Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何搭建公司内部的智慧知识平台,要求有数字人智能问答,AI陪练,个人学习规划与点评,业务方案生成等功能

Answer

搭建公司内部具有数字人智能问答、AI 陪练、个人学习规划与点评、业务方案生成等功能的智慧知识平台,需要以下几个关键步骤:

  1. 需求分析:明确公司的业务需求、用户群体特点以及对各个功能模块的具体要求。
  2. 技术选型:选择适合的技术框架和工具,例如自然语言处理技术、机器学习算法、数据库管理系统等。
  3. 数据准备:收集和整理大量的相关数据,包括业务知识、常见问题、员工学习资料等,并进行数据清洗和预处理。
  4. 数字人智能问答模块:利用自然语言处理技术和深度学习模型,训练数字人能够理解用户的问题并提供准确的回答。
  5. AI 陪练模块:设计有效的训练场景和算法,让 AI 能够与员工进行互动式的陪练,提供反馈和指导。
  6. 个人学习规划与点评模块:根据员工的学习历史和能力水平,制定个性化的学习规划,并能够对学习成果进行点评和建议。
  7. 业务方案生成模块:基于公司的业务数据和需求,利用数据分析和生成模型,为用户提供可行的业务方案。
  8. 系统集成与测试:将各个模块集成到一个统一的平台中,并进行充分的测试,确保系统的稳定性和功能的完整性。
  9. 用户培训与推广:对员工进行系统使用的培训,提高用户的接受度和使用率。
  10. 持续优化:根据用户的反馈和实际使用情况,不断优化和改进平台的功能和性能。
Content generated by AI large model, please carefully verify (powered by aily)
Others are asking
推荐几款陪练ai机器人,用于员工培训
以下为您推荐用于员工培训的陪练 AI 机器人: Coze 平台的英语陪练 AI Bot: 首先打开扣子的首页,直接点击左上角的创建 AI Bot 按钮。 在弹窗输入 Bot 的相关信息即可完成创建,接下来可细化其功能。 根据功能需求设计人设与回复逻辑。 基于需求调整模型设置,比如将对话轮数改为 20 轮。 主要使用了英文名言警句等插件。 设置开场白和预置问题,预置问题有参考价值。 最后设置 AI Bot 的语音,选择亲切的英语音色。 使用建议:直接使用豆包的语音通话方式,效果更好。 实际演示效果:包括视频演示、文字交流中的训练纠错、解读上传图片或文件的英文内容(目前支持在 Coze 端使用,豆包端暂不支持)。 试用链接:Coze 端
2024-12-30
英语陪练AI软件
以下为您介绍一款 24 小时英语陪练 AI 软件: 这款软件是利用 AI 技术实现一对一英语陪练。在中国,很多人学了多年英语仍存在哑巴英语的问题,想提高口语但面临诸多困难,如没机会、不敢说、请外教费用高昂等。而现在借助 AI 发展,有了免费且随时可用的英语陪练。 使用建议:建议直接使用豆包的语音通话方式,效果更好。 实际演示效果: 视频演示:扮演英语水平较差的学习者。 文字交流中的训练纠错。 解读上传图片或文件的英文内容(目前支持在 Coze 端使用,豆包端暂不支持)。 直接试用: Coze 端使用链接:https://www.coze.cn/store/bot/7354381765919834127 豆包端使用链接:https://www.doubao.com/chat/22308348468226 教学步骤: 创建 AI Bot:首先打开扣子的首页,直接点击左上角的创建 AI Bot 按钮,在弹窗输入 Bot 的相关信息即可完成创建,然后细化其功能。 设计人设与回复逻辑:根据功能需求设计提示词。 调整模型设置:基于聊天为主的需求,建议将对话轮数记录改为 20 轮,方便训练口语考试时不忘记上下文。 插件:主要使用英文名言警句(get_one_eng_word & get_many_eng_words)随机获取英语名言,Simple OCR(ocr)识别图片中的文字。 设置开场白和预置问题:预置问题有参考价值,能满足学习需求。 设置语音:选择亲切的英语音色。
