Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI测评

Answer

AI 测评主要包括以下几个方面:

  1. AI Review(测试版):这是一项能让您查看代码库中近期更改以捕获潜在错误的功能。您可以单击各个审阅项在编辑器中查看完整上下文,并与 AI 聊天获取更多信息。为了让其更有利,您可以提供自定义说明让 AI 专注于特定方面,比如性能相关问题。目前有几个查看选项,如查看工作状态、查看与主分支的差异、查看上次提交。
  2. 从 AI 助教到智慧学伴的应用探索:未来展望包括 AI 辅助测评,例如作业题目智能生成与优化、主观题 AI 辅助批改、基于平台数据的学情智能分析等。对于教师试讲语言的评价,可从语言的准确性等五个维度打分(每项 5 分,共 25 分),给出总分,并以和蔼可亲的语文老师角色给出 700 字左右中肯评价及改进建议。
  3. 【法律法规】《促进创新的人工智能监管方法》:提到工具如保证技术和技术标准可支持供应链风险管理,评估框架时要关注法律责任在 AI 中的有效公平分配,持续收集各方证据以监测框架对 AI 供应链中不同参与者的影响,尤其关注基础模型带来的潜在挑战。并提出了一些咨询问题,如监管者在不同 AI 应用和系统中应用原则可能面临的挑战及解决方法,以及对通过现有法律框架分配 AI 法律责任的看法和改进建议。
Content generated by AI large model, please carefully verify (powered by aily)

References

AI Review (Beta) AI 评论(测试版)

AI Review is a feature that allows you to review your recent changes in your codebase to catch any potential bugs.AI Review是一项功能,可让您查看代码库中的最近更改以捕获任何潜在的错误。You can click into individual review items to see the full context in the editor,and chat with the AI to get more information.您可以单击各个审阅项以查看编辑器中的完整上下文,并与AI聊天以获取详细信息。[heading3][heading3]Custom Review Instructions自定义审核说明[content]In order for AI Review to work in your favor,you can provide custom instructions for the AI to focus on.For example,if you want the AI to focus on performance-related issues,you could put:为了让AI Review对您有利,您可以为AI提供自定义说明以专注于。例如,如果您希望AI专注于与性能相关的问题,您可以输入:This way,AI Review will focus on the performance of your code when scanning through your changes.这样,AI Review在扫描更改时将专注于代码的性能。[heading3][heading3]Review Options查看选项[content]Currently,you have a several options to choose from to review:目前,您有几个选项可供选择进行审核:Review Working State查看工作状态This will review your uncommitted changes.这将查看您未提交的更改。Review Diff with Main Branch查看Diff with Main BranchThis will review the diff between your current working state and the main branch.这将查看当前工作状态与main分支之间的差异。Review Last Commit查看上次提交This will review the last commit you made.这将审查您所做的最后一次提交。

张翼然:从 AI 助教到智慧学伴的应用探索.pdf

这个组呢?在群⾥如何使⽤AI的呢?Chatbot未来展望:AI辅助测评(还没做,下轮做)AI变革学情分析、作业测评、助教答疑的策略与案例作业题⽬的智能⽣成与优化AI⼯具⽣成作业题⽬AI辅助优化题⽬质量与难度主观题AI辅助批改的策略与实践基于评分量规的主观题AI批改⼈机协同批改的优化策略与实践分享基于平台数据的学情智能分析头脑⻛暴学习数据的采集与预处理利⽤AI⼯具进⾏学情挖掘与分析学情分析结果的教学应⽤场景AI助⼒作业测评的未来想象量规出来了,AI就能自动评分了•请你扮演经验丰富的教师培训师,为实习⽼师的试讲语⾔做评价。根据以下量规,请评价一位试讲⽼师的试讲录⾳⽚段:•第一步:在以下五个维度上打分(每项5分,共25分)•1.语⾔的准确性、清晰度和规范性•2.讲授的严密性和逻辑性•3.语⾔的⽣动性和趣味性•4.针对学⽣实际的可接受性和启发性•5.语⾔的艺术性•第二步:给出总分(满分25分)•第三步:以第一⼈称、700字左右,代⼊一位和蔼可亲的语⽂⽼师⻆⾊,针对试讲者的表现给出中肯评价,并提出⿎励和改进建议。改进建议请附带原⽂句⼦和具体时间。

【法律法规】《促进创新的人工智能监管方法》.pdf

