Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

chatpgt的总体介绍、核心技术

Answer

ChatGPT 总体介绍及核心技术如下:

ChatGPT 有三个基本阶段。首先,获取与迄今为止的文本相对应的 token 序列,并找到表示它们的嵌入(即一组数字的数组)。然后在这个嵌入上进行操作,以“标准神经网络方式”,值“逐层流动”到网络的连续层中,以生成一个新的嵌入(即一个新的数字数组)。最后,从这个数组的最后一部分生成一个大约有 50,000 个值的数组,这些值将变成不同可能的下一个 token 的概率。

关键是,这个流程的每个部分都是由神经网络实现的,其权重由端到端的网络训练确定。除了整体架构外,一切都是从训练数据中“学习”的,而不是“显式设计”。

在设置体系结构方面有许多细节,首先是嵌入模块。transformers 的想法是对组成文本的 token 序列执行类似的操作,不仅定义了序列中可以存在连接的固定区域,而且引入了“注意力”的概念,以及更关注序列中的某些部分而不是其他部分的想法。ChatGPT 的总体目标是根据它所看到的训练内容(包括查看网络等数十亿页的文本),“合理地”继续文本。在任何给定的时刻,它都有一定数量的文本,目标是为下一个 token 添加一个适当的选择。

Content generated by AI large model, please carefully verify (powered by aily)

References

ChatGPT 是在做什么,为什么它有效?

它有三个基本阶段。首先,它获取与迄今为止的文本相对应的token序列,并找到表示它们的嵌入(即一组数字的数组)。然后它在这个嵌入上进行操作——以“标准神经网络方式”,值“逐层流动”到网络的连续层中——以生成一个新的嵌入(即一个新的数字数组)。然后,它从这个数组的最后一部分中生成一个大约有50,000个值的数组,这些值将变成不同可能的下一个token的概率。(是的,碰巧有大约与英语常用单词相同数量的token被使用,但只有大约3000个token是整个单词,其余的是片段。)关键是,这个流程的每个部分都是由神经网络实现的,其权重由端到端的网络训练确定。换句话说,实际上除了整体架构外,一切都是从训练数据中“学习”的,而不是“显式设计”。然而,在设置体系结构方面有许多细节,这些细节反映了各种经验和神经网络知识。即使这绝对涉及到细节,但我认为谈论其中一些细节仍然很有用,这至少可以让我们了解到构建ChatGPT这样的系统需要多少工作量。首先是嵌入模块。这是GPT-2的草图Wolfram语言表示:

LLM开源中文大语言模型及数据集集合

FindTheChatGPTer:地址:[https://github.com/chenking2020/FindTheChatGPTer](https://github.com/chenking2020/FindTheChatGPTer)简介:ChatGPT爆火,开启了通往AGI的关键一步,本项目旨在汇总那些ChatGPT的开源平替们,包括文本大模型、多模态大模型等,为大家提供一些便利。LLM_reviewer:地址:[https://github.com/SpartanBin/LLM_reviewer](https://github.com/SpartanBin/LLM_reviewer)简介:总结归纳近期井喷式发展的大语言模型,以开源、规模较小、可私有化部署、训练成本较低的‘小羊驼类’模型为主。Awesome-AITools:地址:[https://github.com/ikaijua/Awesome-AITools](https://github.com/ikaijua/Awesome-AITools)简介:收藏整理了AI相关的实用工具、评测和相关文章。open source ChatGPT and beyond:地址:[https://github.com/SunLemuria/open_source_chatgpt_list](https://github.com/SunLemuria/open_source_chatgpt_list)简介:This repo aims at recording open source ChatGPT,and providing an overview of how to get involved,including:base models,technologies,data,domain models,training pipelines,speed up techniques,multi-language,multi-modal,and more to go.Awesome Totally Open Chatgpt:地址:[https://github.com/nichtdax/awesome-totally-open-chatgpt](https://github.com/nichtdax/awesome-totally-open-chatgpt)简介:This repo record a list of totally open alternatives to ChatGPT.Awesome-LLM:

ChatGPT 是在做什么,为什么它有效?