2024-11-23
有AI英语陪练的软件吗
以下为您介绍一款 AI 英语陪练软件: Coze 可以免费为您提供 24 小时英语陪练服务。使用建议:建议直接使用豆包的语音通话方式,效果更好。 实际演示效果包括: 视频演示:扮演英语水平较差的学习者。 文字交流中的训练纠错。 解读上传的图片或文件的英文内容(目前支持在 Coze 端使用,豆包端暂不支持)。 直接试用: Coze 端使用链接:https://www.coze.cn/store/bot/7354381765919834127 豆包端使用链接:https://www.doubao.com/chat/22308348468226 教学步骤: 创建 AI Bot:首先打开扣子的首页,直接点击左上角的创建 AI Bot 按钮,然后在弹窗输入 Bot 的相关信息即可完成创建,接下来可细化其功能。 设计人设与回复逻辑:根据 AI Bot 的功能需求设计提示词。 调整模型设置:基于功能需求,以聊天为主的 AI Bot 建议多一些对话轮数的记录,可改为 20 轮。 插件:主要使用了英文名言警句可识别图片中的文字并返回结果。 设置开场白和预置问题:预置问题有参考价值。 设置语音:因为是英语陪练 AI Bot,选择比较亲切的英语音色。
2024-11-05
有没有什么AI工具可以当俄语陪练的
以下是一些可以作为俄语陪练的 AI 工具: 1. 语言学习应用: Duolingo:使用 AI 个性化学习体验,根据进度和错误调整练习内容,通过游戏化方式提供词汇、语法、听力和口语练习。下载应用,选择俄语,按课程指引学习。 Babbel:结合 AI 技术,提供个性化课程和练习,重点是实际交流所需语言技能。注册账户,选择俄语课程,按学习计划学习。 Rosetta Stone:使用动态沉浸法,通过 AI 分析学习进度,提供适合的练习和反馈。注册并选择俄语,使用多种练习模式(听力、口语、阅读和写作)学习。 2. AI 对话助手: ChatGPT:可模拟对话练习,提高语言交流能力。在聊天界面选择俄语,与 AI 对话练习,询问语法、词汇等问题,模拟实际交流场景。 Google Assistant:支持多种语言,包括俄语,可进行日常对话练习和词汇学习。设置为俄语,通过语音命令或文本输入互动,练习日常用语。
2024-10-19
AI 口语陪练
以下为您介绍两款 AI 口语陪练工具: 1. Elsa Speak: 如同私人英语教练,能找出您的每一个小错误。 涵盖商务到日常等各种实用话题,如同与全球英语母语者闲聊。 帮助您摆脱死记硬背,进行实战练习。 链接:https://elsaspeak.onelink.me/rEuf/tqkeqwml 、https://x.com/xiaohuggg/status/1710613957466304792?s=20 2. Coze 英语陪练: 可以根治哑巴英语,提供 24 小时免费陪练。 建议使用豆包的语音通话方式,效果更好。 有视频演示、文字交流中的训练纠错、解读上传图片或文件的英文内容(部分功能有平台限制)。 Coze 端链接:https://www.coze.cn/store/bot/7354381765919834127 豆包端链接:https://www.doubao.com/chat/22308348468226
2024-10-13
陪练机器人的workflow配置思路