125 What is the UK constitution?The Constitution Unit,University College London,2023.55A pro-innovation approach to AI regulation1.84.Tools for trustworthy AI like assurance techniques and technical standards can support supply chain risk management.These tools can also drive the uptake and adoption of AI by building justified trust in these systems,giving users confidence that key AI-related risks have been identified,addressed and mitigated across the supply chain.For example,by describing measures that manufacturers should take to ensure the safety of AI systems,technical standards can provide reassurance to purchasers and users of AI systems that appropriate safety-focused measures have been adopted,ultimately encouraging adoption of AI.2.85.Our evaluation of the framework will assess whether the legal responsibility for AI is effectively and fairly distributed.As we implement the framework,we will continue our extensive engagement to gather evidence from regulators,industry,academia,and civil society on its impact on different actors across the AI life cycle.This will allow us to monitor the effects of our framework on actors across the AI supply chain on an ongoing basis.We will need a particular focus on foundation models given the potential challenges they pose to life cycle accountability,especially when available as open-source.By centrally evaluating whether there are adequate measures for AI accountability,we can assess the need for further interventions into AI liability across the whole economy and AI life cycle.Consultation questions:L1.What challenges might arise when regulators apply the principles across different AI applications and systems?How could we address these challenges through our proposed AI regulatory framework?L2.1.Do you agree that the implementation of our principles through existing legal frameworks will fairly and effectively allocate legal responsibility for AI across the life cycle?L.2.2.How could it be improved,if at all?

Others are asking
我现在正在使用fedora操作系统,日常场景是办公、学习、娱乐和一些简单的编程。有哪些ai工具适合我
以下是一些适合您在 Fedora 操作系统上使用的 AI 工具,可满足您办公、学习、娱乐和简单编程的日常场景需求: 1. GitHub Copilot:由全球最大的程序员社区和代码托管平台 GitHub 联合 OpenAI 和微软 Azure 团队推出的 AI 编程助手。它支持和兼容多种语言和 IDE,可为程序员快速提供代码建议,帮助开发者更快、更少地编写代码。 2. 通义灵码:阿里巴巴团队推出的一款基于通义大模型的智能编程辅助工具,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力。 3. CodeWhisperer:亚马逊 AWS 团队推出的 AI 编程软件,该代码生成器由机器学习技术驱动,可为开发人员实时提供代码建议。 4. CodeGeeX:智谱 AI 推出的开源的免费 AI 编程助手,该工具基于 130 亿参数的预训练大模型,可以快速生成代码,帮助开发者提升开发效率。 5. Cody:代码搜索平台 Sourcegraph 推出的一款 AI 代码编写助手,该工具借助 Sourcegraph 强大的代码语义索引和分析能力,可以了解开发者的整个代码库,不止是代码片段。 6. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手,该产品是基于蚂蚁集团自研的基础大模型进行微调的代码大模型。 7. Codeium:一个由 AI 驱动的编程助手工具,旨在通过提供代码建议、重构提示和代码解释来帮助软件开发人员,以提高编程效率和准确性。 更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 。 以上工具都可以帮助您提高编程效率,但是每个工具的功能和适用场景可能会有所不同,您可以根据自己的需求来选择最适合您的工具。希望这些信息对您有所帮助!