transformers的想法是对组成文本的token序列执行类似的操作。但是,transformers不仅定义了序列中可以存在连接的固定区域,而且引入了“注意力”的概念,以及更关注序列中的某些部分而不是其他部分的想法。也许有一天,从一个通用的神经网络开始,并通过训练进行所有定制将是有意义的。但是,至少目前,在实践中将事物“模块化”似乎是至关重要的——就像transformers一样,也可能是我们的大脑所做的。那么,ChatGPT(或者说基于它的GPT-3网络)实际上是做什么的呢?请记住,它的总体目标是根据它所看到的训练内容(包括查看网络等数十亿页的文本),“合理地”继续文本。因此,在任何给定的时刻,它都有一定数量的文本——它的目标是为下一个token添加一个适当的选择。

Others are asking
chatpgt有什么最新消息
以下是关于 ChatGPT 的一些最新消息: Gradio 发布了 Gradio Discord Bot,允许在 Discord 服务器中使用 Spaces 中的演示进行语言翻译、文字转语音、文字生成图像等。 Hugging Face 现在可以使用 Docker Spaces。 OpenAI 预测到 2024 年收入将达到 10 亿美元。 ChatGPT 推出了更新,现在可以查看以前的历史对话。 2024 年 1 月 27 日,ChatGPT 又更新了,推出了新的 Mention 功能,可以在聊天窗口中通过@直接召唤任何 GPTS。 2024 年 4 月 26 日,ChatGPT 更新,正式推出个性化新功能,可以记住用户过去提到的内容,用户可自行决定要记住什么。
2024-09-26
人工智能的核心技术是什么
人工智能的核心技术主要包括以下几个方面: 1. 架构:当前市场上许多令人惊叹的 AI 技术成就可追溯到两个核心架构——Transformer 和 Diffusion。Transformer 代表了数据转换的能力,Diffusion 代表了数据向图像转换的能力,它们构成了当前 AI 技术的基石。 2. 算力:自 2010 年以来,GPU 等计算资源的快速发展使算力得到了空前的爆发,为 AI 技术的进步提供了强大的支持。 3. 人才网络:AI 领域的关键人才网络起到了不可忽视的作用,特别是 Google 在加拿大多伦多和蒙特利尔成立的两个实验室,以及其收购的英国公司 DeepMind 培养了一批杰出的领军人物,这些人才的流动和合作推动了 AI 技术的快速进步。 此外,人工智能的“智能”特质体现在以下几个方面: 1. 定义和特点:涵盖了机器的学习、推理、适应和自我改进的能力,表现为能从经验中学习、理解复杂概念、处理和分析大量数据以及执行复杂任务,具有算法驱动的决策过程、对大数据的处理能力以及在特定任务中的高效性和准确性等关键特点。 2. 行为模式: 信息处理:通过先进的算法和计算模型处理信息,从大量数据输入中学习规律、做出预测并决策。 环境互动:能够适应操作环境,在特定环境中高效工作并对新情况做出适应。 能量聚焦:执行设计任务时展现出极高效率,持续工作不受疲劳影响。 深度与专注:采用深度学习技术的 AI 系统能对特定领域数据进行深入分析,识别复杂模式和关系。
2024-10-29
sora背后的核心技术是啥
Sora 是一种基于扩散模型的视频生成模型,其核心技术是一个预训练的扩散变换器。扩散模型是一种生成式模型,通过学习输入数据的分布来生成新的数据。在 Sora 中,扩散模型被用来学习视频的分布,从而生成新的视频。 Sora 的核心技术源自 Diffusion Transformers(DiT),它结合了 VAE、ViT、DDPM 技术,优化了视频生成。具体来说,Sora 将原始输入视频压缩成一个时空潜在表示,然后从压缩视频中提取一系列时空潜在补丁,以封装短时间间隔内的视觉外观和运动动态。这些补丁类似于语言模型中的单词标记,为 Sora 提供了用于构建视频的详细视觉短语。Sora 的文本到视频生成是通过扩散变换器模型执行的。从一个充满视觉噪声的帧开始,模型迭代地去除噪声并根据提供的文本提示引入特定细节。本质上,生成的视频通过多步精炼过程出现,每一步都使视频更加符合期望的内容和质量。 总的来说,Sora 的核心技术是一个预训练的扩散变换器,它能够解析文本并理解复杂的用户指令,然后通过扩散模型生成视频。
