Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

大模型安全攻防

Answer

大模型安全攻防主要包括以下方面:

  • 模型侧防御:对于有模型训练能力的大模型厂商,可通过对抗训练、安全微调、带安全任务的多任务学习以及在对话过程中进行安全性的上下文动态感知等方式增强安全性,但需平衡安全性与模型性能。
  • 开发中的提示词优化:开发者应在开发中带着安全意识优化应用和系统的提示词,加入安全引导和禁止内容等。如在提示词设计时考虑安全性,相关的智能体框架也包含此功能。
  • 输出侧防御:可采用传统的各种防御和内容过滤手段。
  • 攻击类型:包括白盒攻击(在知道模型参数的情况下进行攻击),以及让人类或大语言模型作为鉴别器参与攻击样本生成。
  • 针对越狱问题的防御手段。
  • 未来与展望:例如 OPENAI 首席科学家 ilya 联合董事会解雇 sam altman 被认为与模型安全失控的担忧有关。bengio、hinton、姚期智等著名研究者认为大模型及其驱动的 AI 必须引入安全性监管,防止其失控或对人类造成伤害,并签署了联名公开信表达对 AI 失控的担忧,呼吁学术界和工业界对大模型进行监管。

在提示词防护方面,关键要点包括:

  1. 任何文本输出场景都需实施一定程度的防护措施,侧重于模型交互层面的安全。
  2. 完整的 RAG 提示词应包含输入防护和输出防护,确保模型输入和输出过程安全。
  3. 目前没有能百分之百拦截所有攻击的完美技术,尤其是针对提示词的拦截技术。
  4. 为全面提升模型安全性能,有必要在模型训练阶段采取更全面的措施,如对抗样本训练。
Content generated by AI large model, please carefully verify (powered by aily)

References

云中江树:智能对决:提示词攻防中的AI安全博弈

另一个方面是模型侧的防御,对于有模型训练能力以及说大模型厂商来说,应该要增强它的安全性。从对抗训练到安全微调,到带安全任务的这样的一个多任务学习,以及说在你的整体的对话过程中,去进行安全性的这样的一个上下文动态感知等等。当然,有时候安全训练会影响大模型的整体性能,所以在模型侧的防御目前还是要和性能做到一个比较好的平衡。对我们开发者来说,往往训练模型这点我们做不到。我们能做到的是什么?我们能做到的是在我们的开发中带着安全意识去化我们的应用,优化我们的系统的提示词。加上哪些部分呢?加上我们的安全引导,保持我们的一些禁止的内容等等。如我们左下角这个图所示,在我们进行提示词设计的时候就要考虑到这一点,对于保障我们的一些安全性效果还是比较显著的。相关的论文也有一块这样的研究。然后像phidata等智能体框架也是包含了这部分功能的。最后一点就是我们输出侧的防御。同样的,传统的各种防御、各种的内容过滤手段都可以使用。

从 0 到 1 了解大模型安全,看这篇就够了

第三种和第四种则是让人类或大语言模型作为鉴别器参与攻击样本生成。第二类是白盒攻击:在知道模型参数的情况下对模型进行攻击。例如,下面的工作就是基于梯度的攻击,它自动地找出一段最能引起LLM对毒性问题做出肯定回答的字符串。下面是一些针对越狱问题可以采用的防御手段:接下来是未来与展望;11月以来,LLM最大的一个事件就是OPENAI首席科学家ilya联合董事会解雇了OPENAI的灵魂人物之一:sam altman据匿名人士透露,解雇sam altman正是因为ilya认为过快的商业化将会导致模型安全失控,产生不安全的AI或大模型为什么ilya会有AI必须安全的思想呢,这就不得不提到图灵奖得主,被誉为DL三巨头之一的hinton,hinton是ilya的老师,同时也是支持对AI监管的重要人物之一。bengio,hinton,姚期智等著名研究者认为,大模型及其驱动的AI必须引入安全性监管,确保大模型是Safety的,防止其失控或对人类造成伤害.并且他们在网上签署了联名公开信,用于表达对于AI失控的担忧,呼吁学术界和工业界对大模型进行监管。