以下是关于陪练 AI 机器人的 workflow 配置思路: 1. 选择合适的预训练大模型作为基础 可以使用基础模型、对话模型等,根据需求选择合适的模型 通过 API 接口调用大模型的能力 2. 设置机器人的人格和背景知识 根据需要为机器人设置不同的人格特点和背景知识 让机器人扮演不同类型的"顾客"角色 3. 开发对话交互流程 设计机器人与用户之间的对话流程和交互逻辑 可以使用工作流引擎等工具来可视化定义和管理对话流程 4. 集成语音交互能力 如果需要语音交互,可以集成语音识别和合成的能力 提升对话的自然性和沉浸感 5. 实时监测和优化 实时监测用户与机器人的对话情况和学习效果 根据反馈数据持续优化对话流程和机器人行为 6. 支持多场景应用 可以将陪练机器人应用于销售培训、客户服务等不同场景 根据场景需求定制不同的机器人角色和对话流程 总的来说,陪练 AI 机器人的 workflow 配置需要充分利用大模型能力,设计贴合实际需求的机器人角色和对话流程,并通过实时监测和优化不断提升应用效果。这需要综合运用 AI、工作流等技术手段。
2024-04-19
面向老年人的AI agent
以下是为您整理的关于面向老年人的 AI agent 的相关信息: Meta 发布了可以利用 AI 自动剪辑视频的 Agents LAVE,结合 Sora 这样的视频生成模型,一些简单的短视频及广告视频可能无需人工介入。 人工智能可以赋予计算机个性,相关配套产品范围广泛,有些用于娱乐,有些专注于提供特定价值,比如帮助孩子浏览互联网或对抗老年人的孤独感。51%的成年人表示感到孤独,像 MyReplika 这样的应用程序可以减少自杀意念。 在基于 LLM 的 AI Agent 方面: 理解工具:AI Agent 有效使用工具的前提是全面了解其应用场景和调用方法。可利用 LLM 的 zeroshot learning 和 fewshot learning 能力,通过描述工具功能和参数的 zeroshot demonstration 或特定工具使用场景和相应方法演示的少量提示来获取工具知识。面对复杂任务,AI Agent 应将其分解为子任务并有效组织协调,这依赖于 LLM 的推理和规划能力以及对工具的理解。 使用工具:AI Agent 学习使用工具的方法主要包括从 demonstration 中学习和从 reward 中学习(清华有一篇从训练数据中学习的文章),包括模仿人类专家行为,了解行为后果,并根据环境和人类反馈做出调整。环境反馈包括任务完成结果反馈和行动引起的环境状态变化中间反馈;人类反馈包括显性评价和隐性行为,如点击链接。 在具身智能方面:具身 Agent 强调将智能系统与物理世界紧密结合,其设计灵感来自人类智能发展,认为智能更多来自与环境的持续互动和反馈。与传统深度学习模型相比,LLMbased Agent 能够主动感知和理解所在物理环境并与其互动,利用内部丰富知识库进行决策和产生具体行动改变环境,这一系列行为被称为“具身行动”。
2025-02-05
ai制作的网站会被搜索引擎收录吗
AI 制作的网站有可能被搜索引擎收录,但这取决于多个因素。 搜索引擎收录网站通常会考虑网站的内容质量、结构、可访问性等方面。对于 AI 制作的网站,如果其内容具有价值、独特性,并且符合搜索引擎的算法和规则,同时网站的结构清晰、易于抓取和索引,那么就有被收录的机会。 目前有一些能联网检索的 AI 工具,例如 ChatGPT Plus 用户现在可以开启 web browsing 功能实现联网,Perplexity 结合了 ChatGPT 式的问答和普通搜索引擎的功能,Bing Copilot 作为 AI 助手可简化在线查询和浏览活动,还有 You.com 和 Neeva AI 等搜索引擎提供基于人工智能的定制搜索体验并保持用户数据私密性。 此外,也有一些关于 AI 产品的相关信息,如独立开发者 idoubi 艾逗笔的产品 ThinkAny 经过三个月发展已成为月访问量 60 万的全球化产品,OpenAI 为维护服务质量和安全性将限制来自当前不支持国家和地区的 API 流量。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-05
AI在智慧城市中的应用