2024-06-10
能用简单易懂的方法给我讲一下扩散模型的原理、核心技术思想和工作流程吗
扩散模型(Diffusion Models)是深度学习领域中一种强大的生成模型,它最近在生成图像、音频和其他类型的数据方面取得了显著的进展。扩散模型的核心思想是模拟物理过程中的扩散现象,将其应用于数据生成。 原理和核心技术思想: 1. 正向过程(Forward Process): 扩散模型的灵感来源于物理学中的扩散现象,比如一滴墨水在清水中逐渐扩散开来。 在数据生成的上下文中,正向过程模拟了数据逐渐“变得随机”的过程。从一个确定的输入数据点(比如一张清晰的图片)开始,通过逐步添加噪声,将其转化为一个完全随机的噪声分布。 2. 逆向过程(Reverse Process): 与正向过程相反,逆向过程的目标是从噪声数据重构出原始数据。 这个过程就像是逆转扩散过程,逐步预测并去除噪声,最终恢复出清晰的数据。 3. 概率框架: 扩散模型在概率框架下工作,它定义了数据从初始状态到噪声状态的马尔可夫链,以及从噪声状态恢复到初始状态的逆马尔可夫链。 4. 训练过程: 通过训练一个神经网络来学习逆向过程中的每一步,即如何从噪声数据中去除噪声并逐步恢复出原始数据。 工作流程: 1. 初始化: 选择一个初始数据点,比如一张图片。 2. 正向扩散: 通过逐步添加噪声,将初始数据点转化为噪声数据。这个过程可以看作是一系列逐步增加噪声的步骤。 3. 训练逆向模型: 使用神经网络学习如何逆转扩散过程。在训练阶段,网络会接收到部分噪声数据,并尝试预测原始数据。 4. 逆向去噪: 在生成阶段,从随机噪声开始,利用训练好的神经网络逐步去除噪声,每一步都使数据更接近原始状态。 5. 生成数据: 经过多轮逆向去噪步骤后,最终生成清晰的数据,如高质量的图片或音频。 扩散模型的一个关键优势是它能够生成高保真度的复杂数据,如高分辨率的图像。此外,由于其概率性质,它还可以生成多样化的数据样本,为数据生成任务提供了新的可能性。 扩散模型在生成任务中取得的成果令人瞩目,但同时也需要大量的计算资源,因为它们通常需要数百到数千个步骤来生成数据。不过,随着硬件的发展和模型优化,扩散模型的应用前景非常广阔。
2024-04-22
请帮我总结AI AGENT的总体架构,帮助我更快学习相关的知识,尽快进行具体场景的商业落地
AI Agent 是一个融合了多学科精髓的综合实体,不仅有实体形态,还有丰富的概念形态,并具备许多人类特有的属性。其总体架构包括以下方面: 1. 大模型 LLM 扮演“大脑”。 2. 规划:包括子目标分解、反思与改进。子目标分解将大型任务分解为较小可管理的子目标以处理复杂任务;反思和改进可对过去的行动进行自我批评和反思,从错误中学习并改进未来步骤,提高最终结果质量。 3. 记忆。 此外,AI Agent 还具有以下特点和应用: 1. 能够自行规划任务执行的工作流路径,面向简单或线性流程的运行。 2. 可以实现多 Agent 协作,例如让大语言模型扮演不同角色,相互协作共同开发应用或复杂程序。
2024-11-04
帮我整理一下国外和国内现在AI的总体情况,给单位领导介绍AI使用