20.RAG提示工程系列(二):大模型安全与防护实践

在第二部分的内容中,我们对提示词防护的整个流程进行了深入的探讨,以下是关键要点的快速回顾:1.在任何文本输出场景下,实施一定程度的防护措施是必要的。这种防护措施更侧重于模型交互层面的安全,而非仅仅是网络安全或是应用安全。2.一个完整的RAG提示词除业务功能外,应该包含输入防护和输出防护两个部分。这样的设计能够在很大程度上确保模型的输入和输出过程安全,从而保护整个系统的安全性。3.目前,还没有一种能够百分之百拦截所有攻击的完美技术,尤其是针对提示词的拦截技术。这是由于大型语言模型在服务于人类的过程中所固有的复杂性(人类是上帝,但上帝也会犯错),因此很难找到一个全面解决问题的方法。4.为了全面提升模型的安全性能,有必要在模型的训练阶段采取更为全面的措施(如对抗样本训练)。这样的训练可以使模型在早期学习阶段就识别并适应各种潜在的攻击模式,增强其对攻击行为的防御机制。

Others are asking
stable diffusion和国内的这些AI绘画的模型有什么区别
Stable Diffusion 和国内的 AI 绘画模型主要有以下区别: 1. 数据集和学习方式: 在线的国内模型可以访问庞大且不断更新扩展的数据集,还能实时从用户的弱监督学习中获得反馈,从而不断调整和优化绘画策略。而 Stable Diffusion 通常受限于本地设备的计算能力,其数据集和学习反馈相对有限。 2. 计算能力: 在线的国内模型能利用云计算资源进行大规模并行计算,加速模型的训练和推理过程。Stable Diffusion 受本地设备计算能力限制,性能可能不如在线模型。 3. 模型更新: 在线的国内模型可以随时获得最新的版本和功能更新,更好地适应不断变化的绘画风格和技巧。Stable Diffusion 的模型更新相对较慢。 4. 协同学习: 在线的国内模型可以从全球范围内的用户中学习,更好地理解各种绘画风格和技巧。Stable Diffusion 则只能依赖于有限的本地模型,对绘画可能性的了解可能不够全面。 例如,Niji·journey 5 在二次元角色设计领域就展现出比 Stable Diffusion 更强大的性能和实用性。同时,国内还有 DeepSeek、阿里巴巴的 Qwen2 系列、清华大学的 OpenBMB 项目等在不同方面表现出色的模型。
2025-01-08
有哪些优质的法律大模型数据集
以下是一些优质的法律大模型数据集: 1. ChatLaw: 地址: 简介:由北大开源的一系列法律领域的大模型,包括 ChatLaw13B(基于姜子牙 ZiyaLLaMA13Bv1 训练而来),ChatLaw33B(基于 Anima33B 训练而来,逻辑推理能力大幅提升),ChatLawText2Vec,使用 93w 条判决案例做成的数据集基于 BERT 训练了一个相似度匹配模型,可将用户提问信息和对应的法条相匹配。 2. LaWGPT: 地址: 简介:该系列模型在通用中文基座模型(如 ChineseLLaMA、ChatGLM 等)的基础上扩充法律领域专有词表、大规模中文法律语料预训练,增强了大模型在法律领域的基础语义理解能力。在此基础上,构造法律领域对话问答数据集、中国司法考试数据集进行指令精调,提升了模型对法律内容的理解和执行能力。 3. LexiLaw: 地址: 简介:LexiLaw 是一个基于 ChatGLM6B 微调的中文法律大模型,通过在法律领域的数据集上进行微调。该模型旨在为法律从业者、学生和普通用户提供准确、可靠的法律咨询服务,包括具体法律问题的咨询,还是对法律条款、案例解析、法规解读等方面的查询。 4. Lawyer LLaMA: 地址: 简介:开源了一系列法律领域的指令微调数据和基于 LLaMA 训练的中文法律大模型的参数。Lawyer LLaMA 首先在大规模法律语料上进行了 continual pretraining。在此基础上,借助 ChatGPT 收集了一批对中国国家统一法律职业资格考试客观题(以下简称法考)的分析和对法律咨询的回答,利用收集到的数据对模型进行指令微调,让模型习得将法律知识应用到具体场景中的能力。
2025-01-08
免费的学术AI大模型