AI 在智慧城市中有以下应用: 1. 交通领域: 自动驾驶:用于开发自动驾驶汽车,提升交通安全性和效率。 交通管理:优化交通信号灯和交通流量,缓解交通拥堵。 2. 物流和配送:优化物流路线和配送计划,降低运输成本,包括无人机送货,将货物快速送达偏远地区。 3. 教育:实现个性化学习,为每个学生提供定制化的学习体验。 4. 农业:分析农田数据,提高农作物的产量和质量。 5. 娱乐:开发虚拟现实和增强现实体验。 6. 能源:优化能源的使用,提高能源效率。 此外,AI 的应用场景还在不断扩展,未来将对我们的生活产生更加深远的影响。在智慧城市中,AI 还可以用于城市规划、公共安全管理、环境监测等方面,以提升城市的运行效率和居民的生活质量。
2025-02-05
代码小白想要学习上手aiagent 请给我制定高效学习流程
以下是为代码小白制定的学习 AI Agent 的高效流程: 1. 基础了解 度过第一阶段,了解 AI 的基本原理和发展阶段。 2. 选择方向 鉴于您是代码小白,建议从不需要代码基础的 Coze 工作流学起。它适用所有人,只要能发现智能体的需求,就可以用工作流来实现。 3. 学习资源 可以参考《雪梅 May 的 AI 学习日记》,了解在业务运营领域如何通过 Coze 接触大量应用场景和进行 prompt 练习。 阅读安仔的文章,学习如何使用极简未来平台、腾讯云轻量应用服务器、宝塔面板和 Docker 搭建一个 AI 微信聊天机器人,了解相关技术组件的选用、配置步骤、费用和运维问题。 查看元子的分享,如“小白的 Coze 之旅”,深入了解 Coze 平台。 4. 加入社群 可以加入免费的 AI Agent 共学群,基于 WaytoAGI 社区等高质量信息源,分享时下 AI Agent 相关的玩法、经验和前沿资讯。通过微信号 Andywuwu07 或扫描二维码加微信,备注 AI 共学即可加入。 希望以上流程对您有所帮助,祝您学习顺利!
2025-02-05
适合电商设计的AI软件
以下是一些适合电商设计的 AI 软件和相关应用: 1. 对于珠宝电商设计: 输入原始纹理,生成 AI 设计,叠加纹理效果,机器雕刻生产,可提升珠宝玉器行业定制效率。 2. 辅助创建 CAD 图的 AI 工具: CADtools 12:Adobe Illustrator 插件,添加 92 个绘图和编辑工具。 Autodesk Fusion 360:集成 AI 功能的云端 3D CAD/CAM 软件。 nTopology:基于 AI 的设计软件,可创建复杂 CAD 模型。 ParaMatters CogniCAD:根据设计目标和约束条件自动生成 3D 模型。 主流 CAD 软件的生成设计工具:如 Autodesk 系列、SolidWorks 等。 3. 用 AI 完成阿里巴巴营销技巧和产品页面优化: 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况。 关键词优化:AI 分析和推荐高流量、高转化的关键词。 产品页面设计:AI 设计工具生成吸引人的页面布局。 内容生成:AI 文案工具撰写有说服力的产品描述和营销文案。 图像识别和优化:AI 图像识别技术选择或生成高质量产品图片。 价格策略:AI 分析不同价格点对销量的影响。 客户反馈分析:AI 分析客户评价和反馈。 个性化推荐:AI 根据用户购买历史和偏好提供个性化产品推荐。 聊天机器人:AI 驱动的聊天机器人提供 24/7 客户服务。 营销活动分析:AI 分析不同营销活动的效果。 库存管理:AI 预测需求,优化库存管理。 支付和交易优化:AI 分析支付方式对交易成功率的影响。 社交媒体营销:AI 帮助在社交媒体上找到目标客户群体。 直播和视频营销:AI 分析观众行为,优化直播和视频内容。 需要注意的是,这些工具通常需要一定的相关知识和技能才能有效使用。对于初学者,建议先学习基本技巧,然后尝试使用这些 AI 工具来提高效率。
2025-02-05
什么是AI大模型?