当前AI的全球与中国现状 全球AI发展概况 1. 技术进步与应用: 生成式AI:生成式AI在过去几年里取得了重大进展,特别是在自然语言处理和图像生成方面。2023年,生成式AI吸引了252亿美元的投资,比前一年增长了近九倍。 多模态AI:多模态AI能够处理文本、图像和音频等多种形式的数据,提升了虚拟助手和客户服务系统的能力。例如,虚拟助手不仅能回复文本信息,还能通过分析客户的语音和视频数据提供个性化服务。 2. 行业应用: 医疗、金融与法律:这些领域通过小型AI模型的应用来实现本地化处理,保护数据隐私的同时提升效率。例如,AI在医疗中用于诊断和治疗建议,在金融中用于风险评估和自动化交易。 企业智能化:通过API驱动的AI和微服务,企业能够更快速地开发复杂的AI应用,提高生产力。例如,零售企业通过AI实现个性化营销和库存管理,显著提升客户服务效率和销售策略。 3. 法规与伦理: 欧洲AI法案:欧盟正在制定《人工智能法案》,这是全球首个全面的AI法律框架,旨在规范AI应用,保护用户隐私并防止滥用。例如,该法案禁止使用面部识别进行情绪监控和基于社交行为的评分。 美国与中国的监管:美国发布了一系列行政命令和指南,要求联邦机构在使用AI时遵循安全和道德标准。中国则更加积极地推动AI法规,并要求生成式AI内容的真实性和准确性。 中国AI发展概况 1. 技术领先与应用广泛: 中国在AI技术的研发和应用上一直处于世界前列。中国公司在语音识别、图像处理和自动驾驶等领域取得了显著成果。例如,百度的无人驾驶汽车和科大讯飞的语音助手都是全球领先的AI产品。 政策支持:政府大力支持AI发展,发布了一系列政策和资金支持计划。例如,《新一代人工智能发展规划》提出了到2030年成为全球AI创新中心的目标。 2. 产业布局: 智慧城市与公共服务:AI在中国的智慧城市建设中扮演重要角色,通过智能交通管理、环境监测和公共安全系统等提升城市管理效率。 金融与零售:金融机构利用AI进行风险控制和反欺诈,零售企业通过智能推荐系统提升用户体验和销售业绩。 3. 挑战与监管: 隐私与安全:随着AI应用的扩展,数据隐私和安全问题也日益突出。中国政府要求AI产品必须明确标示AI生成内容,并禁止利用AI进行价格歧视和虚假信息传播。 伦理与公平:AI在应用过程中也面临伦理和公平性问题,特别是在就业替代和算法偏见方面。政府和企业正在积极探索解决方案,确保AI的公平使用。 总结 全球和中国在AI领域都取得了显著进展,AI技术已经广泛应用于各个行业,提高了生产效率和服务质量。然而,随着AI技术的迅速发展,数据隐私、安全和伦理问题也愈发重要。各国政府和企业需要共同努力,制定合理的政策和法规,确保AI技术在安全、可靠和公平的基础上持续发展。
2024-05-19
给我写一段AI产品经理板块的介绍,一小段话,用于在公司内部的科技论坛上
在公司内部的科技论坛上,为您介绍 AI 产品经理板块: AI 产品经理可大致分为三个层级: 1. 入门级:能通过 WaytoAGI 等开源网站或课程了解 AI 概念,使用 AI 产品并动手实践应用搭建。 2. 研究级:有技术研究和商业化研究两条路径,能根据需求场景选择解决方案,或利用 Hugging face 等工具验证想法。 3. 落地应用级:有成功落地应用案例并产生商业化价值。 传统互联网 PM 也有类似的三个层级: 1. 负责功能模块与执行细节。 2. 负责整体系统与产品架构。 3. 熟悉行业竞争格局与商业运营策略。 对 AI 产品经理的要求是懂得技术框架,关注场景、痛点和价值。同时,为您列举一些岗位技能要求,如本科及以上学历,计算机科学等相关专业背景,熟悉多种 AI 工具的使用及原理,具备创新思维等。我们身边也有相关案例,如枫 share、行远等都是从事相关工作的产品经理。
2025-01-23
介绍一下flowith
