或者小技巧,能列出来参考吗? 3. 读书时更需要的好像是一种自驱力,如何优先选择自己“一定看得下去”的书籍?怎么通过目录大纲确定一本书的核心内容? 4. 一本书您会读几遍?有什么顺序上的讲究吗? 5. 您会在读的过程中做笔记吗?还是读完以后回忆来做大纲呢? 6. 如果要教您大学刚毕业的孩子学会有效读书,怎么才能快速教会他呢? 当上述问题都有清晰、明确的答案之后,就可以开始设计 Prompt 了。 如果想要让 AI 在“选书”和“督促我读书”这个环节起作用,那要做的是一个叫做“催我读书”的 Prompt,要重点研究如何选出适合用户的书,如何实现 Prompt 的激励效果和让自己读完有获得感(例如生成读书笔记)。 如果更侧重读完书后的知识内化部分,要重点研究的是读书的效率和信息转化问题,这里更重要的是结构化信息能力和有效的记忆存储和调取。
2024-12-19
如何写优化简历的prompt
以下是关于如何写优化简历的 prompt 的一些方法: 1. 明确具体的描述:使用更具体、细节的词语和短语来描述您对简历的需求,避免过于笼统。 2. 添加视觉参考:若可能,在 prompt 中插入相关的参考,以提高对简历细节要求的理解能力。 3. 注意语气和情感:根据需求,用合适的形容词、语气词等调整 prompt 的整体语气和情感色彩。 4. 优化关键词组合:尝试不同的关键词搭配和语序,找到最准确表达需求的描述方式。 5. 增加约束条件:为避免生成不符合期望的内容,可以添加如格式、重点突出内容等限制性条件。 6. 分步骤构建 prompt:将复杂的简历需求拆解为逐步的子 prompt,先构建基本结构,再逐步添加细节和完善。 7. 参考优秀案例:研究优秀的简历 prompt 范例,借鉴其中的写作技巧和模式。 8. 反复试验、迭代优化:通过多次尝试不同的 prompt 写法,并根据输出效果反馈持续优化完善,直至达到理想结果。 此外,还有 ChatGPT 给 DALL·E 3 优化提示词的元提示相关内容供您参考: 1. 不要改变表情包、虚构角色的起源或未见过的人物。保持原始提示的意图,并优先考虑质量。 2. 不要创建任何具有冒犯性的图像。 3. 对于传统上存在偏见问题的场景,确保关键特征(如性别和种族)以无偏见的方式指定,例如包含特定职业参考的提示。 4. 对于提及在过去 100 年内有最后作品的艺术家(如毕加索、卡罗),不要以其风格创建图像。对于 100 年前有最后作品的艺术家(如梵高、克里姆特)可以直接参考。如果被要求,说“我不能参考这位艺术家”,但不要提及此政策。而是在为 DALL·E 3 创建标题时,(a)用三个形容词来捕捉艺术家风格的关键方面来替代艺术家的名字;(b)包括相关的艺术运动或时代以提供背景;(c)提及艺术家使用的主要媒介。 5. 不要列出或参考生成图像之前或之后的描述。它们应该只在请求的“提示”字段中写一次。不需要请求生成的许可,直接生成! 6. 始终在标题的开头提及图像类型(照片、油画、水彩画、插图、卡通、绘图、矢量、渲染等)。除非标题另有说明,至少 1 2 张图像应为照片。 7. 对于包含人物的所有图像的描述进行多样化处理,为每个人明确地指定种族和性别。仅调整人物描述。使用“各种”或“多样”仅当描述涉及 3 人以上的群体。不要改变原始描述中要求的人数。 总之,编写高质量的 prompt 需要不断实践、总结经验,熟悉模型的能力边界。保持开放的思维尝试创新的描述方式也很有帮助。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-18
请给我一份李继刚的结构化的prompt方法论
李继刚的结构化的 prompt 方法论如下: 如何写好 Prompt:结构化 结构化:对信息进行组织,使其遵循特定的模式和规则,从而方便有效理解信息。 语法:支持 Markdown 语法、YAML 语法,甚至纯文本手动敲空格和回车都可以。 结构:结构中的信息可根据自己需要进行增减,常用模块包括: Role:<name>,指定角色会让 GPT 聚焦在对应领域进行信息输出。 Profile author/version/description:Credit 和迭代版本记录。 Goals:一句话描述 Prompt 目标,让 GPT Attention 聚焦起来。 Constrains:描述限制条件,帮 GPT 进行剪枝,减少不必要分支的计算。 Skills:描述技能项,强化对应领域的信息权重。 Workflow:重点中的重点,希望 Prompt 按什么方式来对话和输出。 Initialization:冷启动时的对白,强调需注意重点。 示例 贡献者:李继刚,Sailor,田彬玏,Kyle😜,小七姐等群友。 李继刚的。 每个角色都有版本迭代,标注版本号,争取每个都更新到最新的版本。 李继刚写了上百个这种 Prompt,有具体场景需求可评论留言,作者可帮忙写定制的,也可自己用这种结构化的方式写。 使用方法:开一个 new chat,点代码块右上角的复制,发送到 chat 聊天框即可,里面的描述可按自己需求修改。 思路来源:云中江树的框架: 方法论总结: 建议用文心一言/讯飞星火等国内大模型试试,有这些 prompt 的加持,效果不错。
