直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

chatpgt的总体介绍、核心技术

回答

ChatGPT 总体介绍及核心技术如下:

ChatGPT 有三个基本阶段。首先,获取与迄今为止的文本相对应的 token 序列,并找到表示它们的嵌入(即一组数字的数组)。然后在这个嵌入上进行操作,以“标准神经网络方式”,值“逐层流动”到网络的连续层中,以生成一个新的嵌入(即一个新的数字数组)。最后,从这个数组的最后一部分生成一个大约有 50,000 个值的数组,这些值将变成不同可能的下一个 token 的概率。

关键是,这个流程的每个部分都是由神经网络实现的,其权重由端到端的网络训练确定。除了整体架构外,一切都是从训练数据中“学习”的,而不是“显式设计”。

在设置体系结构方面有许多细节,首先是嵌入模块。transformers 的想法是对组成文本的 token 序列执行类似的操作,不仅定义了序列中可以存在连接的固定区域,而且引入了“注意力”的概念,以及更关注序列中的某些部分而不是其他部分的想法。ChatGPT 的总体目标是根据它所看到的训练内容(包括查看网络等数十亿页的文本),“合理地”继续文本。在任何给定的时刻,它都有一定数量的文本,目标是为下一个 token 添加一个适当的选择。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

ChatGPT 是在做什么,为什么它有效?

它有三个基本阶段。首先,它获取与迄今为止的文本相对应的token序列,并找到表示它们的嵌入(即一组数字的数组)。然后它在这个嵌入上进行操作——以“标准神经网络方式”,值“逐层流动”到网络的连续层中——以生成一个新的嵌入(即一个新的数字数组)。然后,它从这个数组的最后一部分中生成一个大约有50,000个值的数组,这些值将变成不同可能的下一个token的概率。(是的,碰巧有大约与英语常用单词相同数量的token被使用,但只有大约3000个token是整个单词,其余的是片段。)关键是,这个流程的每个部分都是由神经网络实现的,其权重由端到端的网络训练确定。换句话说,实际上除了整体架构外,一切都是从训练数据中“学习”的,而不是“显式设计”。然而,在设置体系结构方面有许多细节,这些细节反映了各种经验和神经网络知识。即使这绝对涉及到细节,但我认为谈论其中一些细节仍然很有用,这至少可以让我们了解到构建ChatGPT这样的系统需要多少工作量。首先是嵌入模块。这是GPT-2的草图Wolfram语言表示:

LLM开源中文大语言模型及数据集集合

FindTheChatGPTer:地址:[https://github.com/chenking2020/FindTheChatGPTer](https://github.com/chenking2020/FindTheChatGPTer)简介:ChatGPT爆火,开启了通往AGI的关键一步,本项目旨在汇总那些ChatGPT的开源平替们,包括文本大模型、多模态大模型等,为大家提供一些便利。LLM_reviewer:地址:[https://github.com/SpartanBin/LLM_reviewer](https://github.com/SpartanBin/LLM_reviewer)简介:总结归纳近期井喷式发展的大语言模型,以开源、规模较小、可私有化部署、训练成本较低的‘小羊驼类’模型为主。Awesome-AITools:地址:[https://github.com/ikaijua/Awesome-AITools](https://github.com/ikaijua/Awesome-AITools)简介:收藏整理了AI相关的实用工具、评测和相关文章。open source ChatGPT and beyond:地址:[https://github.com/SunLemuria/open_source_chatgpt_list](https://github.com/SunLemuria/open_source_chatgpt_list)简介:This repo aims at recording open source ChatGPT,and providing an overview of how to get involved,including:base models,technologies,data,domain models,training pipelines,speed up techniques,multi-language,multi-modal,and more to go.Awesome Totally Open Chatgpt:地址:[https://github.com/nichtdax/awesome-totally-open-chatgpt](https://github.com/nichtdax/awesome-totally-open-chatgpt)简介:This repo record a list of totally open alternatives to ChatGPT.Awesome-LLM:

ChatGPT 是在做什么,为什么它有效?