以下是一些免费的学术 AI 大模型: 1. 国内: 阿里、腾讯对新用户提供免费试用服务器,如腾讯云的。服务器系统配置选择【宝塔】系统。 阿里的接口,创建 API key。 也有免费接口,但大都限制一定免费额度的 Token。 2. 国外: 来操作。 此外,ProductHunt 2023 年度最佳产品榜单中的免费 AI 模型有: 1. GPT4(免费可用)——与人类水平相当的 LLM。 2. Midjourney v5(免费)——令人惊叹的逼真 AI 图像以及五指手。 3. DALL·E 3(免费可用)——轻松将想法转化为极其精准的图像。 4. Mistral 7B(免费)——迄今为止最优秀的 70 亿参数模型,Apache 2.0。 智谱·AI 开源模型列表可参考。Token 数代表了模型支持的总 Token 数量,包括输入和输出的所有 token,且一个 token 约等于 1.8 个汉字。
2025-01-08
跑本地大模型有哪些用处?
跑本地大模型具有以下用处: 1. 支持多种大型语言模型:如通义千问、Llama 2、Mistral 和 Gemma 等,可应用于不同场景。 2. 易于使用:适用于 macOS、Windows 和 Linux 系统,支持 CPU 和 GPU,方便在本地环境中启动和运行。 3. 丰富的模型库:提供多种不同参数和大小的模型,满足不同需求和硬件条件,可通过 https://ollama.com/library 查找。 4. 自定义模型:能通过简单步骤修改模型的温度参数等以调整创造性和连贯性,或设置特定系统消息。 5. API 和集成:提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 6. 社区贡献丰富:包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 Ollama 是一个开源框架,旨在简化本地运行大型语言模型的过程。它是轻量级、可扩展的,提供简单 API 创建、运行和管理模型,还有预构建模型库,降低使用门槛,适合初学者和非技术人员,适用于自然语言处理研究和产品开发。安装可通过官方下载地址 https://ollama.com/download ,安装后可通过相关链接判断是否成功。运行时在命令行输入相应命令,选择模型如 llama2 ,Ollama 会自动下载模型到本地。
2025-01-08
是不是可以跟任何大模型进行对话
一般来说,可以跟很多大模型进行对话。以下是一些常见的方式: 1. 对于 Llama3 大模型: 下载大模型主要是为了与之对话,或者称为使用其进行推理。 有两种对话方式,可使用 API 或部署简单界面。面向小白,这里主要介绍部署界面的方式。 例如,在 /root/autodltmp 路径下新建 chatBot.py 文件并输入相关内容,然后启动 Webdemo 服务,按照指示映射端口,在浏览器中打开相应链接即可看到聊天界面。 2. 对于 Llama 大模型: 首先编译,为利用 Metal 的 GPU 可用特定命令编译。 去指定网址下载模型。 llama.cpp 还提供了 WebUI 供用户使用,启动 server 后默认监听 8080 端口,打开浏览器就可以对话。 3. 对于通过 Open WebUI 使用大模型: 访问指定网址,使用邮箱注册账号。 登陆成功后,Open WebUI 一般有聊天对话和 RAG 能力(让模型根据文档内容回答问题)两种使用方式。如果要求不高,已实现通过 Web UI 与本地大模型对话的功能。 需要注意的是,不同大模型的访问速度和回答效果可能存在差异,例如 ChatGPT 访问速度快是因为其服务器配置高,回答效果好是因为训练参数多、数据更优以及训练算法更好。
2025-01-07
我想在dify里按照一个reranker模型,推荐哪个
在 Dify 中安装 reranker 模型,推荐使用中转服务商。Dify 的部署版本中,模型需自行配置,官方和中转的都支持,但中转服务商从性价比角度更优,充点小钱就能用上各种模型,价格通常有较大折扣,20 刀普通用户能用很久,还能在不同地方使用。若没有合适的中转服务商,可使用我自用的,点击原文即可。模型设置方面,在 Dify 右上角点击设置模型供应商,填入中转服务商提供的信息(一般包括 API base 或 Base URL 以及 key)并保存。若保存成功,回到主页面创建一个 Agent 测试,正常则大功告成。比如我填的 API base 是‘https://one.glbai.com’。