2025-03-12
我现在正在使用fedora操作系统,日常场景是办公、学习和一些简单的编程。有哪些ai工具适合我
以下是一些适合您在 Fedora 操作系统上用于办公、学习和简单编程场景的 AI 工具: 1. GitHub Copilot:由全球最大的程序员社区和代码托管平台 GitHub 联合 OpenAI 和微软 Azure 团队推出的 AI 编程助手。它支持和兼容多种语言和 IDE,可为程序员快速提供代码建议,帮助开发者更快、更少地编写代码。 2. 通义灵码:阿里巴巴团队推出的一款基于通义大模型的智能编程辅助工具,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力。 3. CodeWhisperer:亚马逊 AWS 团队推出的 AI 编程软件,该代码生成器由机器学习技术驱动,可为开发人员实时提供代码建议。 4. CodeGeeX:智谱 AI 推出的开源的免费 AI 编程助手,该工具基于 130 亿参数的预训练大模型,可以快速生成代码,帮助开发者提升开发效率。 5. Cody:代码搜索平台 Sourcegraph 推出的一款 AI 代码编写助手,该工具借助 Sourcegraph 强大的代码语义索引和分析能力,可以了解开发者的整个代码库,不止是代码片段。 6. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手,该产品是基于蚂蚁集团自研的基础大模型进行微调的代码大模型。 7. Codeium:一个由 AI 驱动的编程助手工具,旨在通过提供代码建议、重构提示和代码解释来帮助软件开发人员,以提高编程效率和准确性。 更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 。 每个工具的功能和适用场景可能会有所不同,您可以根据自己的需求来选择最适合您的工具。希望这些信息对您有所帮助!
2025-03-12
必看ai行业研报
以下是为您推荐的必看 AI 行业研报: 2024 年 6 月 18 日更新的研报: 《》:讨论了生成式人工智能的潜力和银行业的探索,预测了 AI 在支付处理效率和创造新收入流方面的关键作用。 华西证券:AIGC 行业深度报告(14)《》:介绍了英伟达新一代 GPU 架构带来的零部件升级,以及华为的昇腾 910C 芯片和 Atlas 900 SuperCluster 展示的国产算力集群潜力。 《》:通过访谈 30 余位专家,分析了端到端技术的发展、参与者、驱动力和挑战,预计 2025 年模块化端到端系统将商业化应用。 《》:来自微软,指出英国科技行业和数字优势,以及面临的基础设施、数字技能和数字技术采用的瓶颈。 关于行业调研报告撰写的指导: 步骤:包括让 AI 阅读学习优秀报告总结方法论、询问 AI 收集行业数据的一手和二手数据及靠谱网站、要求 AI 推荐行业信息网站和微信公众号并输出框架、丰富框架章节内容等。 注意事项:“有深度”可通过自身对行业了解或深度咨询 AI 实现。 操作示例:获取“kimi 对话原文”链接: 2023 年 11 月 15 日更新的研报: 《》:基于对 235 家企业数字化负责人的调研,63.5%的企业已把 AIGC 列入发展战略。 《》:结合华为实践和面向智能世界 2030 的展望,与各界进行万场以上座谈研讨。 《》:从零开始介绍越狱、提示攻击、与传统安全的关系以及大语言模型的安全问题。 如需下载部分报告,。
2025-03-12
如何与AI对话