transformers的想法是对组成文本的token序列执行类似的操作。但是,transformers不仅定义了序列中可以存在连接的固定区域,而且引入了“注意力”的概念,以及更关注序列中的某些部分而不是其他部分的想法。也许有一天,从一个通用的神经网络开始,并通过训练进行所有定制将是有意义的。但是,至少目前,在实践中将事物“模块化”似乎是至关重要的——就像transformers一样,也可能是我们的大脑所做的。那么,ChatGPT(或者说基于它的GPT-3网络)实际上是做什么的呢?请记住,它的总体目标是根据它所看到的训练内容(包括查看网络等数十亿页的文本),“合理地”继续文本。因此,在任何给定的时刻,它都有一定数量的文本——它的目标是为下一个token添加一个适当的选择。

其他人在问
chatpgt有什么最新消息
以下是关于 ChatGPT 的一些最新消息: Gradio 发布了 Gradio Discord Bot,允许在 Discord 服务器中使用 Spaces 中的演示进行语言翻译、文字转语音、文字生成图像等。 Hugging Face 现在可以使用 Docker Spaces。 OpenAI 预测到 2024 年收入将达到 10 亿美元。 ChatGPT 推出了更新,现在可以查看以前的历史对话。 2024 年 1 月 27 日,ChatGPT 又更新了,推出了新的 Mention 功能,可以在聊天窗口中通过@直接召唤任何 GPTS。 2024 年 4 月 26 日,ChatGPT 更新,正式推出个性化新功能,可以记住用户过去提到的内容,用户可自行决定要记住什么。
2024-09-26
人工智能的核心技术是什么
人工智能的核心技术主要包括以下几个方面: 1. 架构:当前市场上许多令人惊叹的 AI 技术成就可追溯到两个核心架构——Transformer 和 Diffusion。Transformer 代表了数据转换的能力,Diffusion 代表了数据向图像转换的能力,它们构成了当前 AI 技术的基石。 2. 算力:自 2010 年以来,GPU 等计算资源的快速发展使算力得到了空前的爆发,为 AI 技术的进步提供了强大的支持。 3. 人才网络:AI 领域的关键人才网络起到了不可忽视的作用,特别是 Google 在加拿大多伦多和蒙特利尔成立的两个实验室,以及其收购的英国公司 DeepMind 培养了一批杰出的领军人物,这些人才的流动和合作推动了 AI 技术的快速进步。 此外,人工智能的“智能”特质体现在以下几个方面: 1. 定义和特点:涵盖了机器的学习、推理、适应和自我改进的能力,表现为能从经验中学习、理解复杂概念、处理和分析大量数据以及执行复杂任务,具有算法驱动的决策过程、对大数据的处理能力以及在特定任务中的高效性和准确性等关键特点。 2. 行为模式: 信息处理:通过先进的算法和计算模型处理信息,从大量数据输入中学习规律、做出预测并决策。 环境互动:能够适应操作环境,在特定环境中高效工作并对新情况做出适应。 能量聚焦:执行设计任务时展现出极高效率,持续工作不受疲劳影响。 深度与专注:采用深度学习技术的 AI 系统能对特定领域数据进行深入分析,识别复杂模式和关系。
2024-10-29
sora背后的核心技术是啥
Sora 是一种基于扩散模型的视频生成模型,其核心技术是一个预训练的扩散变换器。扩散模型是一种生成式模型,通过学习输入数据的分布来生成新的数据。在 Sora 中,扩散模型被用来学习视频的分布,从而生成新的视频。 Sora 的核心技术源自 Diffusion Transformers(DiT),它结合了 VAE、ViT、DDPM 技术,优化了视频生成。具体来说,Sora 将原始输入视频压缩成一个时空潜在表示,然后从压缩视频中提取一系列时空潜在补丁,以封装短时间间隔内的视觉外观和运动动态。这些补丁类似于语言模型中的单词标记,为 Sora 提供了用于构建视频的详细视觉短语。Sora 的文本到视频生成是通过扩散变换器模型执行的。从一个充满视觉噪声的帧开始,模型迭代地去除噪声并根据提供的文本提示引入特定细节。本质上,生成的视频通过多步精炼过程出现,每一步都使视频更加符合期望的内容和质量。 总的来说,Sora 的核心技术是一个预训练的扩散变换器,它能够解析文本并理解复杂的用户指令,然后通过扩散模型生成视频。