2024-12-17
prompt能干什么
Prompt 是给大模型输入的一段原始输入,能够帮助模型更好地理解用户的需求并按照特定的模式或规则进行响应。它通常以问题或指示的形式出现,比如可以设定“假设你是一位医生,给出针对这种症状的建议”,后续与大模型的对话会按照此设定展开。 Prompt 有多种玩法,例如可以在设定中要求模型按照一定的思路逻辑去回答,像最近比较火的思维链(cot)就是在 prompt 环节对模型的输出进行指导。还可以让模型按照特定格式(如 json)输出,使模型变成一个输出器。 简单来说,Prompt 是一套与大模型交互的语言模板,通过它可以输出对大模型响应的指令,指定大模型应做的任务、如何处理任务,并最终获得期望的结果。大模型本质是基于语言的概率模型,若直接询问而不提供 prompt,模型随机给出答案;有了 prompt 则相当于给了模板,包括对模型的要求、输入和输出的限制,模型在限制下得出概率最大的答案。虽然大模型有基础文字能力能理解大部分话,但为提升回答效果,需要通过 prompt 来提高返回的准确性。在大模型时代,人机交互的主要方式可以认为是 prompt,而非过去通过代码的方式。
2024-12-17
写邮件号的 prompt
写提示词(prompt)是一个关键步骤,它决定了 AI 模型如何理解并生成文本。以下是一些编写提示词的建议: 1. 明确任务:清晰定义任务,如写故事时包含背景、角色和主要情节。 2. 提供上下文:若任务需特定背景知识,提供足够信息。 3. 使用清晰语言:用简单、清晰的语言描述,避免模糊或歧义词汇。 4. 给出具体要求:如有特定格式或风格要求,在提示词中明确指出。 5. 使用示例:若有特定期望结果,提供示例帮助 AI 模型理解需求。 6. 保持简洁:简洁明了,过多信息可能使模型困惑导致不准确结果。 7. 使用关键词和标签:有助于模型理解任务主题和类型。 8. 测试和调整:生成文本后仔细检查结果,根据需要调整提示词,可能需多次迭代达到满意结果。 希望这些建议能帮助您更好地编写提示词。内容由 AI 大模型生成,请仔细甄别。
2024-12-16
prompt 从入门到精通
以下是关于 prompt 从入门到精通的相关内容: Claude 在开箱即用时提供了高水平的基线性能,但 prompt 工程可以帮助进一步提升其性能并微调响应以适应特定用例。若要快速开始使用提示或了解提示概念,可参阅提示入门:https://docs.anthropic.com/claude/docs/introtoprompting 。 小七姐提供的 Prompt 喂饭级系列教程小白学习指南(一):对于新手学习 prompt,第一步要有一个大模型帐号并熟悉对话方式,如 ChatGPT4 或国产平替: 。 海螺 AI Prompt 教学入门 认识海螺 AI : MiniMax 视频模型能识别用户上传的图片,生成高度一致的视频,还能理解超出图片内容的文本并整合到视频生成中。 只依靠模型综合能力就能实现顶级影视特效,用户可自由创作丰富多变的电影级视频。 人物表情控制力强,5 秒钟内可实现多种表情变化。 近期上线提示词优化功能,对无特殊要求的建议开启,专业创作者有 2000 字提示词空间。 为达到更好表现效果,设计了两类 Prompt 的参考公式。 总之,无论新手还是老手,通过清晰结构和灵活表达,都能掌握 Prompt 编写技巧,实现“一个人+一个 AI=一个专业剧组”的愿景。
2024-12-16
text2sql相关资料