2025-01-07
提示词安全边界
以下是关于提示词安全边界的相关内容: 在任何文本输出场景下,实施一定程度的防护措施是必要的,且这种防护更侧重于模型交互层面的安全。一个完整的 RAG 提示词除业务功能外,应包含输入防护和输出防护两部分,以确保模型输入和输出过程的安全,保护整个系统。目前,没有能百分之百拦截所有攻击的完美技术,特别是针对提示词的拦截技术,这是由于大型语言模型服务人类时固有的复杂性。为全面提升模型安全性能,在模型训练阶段采取如对抗样本训练等更全面的措施是必要的,能使模型早期学习并适应潜在攻击模式,增强防御机制。 之前也曾提到提示词安全问题,这常被忽略,但却是关键且严肃的事。比如某 toC 产品泄漏提示词,可能被不良利用。对于生产级应用,安全总是第一位,在讲解更深入的提示词技术前,应先关注提示词安全。 更系列文章合集请访问:
2025-01-07
目前字节有哪些可以运用到安全审核业务的大模型?
字节在安全审核业务中可能运用到的大模型包括: 1. Claude2100k 模型,其上下文上限是 100k Tokens,即 100000 个 token。 2. ChatGPT16k 模型,其上下文上限是 16k Tokens,即 16000 个 token。 3. ChatGPT432k 模型,其上下文上限是 32k Tokens,即 32000 个 token。 大模型的相关知识: 1. 大模型中的数字化便于计算机处理,为让计算机理解 Token 之间的联系,需把 Token 表示成稠密矩阵向量,这个过程称为 embedding,常见算法有基于统计的 Word2Vec、GloVe,基于深度网络的 CNN、RNN/LSTM,基于神经网络的 BERT、Doc2Vec 等。 2. 以 Transform 为代表的大模型采用自注意力机制来学习不同 token 之间的依赖关系,生成高质量 embedding。大模型的“大”指用于表达 token 之间关系的参数多,例如 GPT3 拥有 1750 亿参数。 3. 大模型的架构包括 encoderonly(适用于自然语言理解任务,如分类和情感分析,代表模型是 BERT)、encoderdecoder(同时结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,代表是 google 的 T5)、decoderonly(更擅长自然语言生成任务,典型使用包括故事写作和博客生成,众多 AI 助手基本都来自此架构)。大模型的特点包括预训练数据非常大(往往来自互联网,包括论文、代码、公开网页等,一般用 TB 级数据进行预训练)、参数非常多(如 Open 在 2020 年发布的 GPT3 已达到 170B 的参数)。
2024-12-25
目前字节有哪些可以运用到审核安全业务的ai?
字节在审核安全业务方面可以运用的 AI 包括: 1. OpenAI 的审核(Moderation)Endpoint:可用于检查内容是否符合使用策略,其模型分为 hate(表达、煽动或宣扬基于种族、性别等的仇恨内容)、hate/threatening(仇恨内容且包括对目标群体的暴力或严重伤害)、selfharm(宣扬、鼓励或描绘自残行为)、sexual(旨在引起性兴奋的内容)、sexual/minors(包含未满 18 周岁的个人的色情内容)、violence(宣扬或美化暴力或歌颂他人遭受苦难或羞辱的内容)、violence/graphic(以极端血腥细节描绘死亡、暴力或严重身体伤害的暴力内容)等类别。在监视 OpenAI API 的输入和输出时,可以免费使用审查终结点,但目前不支持监控第三方流量,且对非英语语言的支持有限。 2. 专利审查方面的 AI: 专利趋势分析和预测:AI 可以分析大量的专利数据,识别技术发展趋势和竞争情报,帮助企业和研究机构制定战略决策。示例平台如 Innography、PatSnap。 具体 AI 应用示例: Google Patents:使用 AI 技术进行专利文献的全文检索和分析,提高了专利检索的准确性和效率。 IBM Watson for IP:利用 NLP 和机器学习技术,自动化地进行专利检索、分类和分析,减少了人工工作量,提高了专利审查的效率和准确性。 