2024-06-10
能用简单易懂的方法给我讲一下扩散模型的原理、核心技术思想和工作流程吗
扩散模型(Diffusion Models)是深度学习领域中一种强大的生成模型,它最近在生成图像、音频和其他类型的数据方面取得了显著的进展。扩散模型的核心思想是模拟物理过程中的扩散现象,将其应用于数据生成。 原理和核心技术思想: 1. 正向过程(Forward Process): 扩散模型的灵感来源于物理学中的扩散现象,比如一滴墨水在清水中逐渐扩散开来。 在数据生成的上下文中,正向过程模拟了数据逐渐“变得随机”的过程。从一个确定的输入数据点(比如一张清晰的图片)开始,通过逐步添加噪声,将其转化为一个完全随机的噪声分布。 2. 逆向过程(Reverse Process): 与正向过程相反,逆向过程的目标是从噪声数据重构出原始数据。 这个过程就像是逆转扩散过程,逐步预测并去除噪声,最终恢复出清晰的数据。 3. 概率框架: 扩散模型在概率框架下工作,它定义了数据从初始状态到噪声状态的马尔可夫链,以及从噪声状态恢复到初始状态的逆马尔可夫链。 4. 训练过程: 通过训练一个神经网络来学习逆向过程中的每一步,即如何从噪声数据中去除噪声并逐步恢复出原始数据。 工作流程: 1. 初始化: 选择一个初始数据点,比如一张图片。 2. 正向扩散: 通过逐步添加噪声,将初始数据点转化为噪声数据。这个过程可以看作是一系列逐步增加噪声的步骤。 3. 训练逆向模型: 使用神经网络学习如何逆转扩散过程。在训练阶段,网络会接收到部分噪声数据,并尝试预测原始数据。 4. 逆向去噪: 在生成阶段,从随机噪声开始,利用训练好的神经网络逐步去除噪声,每一步都使数据更接近原始状态。 5. 生成数据: 经过多轮逆向去噪步骤后,最终生成清晰的数据,如高质量的图片或音频。 扩散模型的一个关键优势是它能够生成高保真度的复杂数据,如高分辨率的图像。此外,由于其概率性质,它还可以生成多样化的数据样本,为数据生成任务提供了新的可能性。 扩散模型在生成任务中取得的成果令人瞩目,但同时也需要大量的计算资源,因为它们通常需要数百到数千个步骤来生成数据。不过,随着硬件的发展和模型优化,扩散模型的应用前景非常广阔。
2024-04-22
请帮我总结AI AGENT的总体架构,帮助我更快学习相关的知识,尽快进行具体场景的商业落地
AI Agent 是一个融合了多学科精髓的综合实体,不仅有实体形态,还有丰富的概念形态,并具备许多人类特有的属性。其总体架构包括以下方面: 1. 大模型 LLM 扮演“大脑”。 2. 规划:包括子目标分解、反思与改进。子目标分解将大型任务分解为较小可管理的子目标以处理复杂任务;反思和改进可对过去的行动进行自我批评和反思,从错误中学习并改进未来步骤,提高最终结果质量。 3. 记忆。 此外,AI Agent 还具有以下特点和应用: 1. 能够自行规划任务执行的工作流路径,面向简单或线性流程的运行。 2. 可以实现多 Agent 协作,例如让大语言模型扮演不同角色,相互协作共同开发应用或复杂程序。
2024-11-04
帮我整理一下国外和国内现在AI的总体情况,给单位领导介绍AI使用
当前AI的全球与中国现状 全球AI发展概况 1. 技术进步与应用: 生成式AI:生成式AI在过去几年里取得了重大进展,特别是在自然语言处理和图像生成方面。2023年,生成式AI吸引了252亿美元的投资,比前一年增长了近九倍。 多模态AI:多模态AI能够处理文本、图像和音频等多种形式的数据,提升了虚拟助手和客户服务系统的能力。例如,虚拟助手不仅能回复文本信息,还能通过分析客户的语音和视频数据提供个性化服务。 2. 行业应用: 医疗、金融与法律:这些领域通过小型AI模型的应用来实现本地化处理,保护数据隐私的同时提升效率。例如,AI在医疗中用于诊断和治疗建议,在金融中用于风险评估和自动化交易。 企业智能化:通过API驱动的AI和微服务,企业能够更快速地开发复杂的AI应用,提高生产力。