Flowith 是一款创新的 AI 交互式搜索和对话工具: 基于节点式交互方式,支持多种 AI 模型和图像生成技术,提供插件系统和社区功能。 作为一款出海应用,上周发布了 2.0 版本,展现出成为订阅制 AI 知识社区的野心。 具备 Refly 几乎所有功能,并有独特设计,如允许自行上传制作并发布知识库,还能自由添加或购买他人的知识库,这是 AI 付费订阅知识社区的雏形。 内容编辑器有多种模式,包括 Markdown、图片编辑器、代码编辑器、实时语音聊天等。 继承并优化了 1.0 版本的交互设计,强化了 Agent 功能,包括 Project 功能、Oracle 模式、Agent Community 等,对话模式也依旧流畅酷炫,包括插件模式、比较模式、图片/视频生成模式等。 支持团队协作,可邀请外部协作者评论、共同编辑当前 Flow。
2025-01-21
我想系统性的了解AI,你能为我画一个思维导图吗,或者结构性的帮我介绍。譬如:第一级:人工智能,第二级人工智能下的所有分支
以下是为您系统性介绍 AI 的结构内容: 第一级:人工智能 第二级: 1. 基本概念 术语和基础概念 主要分支(机器学习、深度学习、自然语言处理等) 分支之间的联系 2. 学习之旅 入门课程推荐(李宏毅老师的课程等) 在线教育平台课程 3. 特定模块 图像 音乐 视频等 4. 提示词技巧 5. 实践尝试 实践巩固知识 作品分享 6. 体验产品 ChatGPT Kimi Chat 智谱 文心一言等 此外,为您推荐三本神经科学书籍: 1. 《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga;Richard B.Lvry;George R.Mangun) 2. 《神经科学原理》(作者:Eric R.Kandel;James H.Schwartz) 3. 《神经生物学:从神经元到脑》(作者:John G.Nicholls 等著) 还有《雪梅 May 的 AI 学习日记》中提到的学习经验,如第一阶段迈出第一步,看书听课进社区,包括系统性学习、初步探索、加入 AI 社区等。
2025-01-21
目前在各个应用领域,主流的AI工具有哪些,请分别介绍.
以下是一些主流的 AI 工具及其应用领域的介绍: 1. AI 菜谱口味调整工具:如“下厨房口味调整功能”,使用自然语言处理和数据分析技术,市场规模达数亿美元。它能根据用户反馈调整菜谱口味,例如增加甜度、减少辣味等。 2. AI 语言学习纠错平台:像“英语流利说纠错功能”,运用自然语言处理和机器学习,市场规模达数十亿美元。可帮助语言学习者纠正发音、语法等错误,并提供纠正建议和练习。 3. AI 电影剧情分析系统:例如“豆瓣电影剧情分析工具”,借助数据分析和自然语言处理,市场规模达数亿美元。能够分析电影剧情,为用户提供深度解读。 4. AI 办公文件分类系统:比如“腾讯文档分类功能”,采用数据分析和机器学习,市场规模达数亿美元。可自动分类办公文件,方便管理。 5. AI 美容护肤方案定制平台:“美丽修行定制方案功能”,利用图像识别和数据分析,市场规模达数亿美元。能根据用户肤质定制护肤方案,包括产品推荐和使用顺序。 6. AI 游戏道具推荐系统:在一些游戏中的“游戏内商城推荐功能”,通过数据分析和机器学习,市场规模达数亿美元。可根据玩家需求推荐游戏道具,如武器、装备等。 7. AI 天气预报分时服务:“彩云天气分时预报”,运用数据分析和机器学习,市场规模达数亿美元。提供精准的分时天气预报,帮助用户更好地安排出行和活动。 8. AI 医疗病历分析平台:“医渡云病历分析系统”,借助数据分析和自然语言处理,市场规模达数十亿美元。可分析医疗病历,为医生提供辅助诊断建议。 9. AI 会议发言总结工具:“讯飞听见会议总结功能”,使用自然语言处理和机器学习,市场规模达数亿美元。能够自动总结会议发言内容,方便回顾和整理。 10. AI 书法作品临摹辅助工具:“书法临摹软件”,利用图像识别和数据分析,市场规模达数亿美元。帮助书法爱好者进行临摹,提供临摹指导和评价。 11. 超级简历优化助手:“AI 简历优化工具”,运用自然语言处理,市场规模达数亿美元。帮助用户优化简历,提高求职成功率。 12. 酷家乐等设计软件:“AI 室内设计方案生成”,借助图像生成和机器学习,市场规模达数十亿美元。