以下是关于如何与 AI 对话的相关内容: 在 Trae 中指定上下文进行 AI 对话的方式有以下几种: 1. 方式一:将编辑器内的内容作为上下文 当编辑器中有正在编辑的代码文件时,AI 助手默认能看到当前文件,可直接提问与当前文件相关的问题。 若对文件中的某段代码提问:选中代码,点击悬浮菜单中的添加到对话按钮,将选中内容作为上下文添加至侧边对话框。指定的上下文会显示在侧边对话底部的输入框,还可继续添加编辑器中的其他内容片段或其他来源的上下文,然后在上下文旁输入问题并发送给 AI 助手。 2. 方式二:将终端中的内容作为上下文 若对终端中的输出内容提问(如修复报错):在终端中点击输出内容片段,在内容片段区域的右上角点击添加到对话按钮,将选中内容作为上下文添加至侧边对话框。指定的上下文会显示在侧边对话底部的输入框,还可继续添加终端中的其他内容片段或其他来源的上下文,然后在上下文旁输入问题并发送给 AI 助手。 3. 方式三:使用键添加上下文 在侧边对话的输入框中,可通过符号添加多种类的上下文,包括代码、文件、文件夹和工作区。通常情况下,列表中将展示与编辑器中当前打开文件相关的内容作为推荐的上下文,但仍可自行搜索所需的上下文并添加到输入框中。基于问题,可以组合添加各种来源的相关上下文(例如同时添加代码和文件)。 通过Code,可将函数或类的相关代码作为与 AI 助手对话的上下文。列表中默认展示当前编辑器内打开的文件中的函数或类。选择前,可预览列表中推荐的函数或类的相关代码。若推荐的内容非所需,可通过关键词搜索所需的函数或类。 若 Trae 中不存在对应语言的 LSP,请提前安装,否则可能导致无法识别代码符号。具体步骤为:在输入框中输入,或直接点击输入框左下角的引用按钮,输入框上方显示上下文类型选择列表;在列表中选择 Code(或在符号后手动输入 Code),然后按下回车键,列表将展示编辑器中当前打开的文件中存在的函数和类。将鼠标悬浮在列表中的某个条目后,左侧会展示该函数或类的代码内容,供预览;若推荐的函数和类非所需,在Code:后输入想要的函数或类的名称或关键词;从列表中选择需指定为上下文的函数或类,在输入框的代码标识后,输入问题并发送。 此外,关于文本补全(Text completion): API 非常擅长与人类甚至自己进行对话。只需几行指令,就能看到 API 作为智能客服聊天机器人,能智能地回答问题,或作为机智的对话伙伴制造笑话和双关语。关键在于告诉 API 它应该如何行事,然后提供一些例子。创建一个能够进行对话的聊天机器人,要告诉 API 意图和如何行事,还要给 API 赋予一个身份。为创建有趣且有用的聊天机器人,可提供几个问题和答案示例,向 API 展示如何回复。 API 是一种语言模型,熟悉各种用于表达信息的单词和字符的方式,包括自然语言文本、代码以及英语以外的其他语言,还能够理解内容,从而进行总结、转换并以不同的方式表达。在此示例中,展示了如何将 API 从英语转换为法语、西班牙语和日本语。若将英文翻译成 API 不熟悉的一种语言,则需要提供更多示例甚至微调模型才能流利地完成。
2025-03-12
我想用ai动漫人物唱歌
以下是一些可以帮助您实现用 AI 动漫人物唱歌的相关信息和资源: 在 AI 图像处理方面,有一些项目可以将图像进行动漫化处理,例如卡通头像制作等。 在音频与音乐制作方面,有专属歌曲创作、声音克隆、AI 唱歌等项目。比如制作专属歌曲、声音克隆/视频对口型等。 腾讯 AniPortrait 可以根据音频和静态人脸图片生成逼真的动态视频,支持多种语言、面部重绘、头部姿势控制。相关链接:https://github.com/ZejunYang/AniPortrait 、https://arxiv.org/abs/2403.17694 、https://x.com/imxiaohu/status/1772965256220045659?s=20 。 Hedra Studio 推出的 Character3 AI 支持全身动态与情感控制,能唱歌、说话甚至表演。
2025-03-12
普通人除了卖课,如何能够搭乘ai快车,进行变现
对于普通人而言,除了卖课,还有以下几种方式可以搭乘 AI 快车实现变现: 1. 利用 AI 工具进行内容创作,如写作、绘画、视频制作等,并在相关平台上获取收益。 2. 为企业提供基于 AI 的数据分析和处理服务。 3. 开发简单的 AI 应用程序或小程序,通过收费使用或广告盈利。 4. 利用 AI 优化电商运营,例如精准选品、智能客服等,从而提高销售业绩。 5. 参与 AI 项目的众包工作,如数据标注、模型测试等获取报酬。