其他应用: 专利检索与分类:通过自然语言处理(NLP)和机器学习算法,自动识别和分类专利文献。示例平台如 Google Patents、IBM Watson for IP。 专利分析和评估:分析专利文本,评估专利的新颖性和创造性,预测专利的授权可能性。示例平台如 TurboPatent、PatentBot。 自动化专利申请:帮助自动生成专利申请文件,减少人工编写和审查时间。示例平台如 Specifio、PatentPal。 专利图像和图表分析:分析专利申请中的图像和图表,帮助识别和分类技术内容。示例平台如 Aulive、AIpowered image recognition tools。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-25
我想知道如果我上传给Coze数据库,我的数据安全有保障吗
关于您上传数据到 Coze 数据库的数据安全保障问题,以下是相关信息: 合规说明方面: 不存在产出违法违规内容,包括色情暴力、政治敏感和违法犯罪等。 不存在爬取行为,遵循 robot.txt 爬虫协议,未使用匿名代理。 不存在版权争议问题,未爬取强版权资源、付费内容等。 不存在跨境数据传输,未使用海外 API 和海外模型。 有安全合规声明,作者声明作品没有侵权,作品安全可用且公开可接受。 Coze 数据库的功能特点: 知识库功能不仅支持上传和存储外部知识内容,还提供多样化的检索能力,能解决大模型可能出现的幻觉问题和专业领域知识的不足,显著提升回复准确性。支持从多种数据源上传文本和表格数据,自动将知识内容切分成多个片段进行存储,并允许用户自定义内容分片规则,提供多种检索方式,适应各种使用场景。 数据库具备记忆能力,可以存储和检索用户的交互历史,以提供更加个性化的服务。支持实时更新,确保信息最新。能存储用户的交互历史,包括提问、回答和反馈,用于理解用户需求和优化对话流程,可进行个性化服务和错误纠正与学习。 综上所述,从目前的信息来看,您上传给 Coze 数据库的数据在一定程度上是有安全保障的。但具体情况还需参考 Coze 数据库的最新政策和规定。
2024-11-14
大模型安全相关资料
以下是关于大模型安全的相关资料: 大模型的架构:包括 encoderonly、encoderdecoder 和 decoderonly 三种类型。其中,我们熟知的 AI 助手基本采用 decoderonly 架构,这些架构都是由谷歌 2017 年发布的“attention is all you need”论文中提出的 transformer 衍生而来。 大模型的特点:预训练数据量大,往往来自互联网上的论文、代码、公开网页等,通常用 TB 级别的数据进行预训练;参数非常多,如 Open 在 2020 年发布的 GPT3 就已达到 170B 的参数。 大模型的安全性保障:通过对齐(指令调优),包括监督微调、获取 reward model 与进行强化学习来调整语言模型的输出分布,以保证语言模型不会输出有害内容和信息。例如 LLAMA2 专门使用了安全有监督微调确保安全。但 Alignment 并不足以防护所有安全问题,存在越狱(Jailbreak)现象,会使模型对齐失效。此外,还有隐私问题。 相关资源:如果想进一步了解大语言模型安全,可以访问 Github awesomellmsafety 项目:https://github.com/ydyjya/AwesomeLLMSafety
2024-10-18
用ai做ppt会有数据安全和隐私泄露 风险吗
使用 AI 制作 PPT 可能存在一定的数据安全和隐私泄露风险。 一方面,取决于所使用的 AI 工具及其数据处理政策。如果该工具的开发者或服务提供商没有采取足够的安全措施来保护用户数据,那么数据就有可能被泄露。 另一方面,在输入数据到 AI 系统时,如果包含了敏感信息,且该信息未经过妥善处理和加密,也存在被窃取或不当使用的风险。 然而,许多正规和知名的 AI 工具通常会采取一系列措施来保障数据安全和用户隐私,例如数据加密、严格的访问控制、遵循相关法律法规等。但用户在选择使用 AI 工具制作 PPT 时,仍需仔细阅读服务条款和隐私政策,了解数据的处理和存储方式,以最大程度降低潜在的风险。
2024-09-22