AI 大模型是一个复杂且涉及众多技术概念的领域。以下为您详细介绍: 1. 概念:生成式 AI 生成的内容称为 AIGC。 2. 相关技术名词及关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习(有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归)、无监督学习(学习的数据没有标签,算法自主发现规律,经典任务如聚类)、强化学习(从反馈里学习,最大化奖励或最小化损失,类似训小狗)。 深度学习是一种参照人脑有神经网络和神经元的方法(因有很多层所以叫深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型。对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的 BERT 模型,可用于语义理解(如上下文理解、情感分析、文本分类),但不擅长文本生成。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。Transformer 比 RNN 更适合处理文本的长距离依赖性。
2025-02-05
如何做机器人交互提问的问答
以下是关于机器人交互提问的问答相关内容: 容器编排模板:是一种配置文件,用于在 Docker 中部署和管理多个容器,可一键部署复杂环境,无需手动配置细节,文中通过其配置 COW 组件与微信和极简未来平台交互。 使用 Docker 部署 COW 组件的原因:Docker 提供隔离运行环境,确保应用稳定运行,简化安装和配置,保证部署环境一致,便于管理和维护。 配置多个前缀触发机器人回复的原因:确保只有特定情况机器人才回复,避免群聊或私聊中频繁干扰,提高响应准确性和用户体验。 扫码登录失败的解决办法:尝试重启 Docker 容器(在宝塔面板中找到对应容器点击“重启”)、检查网络连接(确保服务器和微信客户端能正常访问互联网)、重新扫描二维码(等待容器重启后扫描日志中生成的二维码)。 AI 微信聊天机器人的费用:实际费用不高,极简未来平台按使用量收费,对一般用户费用相对低廉,充值少量费用通常可用很长时间,平台还提供每天签到免费领积分福利降低成本。 使用极简未来平台创建 AI 机器人的费用:未明确具体金额,收费按使用量计算。 此外,关于问答机器人: 整个知识库内容庞大丰富,新用户难以快速找到内容。 传统搜索基于关键词及相关性,存在局限性。 作为 AI 知识库,需用更先进的 RAG 技术解决。 在群中提供快速检索信息的方式,使用更便捷。 您可以通过以下方式使用: 在 WaytoAGI 飞书知识库首页找到加入飞书群的链接(最新二维码在知识库首页),加入后直接@机器人。 在 WaytoAGI.com 的网站首页直接输入问题获取回答。
2025-02-05
我现在需要根据一系列的 yaml 和 markdown 构建一个知识库,并且需要支持 AI 问答,每次 AI 问答的结果都要保存成一个新的内容放到知识库中,请问从经济效益来看,有哪些服务可以使用?
目前从经济效益的角度来看,以下一些服务可能有助于您构建这样的知识库并支持 AI 问答以及结果保存: 1. 云服务提供商,如阿里云、腾讯云、AWS 等,它们提供可扩展的计算和存储资源,您可以根据实际需求灵活配置,避免过度投入硬件成本。 2. 开源的知识管理和问答系统框架,例如使用 Elasticsearch 结合相关插件来实现问答功能,成本相对较低,但可能需要一定的技术投入进行搭建和维护。 3. 一些专门针对知识管理和 AI 应用的 SaaS 服务,它们通常按使用量计费,初期投入较小,适合小规模应用。 需要注意的是,具体选择哪种服务取决于您的业务规模、技术能力、预算以及对性能和功能的要求。
2025-02-01
解释AI中连续问答时,为什么有时候AI似乎不记得我问的第一个问题了
在 AI 连续问答中,有时 AI 似乎不记得第一个问题,可能有以下原因: 1. 模型本身的限制:AI 回答问题时可能容易“产生幻觉”,生成看似合理但实际错误的内容,且可能连续且良好地撒谎,对于所提供的信息不一定能保证准确性和连贯性。 2. 缺乏上下文理解:AI 可能在处理后续问题时,未能充分整合和记住之前问题的关键信息,导致回答与之前的问题脱节。 3. 输出模式的固定性:像 GPT 回答问题时喜欢用特定的模式,如 1、2、3、4 或“首先、其次、最后”,这种固定模式可能影响对问题的灵活处理和记忆。 4. 无法真正解释自身:当被要求解释回答的原因或思考过程时,AI 只是生成听起来合理但可能是编造的文本,而不是真正审查自身的行动,这使得理解其回答的逻辑和连贯性变得困难。 为了让 AI 的回复更有灵性和连贯性,可以尝试一些方法,如让 AI 扮演特定角色、给出明确输出要求、营造特定环境、让其用括号补充动作以增加感情等。但即便如此,也不能完全消除上述问题。同时,使用 AI 时要注意对其输出进行检查,避免被不道德地利用。