例如,零售企业通过AI实现个性化营销和库存管理,显著提升客户服务效率和销售策略。 3. 法规与伦理: 欧洲AI法案:欧盟正在制定《人工智能法案》,这是全球首个全面的AI法律框架,旨在规范AI应用,保护用户隐私并防止滥用。例如,该法案禁止使用面部识别进行情绪监控和基于社交行为的评分。 美国与中国的监管:美国发布了一系列行政命令和指南,要求联邦机构在使用AI时遵循安全和道德标准。中国则更加积极地推动AI法规,并要求生成式AI内容的真实性和准确性。 中国AI发展概况 1. 技术领先与应用广泛: 中国在AI技术的研发和应用上一直处于世界前列。中国公司在语音识别、图像处理和自动驾驶等领域取得了显著成果。例如,百度的无人驾驶汽车和科大讯飞的语音助手都是全球领先的AI产品。 政策支持:政府大力支持AI发展,发布了一系列政策和资金支持计划。例如,《新一代人工智能发展规划》提出了到2030年成为全球AI创新中心的目标。 2. 产业布局: 智慧城市与公共服务:AI在中国的智慧城市建设中扮演重要角色,通过智能交通管理、环境监测和公共安全系统等提升城市管理效率。 金融与零售:金融机构利用AI进行风险控制和反欺诈,零售企业通过智能推荐系统提升用户体验和销售业绩。 3. 挑战与监管: 隐私与安全:随着AI应用的扩展,数据隐私和安全问题也日益突出。中国政府要求AI产品必须明确标示AI生成内容,并禁止利用AI进行价格歧视和虚假信息传播。 伦理与公平:AI在应用过程中也面临伦理和公平性问题,特别是在就业替代和算法偏见方面。政府和企业正在积极探索解决方案,确保AI的公平使用。 总结 全球和中国在AI领域都取得了显著进展,AI技术已经广泛应用于各个行业,提高了生产效率和服务质量。然而,随着AI技术的迅速发展,数据隐私、安全和伦理问题也愈发重要。各国政府和企业需要共同努力,制定合理的政策和法规,确保AI技术在安全、可靠和公平的基础上持续发展。
2024-05-19
推荐一款能够修正英语语法,并智能扩写的AI,并简要介绍其功能
以下为您推荐能够修正英语语法并智能扩写的 AI 工具及简要介绍其功能: Grammarly:可以进行英语写作和语法纠错,帮助改进英语表达和写作能力。 ChatGPT:能用于英语会话练习和对话模拟,提高交流能力和语感。 此外,关于内容仿写的 AI 工具,为您推荐以下几款中文工具: 秘塔写作猫:网址为 https://xiezuocat.com/ 。它是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,实时同步翻译,支持全文改写、一键修改、实时纠错并给出修改建议,还能智能分析文章各类属性并打分。 笔灵 AI 写作:网址为 https://ibiling.cn/ 。是智能写作助手,能处理多种文体,支持一键改写/续写/扩写,智能锤炼打磨文字。 腾讯 Effidit 写作:网址为 https://effidit.qq.com/ 。由腾讯 AI Lab 开发,能提升写作者的写作效率和创作体验。 更多 AI 写作类工具可以查看:https://www.waytoagi.com/sites/category/2 。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-22
请介绍图片搜索最好用的AI工具
以下为您介绍一些在图片搜索相关方面表现出色的 AI 工具: 图片去水印工具: 1. AVAide Watermark Remover:在线工具,支持多种图片格式,操作简单,可去除水印、文本、对象等。 2. Vmake:可上传最多 10 张图片,自动检测并移除水印,适合快速处理。 3. AI 改图神器:能一键去除图片中的多余物体、人物或水印,支持粘贴或上传手机图像。 图生图产品: 1. Artguru AI Art Generator:在线平台,生成逼真图像,为设计师提供灵感。 2. Retrato:将图片转换为非凡肖像,有 500 多种风格选择。 3. Stable Diffusion Reimagine:通过稳定扩散算法生成精细、具细节的全新视觉作品。 