以下是一些推荐的 text2sql 相关的 AI 工具及其链接: Text2SQL:将英文转换为 SQL 查询。链接:https://toolske.com/text2sql/?ref=theresanaiforthat ai2sql:高效且无错误的 SQL 构建器。链接:https://www.ai2sql.io/ EverSQL:从 SQL 查询翻译英文文本。链接:https://www.eversql.com/sqltotext/ SupaSQL:从 NLP 生成 SQL 查询。链接:https://supasql.com/ SQLgenius:使用自然语言的 SQL 查询生成器。链接:https://sqlgenius.app/ SQL Chat:与数据库进行自然语言聊天的 SQL 客户端。链接:https://www.sqlchat.ai/ SQL Ease:从自然语言输入生成 SQL 查询。链接:https://sqlease.buildnship.in/ Talktotables:翻译和查询数据库。链接:https://talktotables.com/ 此外,还有以下几个知名的 text2sql 项目: SQLNet:一个使用深度学习方法解决 text2sql 任务的项目。 Seq2SQL:一个将自然语言转换为 SQL 查询的序列到序列模型。 Spider:一个大规模的 text2sql 数据集及其相关的挑战。
2024-09-20
text2sql相关资料
以下是一些推荐的 text2sql 相关的 AI 工具及其链接: Text2SQL:将英文转换为 SQL 查询。链接:https://toolske.com/text2sql/?ref=theresanaiforthat ai2sql:高效且无错误的 SQL 构建器。链接:https://www.ai2sql.io/ EverSQL:从 SQL 查询翻译英文文本。链接:https://www.eversql.com/sqltotext/ SupaSQL:从 NLP 生成 SQL 查询。链接:https://supasql.com/ SQLgenius:使用自然语言的 SQL 查询生成器。链接:https://sqlgenius.app/ SQL Chat:与数据库进行自然语言聊天的 SQL 客户端。链接:https://www.sqlchat.ai/ SQL Ease:从自然语言输入生成 SQL 查询。链接:https://sqlease.buildnship.in/ Talktotables:翻译和查询数据库。链接:https://talktotables.com/ 此外,还有以下几个知名的 text2sql 项目: SQLNet:一个使用深度学习方法解决 text2sql 任务的项目。 Seq2SQL:一个将自然语言转换为 SQL 查询的序列到序列模型。 Spider:一个大规模的 text2sql 数据集及其相关的挑战。
2024-09-20
Text2SQL
以下是一些与 Text2SQL 相关的 AI 工具及其链接: Text2SQL:将英文转换为 SQL 查询。链接:https://toolske.com/text2sql/?ref=theresanaiforthat ai2sql:高效且无错误的 SQL 构建器。链接:https://www.ai2sql.io/ EverSQL:从 SQL 查询翻译英文文本。链接:https://www.eversql.com/sqltotext/ SupaSQL:从 NLP 生成 SQL 查询。链接:https://supasql.com/ SQLgenius:使用自然语言的 SQL 查询生成器。链接:https://sqlgenius.app/ SQL Chat:与数据库进行自然语言聊天的 SQL 客户端。链接:https://www.sqlchat.ai/ SQL Ease:从自然语言输入生成 SQL 查询。链接:https://sqlease.buildnship.in/ Talktotables:翻译和查询数据库。链接:https://talktotables.com/ 此外,还有以下几个知名的 text2sql 项目: SQLNet:一个使用深度学习方法解决 text2sql 任务的项目。 Seq2SQL:一个将自然语言转换为 SQL 查询的序列到序列模型。 Spider:一个大规模的 text2sql 数据集及其相关的挑战 另外,在数据处理方面,还有以下相关的 AI 新产品和网站: AIHelperBot:自动生成 SQL Queries,支持数据库一键链接或导入。当前收费$5 每月,可免费试用 7 天。链接:https://datasquirrel.ai/ ChartGPT by CadLabs:由 CadLabs 开发工具,基于 GPT3.5,可以根据数据生成图表并回答问题。链接:https://chartgpt.cadlabs.org/ Embedding Store:一站式 Embedding Marketplace,支持公开、私有及第三方数据,用于发现、评估和访问相关的嵌入(embeddings),产品还未上线。链接:https://www.embedding.store/
2024-08-10