能快速生成个性化室内设计方案。 13. Amper Music:“AI 音乐创作辅助工具”,采用机器学习和音频处理,市场规模达数亿美元。协助音乐创作者进行创作,可根据用户需求生成旋律和编曲。 14. 松果倾诉智能助手:“AI 情感咨询助手”,通过自然语言处理和情感分析,市场规模达数亿美元。为用户提供情感支持和建议,通过文字或语音交流。 15. 小佩宠物智能设备:“AI 宠物健康监测设备”,利用传感器数据处理和机器学习,市场规模达数十亿美元。可实时监测宠物健康状况,提供健康预警。 16. 马蜂窝智能行程规划:“AI 旅游行程规划器”,借助数据分析和自然语言处理,市场规模达数十亿美元。能根据用户需求生成个性化旅游行程。
2025-01-20
请介绍一下DeepSeek
DeepSeek 是一家来自中国杭州的人工智能创业公司。 其在 2024 年 12 月发布的大语言模型 DeepSeekV3 引起了广泛关注。该模型以相对较低的成本和较少的硬件资源,在多项评测中取得了优异成绩,与顶级开源和闭源模型不相上下。 HiDeepSeek 是为解决 AI 回答过程不透明问题而设计的工具。它能让 AI 在给出答案时展示思考过程,如先说“让我想想...”再逐步展开分析,最终给出结论。在技术层面,通过特别规则要求 AI 像人类自然思考,可提出疑问、修正错误等。 例如老师使用时,AI 会先分析教学目标、思考学生可能遇到的困难,再设计教学步骤,过程清晰展示。总的来说,HiDeepSeek 让 AI 思维过程透明,虽为模拟,但有助于更好理解和使用 AI。 此外,用 Coze 做了效果对比测试,使用 HiDeepSeek 可通过以下步骤: 1. 搜索 www.deepseek.com,点击“开始对话”。 2. 将装有提示词的代码发给 Deepseek。 3. 认真阅读开场白后正式开始对话。 其设计思路包括: 1. 将 Agent 封装成 Prompt 并储存在文件,保证低成本人人可用,减轻调试负担。 2. 通过提示词文件让 DeepSeek 实现联网和深度思考功能。 3. 在模型默认能力基础上优化输出质量,减轻 AI 味,增加可读性。 4. 设计了阈值系统,可能形式大于实质,后续根据反馈修改。 5. 用 XML 进行规范设定,而非 Lisp 和 Markdown。 完整提示词版本为 v1.3,特别鸣谢了李继刚的【思考的七把武器】提供思考方向,以及 Thinking Claude 和 Claude 3.5 Sonnet。
2025-01-18
发生器智能系统内部电路及结构介绍
智能代理系统的内部电路及结构包括以下方面: 功能结构: 数据驱动协作:卖点提炼模块提取核心卖点,并将其直接传递给买点转化模块,确保信息准确传递和一致。 信息流转换:买点经过转化后,进入可视化展示模块,通过信息卡片和交互设计直观呈现,增强可视性和理解度。 文案优化:视觉化信息后,文案改写模块对内容进行优化调整,确保与目标受众需求高度相关。 集成内容管理:所有处理后的内容被存储和管理,保存到飞书文档,以支持未来策略优化。 这种模块之间的协同作用,使智能代理系统能够高效转化初始数据为有价值的市场信息,确保每一步骤都最大化发挥效能。 任务的处理流程: 核心任务:卖点提炼并转化为买点。 处理流程: 信息收集:首先,全面收集用户的产品基本信息,确保数据的完整性和准确性。 卖点提炼:根据收集到的信息,分别提炼出通用性卖点、描述性卖点和保障性卖点,涵盖产品多个维度,全面展示产品优势。 交互优化:通过交互式反馈机制,对提炼出的卖点进行修改和补充,提高市场适应性和吸引力。 买点转化:将优化后的卖点转化为用户视角的买点,确保信息更具吸引力和说服力。 可视化展示:最终,经过修改和补充的买点被进行可视化展示,使信息更加直观和易于理解。这一流程确保了信息在传递过程中的高效性和影响力。
2025-01-18