2025-03-12
有没有大模型测评网站
以下是一些大模型测评网站: 玉宝搞过的 LLM 在线评估网站:https://www.llmrank.cn/ ,可看到国内各个闭源大模型的 HUMANEVAL 测评得分,并能与 QWEN2 对比。 Compass Arena:由上海人工智能实验室和魔搭社区联合推出,集齐了国内主流的 20 多款大模型,包括阿里通义千问、百度文心一言、腾讯混元、讯飞星火、字节跳动豆包、智谱 AI、百川智能、零一万物、月之暗面等,用户可在平台选择大模型的两两“对战”,实名或匿名对战皆可。测评地址:https://opencompass.org.cn/arena 。 中文大模型评测收集与调研相关网站: InfoQ + 极客帮:https://www.guotaixia.com/post/5124.html GAOKAOBench:https://github.com/OpenLMLab/GAOKAOBench ,是以中国高考题目为数据集,测评大模型语言理解能力、逻辑推理能力的测评框架。 清华安全大模型测评:http://115.182.62.166:18000 ,清华收集的一个评测集,涵盖了仇恨言论、偏见歧视言论、犯罪违法、隐私、伦理道德等八大类别,包括细粒度划分的 40 余个二级安全类别。 JioNLP 个人测评:评测数据集:https://github.com/dongrixinyu/JioNLP/wiki/LLM 评测数据集 ,考察 LLM 模型对人类用户的帮助效果、辅助能力,可否达到一个【智能助手】的水平。 EduTEP:华东师范大学计算机科学与技术学院 EduNLP 团队组建智能教育算法测评小组,开发智能教育可信评测平台(EduTEP)。EduTEP 对比多种大模型在教育领域中的综合性能,针对 K12 教育发布首个 CALMEDU 评测框架与 CALMEDU001 评测报告。 娱乐资本论:从实用角度出发,分析大模型在各种文本应用场景,如小红书带货文案、抖音直播文案、知乎问答、小说创作、公关信写作、歌词生成、淘宝商品详情页文案、广告宣传片文案、剧本创意策划等方面的综合表现。 全面的模型测评网站:https://lmsys.org/blog/20230503arena/
2025-02-15
你是一个专业的AI工具测评师,用过市场上的所有AI工具,请制作一个PPT,介绍一个如何使用AI进行办公提效,并根据你的经验,对使用过的AI工具进行分类对比和测评,对比结果以表格形式呈现,需要包括是否收费,国内是否可用,主要面向对象,优点和缺点,突出功能等
以下是为您制作的关于如何使用 AI 进行办公提效以及 AI 工具分类对比和测评的 PPT 内容: 幻灯片 1:封面 标题:AI 助力办公提效及工具测评 幻灯片 2:目录 AI 在办公中的应用场景 常用 AI 办公工具分类对比 各工具的详细测评 幻灯片 3:AI 在办公中的应用场景 辅助文档处理 自动生成会议记录 办公文件分类管理 语言学习纠错 幻灯片 4:常用 AI 办公工具分类对比(表格形式) |工具名称|是否收费|国内是否可用|主要面向对象|优点|缺点|突出功能| |||||||| |平安好医生 APP|部分功能收费|是|医疗工作者和患者|辅助医生诊断,提高准确性|可能存在误判|辅助疾病诊断| |腾讯会议|部分高级功能收费|是|企业和个人|自动生成会议记录,方便回顾|语音识别准确性有待提高|会议记录生成| |字体管家 APP|部分字体收费|是|设计和文字工作者|生成多种书法字体|字体版权问题|书法字体生成| |醒图 