4. Barbie Selfie Generator:将上传照片转换为芭比风格。 图片生成 3D 建模工具: 1. Tripo AI:在线 3D 建模平台,能利用文本或图像快速生成高质量 3D 模型。 2. Meshy:支持文本、图片生成 3D 及 AI 材质生成。 3. CSM AI:支持从视频和图像创建 3D 模型,Realtime Sketch to 3D 可通过手绘草图实时设计 3D 形象。 4. Sudo AI:通过文本和图像生成 3D 模型,适用于游戏领域。 5. VoxCraft:免费工具,能将图像或文本快速转换成 3D 模型,提供多种功能。 请注意,以上内容由 AI 大模型生成,请仔细甄别。这些工具各有特点,您可以根据具体需求选择最适合您的工具。
2024-11-21
介绍一下GRAMMARLY
Grammarly 是一款非常实用的工具,具有以下特点和功能: 功能: 提供语法检查、拼写纠正、风格建议和语气调整等功能。 可以帮助提高写作的语法和词汇准确性,支持多种语言。 优点: 易于使用,支持多种平台(如浏览器扩展、桌面应用、手机应用),适用于多种语言。 网站: 使用方法:将写作内容粘贴到 Grammarly 编辑器中,获取语法和词汇改进建议。
2024-11-21
我如何给小朋友介绍AIGC
小朋友们,今天我们来了解一下很有趣的 AIGC 哦! AIGC 就是利用特别厉害的人工智能技术来生成各种各样内容的一种方式。它能通过学习很多很多的数据,按照我们给的要求生成内容。 AIGC 可以生成好多东西呢,比如文字,像故事、文章、对话;还能生成好看的图片、有趣的视频。 AIGC 跟其他生成内容的方式不太一样,比如 UGC 是由像你们这样的用户自己生成的内容,像在社交媒体上发的照片、文章。PGC 呢,则是由专业的叔叔阿姨们生成的高质量内容,像新闻报道、影视作品。 AIGC 里面还有很多相关的技术名词哦。AI 就是人工智能,它能像我们的大脑一样思考。机器学习是电脑自己找规律学习,有监督学习、无监督学习和强化学习。监督学习是有标签的训练数据,无监督学习是自己发现规律,强化学习就像训练小狗一样从反馈里学习。深度学习是一种参照人脑的方法,有神经网络和神经元。生成式 AI 能生成文本、图片、音频、视频等。 2017 年 6 月,谷歌团队发表了一篇很重要的论文,提出了 Transformer 模型,它处理数据可厉害了,比其他的模型更能处理长距离的文本。 小朋友们,现在是不是对 AIGC 有一点了解啦?
2024-11-15
介绍一下什么是AI
AI 是一门令人兴奋的科学,它是指让计算机表现出智能行为,例如做一些人类所擅长的事情。 对于不具备理工科背景的文科生来说,可以把 AI 当成一个黑箱,只需要知道它是某种模仿人类思维可以理解自然语言并输出自然语言的东西。其生态位是一种似人而非人的存在。 从技术层面看,最初计算机是按照明确定义的程序(即算法)来对数字进行运算。但对于像“根据照片判断一个人的年龄”这类任务,我们无法明确编程的每一个步骤,而这正是 AI 所感兴趣的。 对于三年级的小学生,可以用简单的语言来解释,即让计算机或机器能像人类一样思考和学习的技术。
2024-11-13
介绍一下WaytoAGI
WaytoAGI 是由一群热爱 AI 的专家和爱好者共同建设的开源 AI 知识库。 其特点和内容包括: 大家贡献并整合各种 AI 资源,使人们能轻松学习各类 AI 知识,应用 AI 工具和实战案例等。 知识库的内容覆盖 AI 绘画、AI 视频、AI 智能体、AI 3D 等多个版块,还包含赛事和活动以促进大家动手实践。 孵化了离谱村这个千人共创项目,让大家更轻松、更有兴趣地学习和接触 AI。 2023 年 4 月 26 日诞生,在没有任何推广的情况下,一年时间已有超过 70 万用户和超千万次的访问量。 您可以通过以下方式进一步了解: 即刻体验:https://waytoagi.com/ 更多详细介绍: 此外,还有一些相关的内容,如: 放几个有意思的视频:离谱村、春晚、24 节气、 关键词学社:
2024-11-07