2025-01-17
解释AI中连续问答时,为什么有时候
在 AI 中进行连续问答时,存在以下情况: 1. AI 容易“产生幻觉”并生成看似合理但实际错误的内容,甚至可能连续且良好地撒谎,其提供的每一件事或信息都可能不正确,需要对其进行全面检查。对于要求其为互联网提供参考、引用、引文和信息(对于未连接到互联网的模型)的情况尤其危险,不过 GPT4 通常更扎实,因为 Bing 的互联网连接能使其拉入相关事实,但幻觉也不可能完全消除。 2. 人工智能不会真正解释自己,当被要求解释为何写东西或思考过程时,它只是生成听起来合理但实则编造的文本,这使得理解系统中的偏见非常困难。 3. 在基于知识库的问答中,AI 有时回答不准确,可能出现牛头不对马嘴、报价错误、胡编乱造等情况,这在严肃场景中是不能接受的出错。 4. 撰写连续提示时,明确性、逻辑性、简洁性等原则尤为重要,清晰的目标、逻辑性的顺序、分步骤的指导以及对变量的考虑都能更有效地指导 AI 生成符合期望的输出,这些原则不仅适用于 CoD 和 CoT,还适用于 ToT 或其他提示结构。
2025-01-17
问答对挖掘
以下是关于提升问答效果的技巧: 1. 智能问答的原理和注意事项:在召回排序的逻辑中,文档总标题在相似度计算中权重较高。若文档总标题与用户问题吻合,相关片段在排序中更靠前,送入大模型的可能性更大。但正文与总标题相关性不高可能导致回答不准确、答非所问。 2. 编写文档的注意事项: 文档的标题内容需与正文有强相关性。 不同的知识点尽量分段书写,合理控制段落长度。不同主题通过子标题区分,子标题下正文每个段落对应一个明确知识点,避免多个知识点混合,以保证每个片段主题鲜明,在用户提问相关问题时,该片段在召回排序中更靠前。同时,每个段落尽量不超过 500 字,过长段落可能在文档分割时被切割成多个片段,打散段落主题,导致最终召回的片段内容不全、答案不够全面。 3. 对于经常被问到的内容,可写成问答对(FAQ)格式。问答对包含问题描述,用户提出相关问题时,包含该问答对的片段在召回排序中非常靠前,更可能被送入大模型,给出准确回答。样例参考可查看相关示例。
2025-01-11
如何利用多轮对话做Agent问答
利用多轮对话做 Agent 问答可以从以下几个方面考虑: 1. 从产品角度: 思考用户为何想使用,例如通过探索历史新闻让用户更好地了解自身背景、成长环境,从中学习成长并获得有趣互动体验。 明确 Agent 是谁及其性格,比如设定为知识渊博、温暖亲切、富有同情心的历史新闻探索向导,负责新闻解析和历史背景分析。 确定提供新闻的时间,如用户出生那天及那一周的重要新闻事件。 规划除新闻外的能力,如提供历史背景分析、相关画作、生活方式分析,甚至加入神秘主义者和心理学家角色回应用户。 设计多 Agent 出场顺序和使用方式,通过多角色互动设计,让用户体验多层次对话,从基本问答到深度讨论,逐步引导用户探索。 2. 基于 LLM 的大脑模块: 自然语言交互方面:LLM 应具备多轮对话能力,能理解自然语言并生成连贯、上下文相关的回复,还应具备出色的生成能力和意图理解能力,但要注意模糊指令可能带来的挑战。 知识方面:包括语言知识(词法、句法、语义学和语用学)、常识知识(如药和伞的用途)、专业领域知识(如编程、医学),但要注意知识可能过时或错误,需通过重新训练或编辑 LLM 解决。 记忆方面:具备记忆机制,存储过去的观察、思考和行动,通过提高输入长度限制、记忆总结、用向量或数据结构压缩记忆等策略提升记忆,Agent 能检索记忆以访问相关信息,包括自动检索和交互式记忆对象。 推理和规划方面:基于证据和逻辑进行推理,这对解决问题和决策至关重要。
2025-01-08
扣子智能体搭建工作流