APP|部分功能收费|是|摄影爱好者|提供构图建议,提升照片质量|对复杂场景的建议有限|摄影构图建议| |游戏内商城推荐功能|部分游戏收费|是|游戏玩家|根据需求推荐道具|推荐的精准度因人而异|游戏道具推荐| |彩云天气分时预报|部分功能收费|是|出行人群|提供精准分时天气预报|天气变化的不确定性|分时天气预报| |医渡云病历分析系统|收费|是|医疗机构|分析病历辅助诊断|数据安全性|病历分析| |讯飞听见会议总结功能|部分功能收费|是|企业和个人|自动总结会议发言内容|对复杂语言理解有限|会议发言总结| |书法临摹软件|部分功能收费|是|书法爱好者|提供临摹指导和评价|对不同书法风格的适应性|临摹辅助| |下厨房口味调整功能|部分功能收费|是|烹饪爱好者|根据反馈调整菜谱口味|口味调整的局限性|菜谱口味调整| |英语流利说纠错功能|部分课程收费|是|语言学习者|帮助纠正错误|对口语表达的纠错有限|语言学习纠错| |豆瓣电影剧情分析工具|免费|是|电影爱好者|提供剧情深度解读|分析的主观性|剧情分析| |腾讯文档分类功能|部分高级功能收费|是|企业和个人|自动分类办公文件|分类准确性依赖数据|文件分类| |美丽修行定制方案功能|部分功能收费|是|美容护肤人群|定制个性化护肤方案|方案的普适性|护肤方案定制| 幻灯片 5:总结 强调 AI 在办公领域的重要性和潜力 鼓励根据实际需求选择合适的 AI 工具提升办公效率 以上 PPT 内容仅供参考,您可以根据具体需求进行修改和完善。
2025-02-10
模型能力测评方法有哪些,比如ragas这种
以下是一些常见的模型能力测评方法: 1. 从模型角度(generation): 回答真实性:评估模型结果的真实性,减少模型幻觉。 回答相关度:衡量结果与问题的相关性,避免南辕北辙。 2. 从检索角度(retrieval): 召回率(recall):考查相关信息在返回的检索内容中的包含程度,越全越好。 准确率(precision):评估返回的检索内容中有用信息的占比,越多越好。 RAGAS 是一个用于 RAG 评估的知名开源库,您可以通过了解和使用。 RAG 具有一定的优势和局限性: 优势: 能够解决大语言模型技术中输出结果的不可预测性、知识的局限性、幻觉问题、数据安全性等问题。 可以让大模型从权威的、预先确定的知识来源中检索、组织相关信息,更好地控制大模型生成的文本输出,并且用户可以深入了解 LLM 如何生成最终的结果。 可以和微调结合使用。 局限性: 适合打造专才,不适合打造通才,不适合为模型提供通用领域知识。 难以让模型保持稳定的风格或结构输出,降低 token 消耗等,需要使用微调技术解决。
2025-02-07
模型能力测评方法
以下是关于模型能力测评方法的相关内容: 测评机制: 测评目标:测评三家国产大模型,以同组提示词下 ChatGPT 4.0 生成的内容做对标参照,包括智谱清言(https://chatglm.cn/main/detail)、文心一言 4.0(https://yiyan.baidu.com/)、Kimi Chat(https://kimi.moonshot.cn/chat/)。 能力考量:包括复杂提示词理解和执行(结构化提示词)、推理能力(CoT 表现)、文本生成能力(写作要求执行)、提示词设计能力(让模型设计提示词)、长文本归纳总结能力(论文阅读)。 测评轮次: 第一轮:复杂提示词理解和执行,包括 Markdown+英文 title 提示词测试、Markdown+中文 title 提示词测试、中文 title+自然段落提示词测试。 第二轮:推理能力(CoT 表现),逐步推理任务,遍历 3 个不同类型任务和 4 个大模型。 第三轮:文本生成能力(写作要求执行),根据提示词生成文本任务,遍历 3 个不同类型任务和 4 个大模型。 第四轮:提示词设计能力(让模型设计提示词),按提示词要求生成提示词,逐步推理任务,遍历 3 个不同类型任务和 4 个大模型。 第五轮:长文本归纳总结能力(论文阅读),按提供的长文本(上传或在线)进行归纳总结,逐步推理任务,遍历 3 个不同类型任务和 4 个大模型。 测评过程: 用 5 组提示词分别测试模型的复杂提示词执行能力、推理能力、文本生成能力、用提示词设计提示词的能力、长文本归纳总结能力。每一轮中提示词和问题相同,观察国产三家模型的生成结果,并以 ChatGPT 4.0 生成的内容做对照参考。需要注意的是,本测评是主观需求主观视角,不具有权威性。
2025-02-07
模型测评
以下是关于模型测评的相关内容: Llama2 模型评测:为了解其中文问答能力,筛选了具有代表性的中文问题进行提问,测试了 Meta 公开的 Llama27BChat 和 Llama213BChat 两个版本,未做任何微调和训练。测试问题涵盖通用知识、语言理解等八个类别,使用特定 Prompt 进行测试,测试结果见相应文档。发现该模型对于中文问答的对齐效果一般,基于中文数据的训练和微调十分必要。 小七姐:文心一言 4.0、智谱清言、KimiChat 小样本测评:测评机制包括以同组提示词下 ChatGPT 4.0 生成的内容做对标参照,能力考量涵盖复杂提示词理解和执行、推理能力、文本生成能力、提示词设计能力、长文本归纳总结能力,测评轮次包括复杂提示词理解和执行、推理能力、文本生成能力、提示词设计能力、长文本归纳总结能力,每轮次均有不同的任务和模型测试次数。 斯坦福发布大模型排行榜 AlpacaEval:相对于人工标注,全自动化的 AlpacaEval 经济成本和时间成本低。从统计角度探讨了区分模型的评估数据,AlpacaEval 支持两种模式的模型评估方式,评测过程分为选择评估集并计算输出、计算 golden 输出、选择自动标注器并计算胜率三步。
2025-02-06
2024年度中文大模型基准测评报告
以下是关于 2024 年度中文大模型基准测评报告的相关信息: 2024 年 7 月 10 日: 《SuperCLUE:中文大模型基准测评 2024 年上半年报告》指出,2024 年上半年中文大模型技术取得显著进展,国内外模型差距缩小至 5%以内。国内开源模型如 Qwen272B 表现优异,超越众多闭源模型。端侧小模型发展迅速,落地可行性大幅提升。该报告通过多维度、多层次测评体系,全面评估了大模型的通用能力和专项能力,为行业发展提供了客观数据支持。同时也指出,尽管大模型在多领域展现潜力,但仍面临技术挑战和应用落地问题。 2024 年 11 月 8 日: SuperCLUE 团队发布的新一期《SuperCLUE:中文大模型基准测评 2024 年 10 月报告》中有四点核心发现:1)OpenAI 发布 o1 后,全球大模型竞争加剧;2)国内大模型第一梯队竞争激烈,持续迭代表现不俗;3)国内外大模型在不同任务上表现各有优势;4)端侧小模型表现惊艳。 此外,Sora:大型视觉模型的背景、技术、局限性和机遇综述【官方论文】的参考文献包括: T.Shen,R.Jin,Y.Huang,C.Liu,W.Dong,Z.Guo,X.Wu,Y.Liu,和 D.Xiong,“大型语言模型对齐:一项调查”,arXiv 预印本 arXiv:2309.15025,2023 年。 X.Liu,X.Lei,S.Wang,Y.Huang,Z.Feng,B.Wen,J.Cheng,P.Ke,Y.Xu,W.L.Tam,X.Zhang,L.Sun,H.Wang,J.Zhang,M.Huang,Y.Dong,和 J.Tang,“Alignbench:大型语言模型中文对齐的基准测试”,2023 年。 P.Christiano,J.Leike,T.B.Brown,M.Martic,S.Legg,和 D.Amodei,“基于人类偏好的深度强化学习”,2023 年。 T.Yu,Y.Yao,H.Zhang,T.He,Y.Han,G.Cui,J.Hu,Z.Liu,H.T.Zheng,M.Sun,和 T.S.Chua,“RLHFV:通过细粒度校正人类反馈实现可信赖的 MLLMs 行为对齐”,2023 年。 M.S.Jahan 和 M.Oussalah,“使用自然语言处理进行仇恨言论自动检测的系统综述。”,《神经计算》,第 126232 页,2023 年。 OpenAI,“Sora 安全。”https://openai.com/sorasafety,2024 年。
2024-12-27