扣子智能体的搭建工作流主要包括以下内容: 1. 插件:扣子平台上有多种类型的插件,如看新闻、规划旅行、提高办公效率、理解图片内容的 API 等,还可自定义插件添加所需 API,使智能体更强大。 2. 工作流: 工作流如同可视化拼图游戏,可将插件、大语言模型、代码块等功能组合,创建复杂稳定的业务流程。 工作流由多个小块块(节点)组成,包括开始和结束的小块块,不同小块块可能需要引用前面小块块的信息或自行设定的信息。 例如“竖起耳朵听”的智能体中用到 5 个小块块,能回答带有图片口语的结果。 生物医药小助手智能体由 1 个工作流和 6 个数据库实现,工作流设计简单,包括 input、对接知识库、搭载豆包 function call 大模型和 output,相对有难度的是收集和校对知识库资料。 在落地应用方面,如通过扣子工作流用代码模块进行 HTTP 访问实现 0 token 脱离扣子模型使用 Groq 作为 LLM,还可适配到 APP 产品填 APIKEY 调用的场景,或接入手机类 APP 如 Siri 等。但扣子工作流的搭建细节需自行移步 WaytoAGI 自学。
2025-02-05
coze工作流搭建
以下是在 Coze 上搭建工作流的步骤: 1. 进入 Coze ,点击「个人空间 工作流 创建工作流」,打开创建工作流的弹窗。 2. 根据弹窗要求,自定义工作流信息,点击确认完成工作流的新建。 3. 新建完成后,可以看到整个编辑视图与功能。在左侧「选择节点」模块中,根据子任务需要,实际用到的有: 插件:提供一系列能力工具,拓展 Agent 的能力边界。例如本案例中涉及的思维导图、英文音频,因无法通过 LLM 生成,需依赖插件实现。 大模型:调用 LLM ,实现各项文本内容的生成。如本案例中的中文翻译、英文大纲、单词注释等都依赖大模型节点。 代码:支持编写简单的 Python、JS 脚本,对数据进行处理。 4. 编辑面板中的开始节点、结束节点,分别对应分解子任务流程图中的原文输入和结果输出环节。 5. 按照流程图,在编辑面板中拖入对应的 LLM 大模型、插件、代码节点,即可完成工作流框架的搭建。 此外,在“用 Coze 搭建一个神奇宠物诞生器”的工作流中,“定制召唤”工作流是“随机召唤”工作流的变种。对于“定制召唤”工作流,需要修改的节点包括: 开始节点:新增一个输入变量,定义为 keywords ,用于接收用户输入的宠物种类(动物或者植物)。 代码节点:要将特定的宠物种类关键词嵌入到描述 prompt 里。例如,如果召唤师输入“熊猫”,R 属性的宠物描述就要修改为“一个朴素小熊猫宠物,可爱,圆滚滚的,大眼睛,毛茸茸的。画风参考著名动画片《神奇宝贝》”,SR 和 SSR 依次类推。描述 prompt 变成三段字符串相加的情况,即原描述第一段+宠物种类+原描述第二段。其余节点均与“随机召唤工作流一致”。
2025-02-03
大模型搭建知识库的逻辑是什么
大模型搭建知识库的逻辑主要包括以下几个方面: 1. 理解 RAG 技术:利用大模型搭建知识库本质上是 RAG 技术的应用。在大模型训练数据有截止日期或不包含所需数据时,通过检索增强生成(RAG)来解决。RAG 可抽象为 5 个过程: 文档加载:从多种来源加载包括非结构化、结构化和代码等不同类型的文档。 文本分割:把文档切分为指定大小的块。 存储:包括将切分好的文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 检索:通过检索算法找到与输入问题相似的嵌入片。 输出:把问题及检索出来的嵌入片一起提交给大模型,生成更合理的答案。 2. 构建知识库各个流程: 从用户提出问题开始,经历用户问题的理解、路由、初步检索、重排序等环节,最终将重排序后的结果和用户的查询意图组合成上下文输入给大模型生成输出结果。需要注意重排序结果的使用限制,如设置阈值进行截断或筛选相关性分数等。 后置处理包括敏感内容检测和移除、格式化输出等。 3. 知识库的需求:大模型并非 100%准确,存在数据日期限制和无法感知公司内部私有数据等问题,知识库的出现就是为解决大模型的数据准确性问题。例如在客服系统中,公司将用户问题及答案记录在文档中以知识库形式投喂给大模型,使其能更准确回答用户自然语言询问的问题。
2025-02-03
Coze + 飞书 + 飞书多维表格:通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出。由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据,无需开发任何插件、APP,能实现跨平台的稍后读收集与智能阅读计划的推荐。其设计思路包括简化“收集”,实现跨平台收集和通过输入 URL 完成收集;自动化“整理入库”,自动整理关键信息并支持跨平台查看;智能“选择”推荐,根据收藏记录和用户兴趣生成阅读计划——这个方法具体如何操作?
以下是关于通过飞书机器人与 Coze 搭建的智能体进行对话,并利用飞书多维表格存储和管理稍后读数据,实现跨平台的稍后读收集与智能阅读计划推荐的具体操作方法: 前期准备: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 输入一个 URL 即可完成收集,借鉴微信文件传输助手的方式,通过聊天窗口完成收集输入。 2. 自动化“整理入库”: 系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 阅读清单支持跨平台查看。 3. 智能“选择”推荐: 根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成阅读计划。 使用飞书·稍后读助手: 1. 设置稍后读存储地址: 首次使用,访问。 点击「更多创建副本」,复制新表格的分享链接。 将新链接发送到智能体对话中。 还可以发送“查询存储位置”、“修改存储位置”来更换飞书多维表格链接,调整稍后读存储位置。 2. 收藏待阅读的页面链接: 在对话中输入需要收藏的页面链接,第一次使用会要求授权共享数据,授权通过后再次输入即可完成收藏。但目前部分页面链接可能小概率保存失败。 3. 智能推荐想看的内容: 在对话中发送“我想看 xx”、“xx 内容”,即可按个人兴趣推荐阅读计划。 至此,专属 AI 稍后读智能体大功告成,您可以尽情享受相关服务。
2025-01-27
如何用飞书搭建自己的智能体详细步骤
以下是用飞书搭建自己的智能体的详细步骤: 1. 了解智能体的基本概念: 智能体大多建立在大模型之上,从基于符号推理的专家系统逐步演进而来。 基于大模型的智能体具有强大的学习能力、灵活性和泛化能力。 提示词的设计对智能体的表现和输出结果有直接影响。 2. 动手实践: 基于公开的大模型应用产品(如 Chat GLM、Chat GPT、Kimi 等)尝试开发。 具体步骤: 点击“浏览 GPTs”按钮。 点击“Create”按钮创建自己的智能体。 使用自然语言对话进行具体设置或手工设置。 开始调试智能体并发布。 3. 利用 Coze + 飞书多维表格搭建: 配置得到两个可用的工作流(整理入库、选择内容)。 编排成为完整的智能体,配置过程包括: 创建 Bot。 填写 Bot 介绍。 切换模型为“通义千问”(测试下来,通义对提示词理解、执行效果最好)。 把配置好的工作流添加到 Bot 中。 新增变量{{app_token}}。 添加外层 bot 提示词(可按需求和实际效果优化调整)。 完成上述步骤后,可在「预览与调试」窗口与 AI 稍后读智能体对话并使用全部功能。
2025-01-26
如何用飞书搭建自己的智能体
以下是用飞书搭建自己的智能体的步骤: 1. 智能体配置: 在“选择智能体配置模式”环节,如果选择“Zion 默认智能体”,系统会自动填充官方 Bot ID、OAuth 应用 ID 以及一对公私钥,并预设头像与昵称。 若要配置自己的 Coze 智能体,需将“准备工作”环节中获取的 Bot ID、OAuth 应用 ID 以及一对公私钥填写进对应输入框并完成配置。 进行用户权限配置,包括新用户注册赠送时长(以分钟为单位)和未登录用户免费体验时长(以分钟为单位),且时长可自行修改。 2. 逐步搭建 AI 智能体: 创建 Bot。 填写 Bot 介绍。 切换模型为“通义千问”,测试表明通义对提示词理解和执行效果较好。 把配置好的工作流添加到 Bot 中。 新增变量{{app_token}}。 添加外层 bot 提示词(可按需求和实际效果优化调整)。完成上述步骤后,在「预览与调试」窗口,即可与 AI 智能体对话并使用全部功能。
2025-01-26