直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

国内哪家智能驾驶做的最好

回答

目前国内有多家企业在智能驾驶领域表现出色,但很难确切地说哪家是最好的。一些在智能驾驶方面具有较强实力和影响力的企业包括百度、华为、小鹏汽车、蔚来汽车等。这些企业在技术研发、实际应用和市场表现等方面都各有优势和特点。百度在自动驾驶技术的研发和测试方面投入较大,并取得了一定的成果;华为凭借其在通信和技术领域的积累,为智能驾驶提供了相关的解决方案;小鹏汽车和蔚来汽车等新兴造车势力也在智能驾驶的功能和体验上不断创新和优化。然而,智能驾驶技术仍在不断发展和演进,各企业的表现也会随着时间和市场的变化而有所不同。

内容由 AI 大模型生成,请仔细甄别(powered by aily)
其他人在问
你的知识库更新到什么时候,用的是哪家的大模型
以下是关于大模型的相关知识: 大模型与小模型的区别:小模型在特定任务上表现出色,但只能用于特定任务;大模型像多功能基础平台,能处理多种任务,应用范围广泛且拥有更多通识知识。 大模型的知识范围:大模型并不拥有无限知识,其知识来源于训练过程中接触的数据,这些数据有限,且训练后知识库不会自动更新,在某些特定或专业领域的知识可能不够全面。 大模型的运作机制:主要通过大量数据训练学习语言结构和模式,根据输入生成相应文本,类似于词语接龙游戏。 常见的大模型:包括 OpenAI 的 3.5 和 4 版本,微软 Bing 使用 4 和 3.5 的混合,谷歌的 Bard 由 PaLM 2 等基础模型驱动,Anthropic 的 Claude 2 具有非常大的上下文窗口,且不太可能恶意行事。 关于知识库的更新时间和使用的具体大模型,上述内容未明确提及。
2024-11-07
文生视频哪家强
目前在文生视频领域,以下是一些表现较为出色的产品: 1. Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 2. Pika:是一款出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。其新模型在文生视频质量上有大幅提升,例如生成皮克斯风格的镜头效果出色,稳定性高,语义理解强,动作幅度大,在 3D 和 2D 动画效果方面表现优秀。 3. SVD:如果熟悉 Stable Diffusion,可以安装这款最新的插件,在图片基础上直接生成视频,由 Stability AI 开源。 4. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但需要收费。 5. Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 更多的文生视频的网站可以查看:https://www.waytoagi.com/category/38 。 以下是 Sora 和其他模型能力的对比表格: |能力分类|能力|SORA|其他| ||||| |底层技术|架构|Transformer|UNet 为主| |底层技术|驱动方式|数据|图片| |对于真实世界的理解/模拟能力|世界理解能力|可理解世界知识|弱| |对于真实世界的理解/模拟能力|数字世界模拟|支持|不支持| |对于真实世界的理解/模拟能力|世界互动能力|支持|不支持| |对于真实世界的理解/模拟能力|3D 运动连贯性|强|弱| |对于真实世界的理解/模拟能力|物体一致性|强|弱| |对于真实世界的理解/模拟能力|物体持久性/连续性|强|弱| |对于真实世界的理解/模拟能力|文本理解|强|一般| |对于真实世界的理解/模拟能力|运动控制|其他|提示词提示词+运动控制工具| |基于模拟的视频编辑能力|无缝连接能力|强|弱| |基于模拟的视频编辑能力|视频到视频编辑|支持|部分| |基于模拟的视频编辑能力|扩展生成视频|前/后|后| |外显视频基础属性|视频时长|60 秒|2~4 秒| |外显视频基础属性|原生纵横比|支持|不支持| |外显视频基础属性|清晰度|1080P|最高 4K| 不同工具适合于不同的使用场景和需求,您可以根据自己的具体情况进行选择。
2024-10-15
国内ai哪家强大
在国内,以下是一些在 AI 领域表现较为突出的公司和产品: 腾讯:腾讯元宝是相对较晚推出的 AI 应用,其最大亮点在于强大的 AI 搜索功能,能够访问大量微信生态系统内的私域资源,还依托于腾讯“混元”大语言模型生成高质量内容。 Soul:旗下的异世界回响在情感陪伴方面有一定特色。 海鸟科技:推出了 AI 变脸产品。 MiniMax:推出了 MoE 架构的新模型,以及“星野”这个目前国内较成功的 AI 陪聊 APP。 杭州超节点:有无界 AI 产品,在图片生成方面表现不错。 兴利和:美趣 AI 是其在图片生成领域的产品。 智谱:一年间推出了 4 代 GLM,一直是国内能力较好的模型之一。 需要注意的是,在 2023 年官宣 AI 大模型的公司众多,其中不乏蹭流量的。从产品层面看,2C 端真正出圈的是“妙鸭相机”,但只是昙花一现。在硬件层,国内目前仍缺乏能胜任大模型训练的芯片,华为昇腾在单卡指标上距离不远,但因稳定性和生态问题仍需打磨。
2024-10-08
WayToAGI是什么?是哪家厂商做的?
WaytoAGI 直译就是通往 AGI 之路,它是一个自组织的AI社区,发起人是 AJ 和轻侯。AGI 指通用人工智能。
2024-09-29
你使用的是哪家基础大模型?
目前常见的基础大模型包括: Fooocus 程序默认用到了 3 个 SDXL 的模型,分别是一个 base,一个 Refiner,和一个 LoRA。其大模型(base 和 Refiner)默认放在:Fooocus_win64_1110\\Fooocus\\models\\checkpoints;LoRA 模型默认放在:Fooocus_win64_1110\\Fooocus\\models\\loras。如果单独安装,需要下载三个模型:SDXL 基础模型:https://huggingface.co/stabilityai/stablediffusionxlbase1.0/resolve/main/sd_xl_base_1.0_0.9vae.safetensors;refiner 模型:https://huggingface.co/stabilityai/stablediffusionxlrefiner1.0/resolve/main/sd_xl_refiner_1.0_0.9vae.safetensors;LoRA 模型:https://huggingface.co/stabilityai/stablediffusionxlbase1.0/resolve/main/sd_xl_offset_examplelora_1.0.safetensors。如果部署了 SD 秋叶包,也可以共用模型(大模型和 LoRA),可在 Fooocus_win64_1110\\Fooocus\\modules\\path.py 中修改路径为秋叶包模型对应的路径。配置好后点击 run.bat 文件启动。 在大型语言模型方面,主要有以下几家:OpenAI 制作了 GPT3.5 和 GPT4,它们驱动了 ChatGPT 和微软的 Bing(在 Edge 浏览器上访问);Google 在 Bard 的标签品牌下有各种模型;Anthropic 制造了 Claude 和 Claude 2。 每个微调工作都从一个默认为 curie 的基本模型开始,模型可以是 ada、babbage、curie 或 davinci。您可以使用 OpenAI CLI 开始微调工作,具体操作及相关注意事项如上述说明。
2024-09-09
AI浏览器哪家强
以下是关于 AI 浏览器的相关信息: 最佳免费选项:必应(https://www.bing.com/search?q=Bing+AI&showconv=1&FORM=hpcodx)。通常来说,付费选项中必应也是较好的。 对于儿童,来自可汗学院的 Khanmigo(https://www.khanacademy.org/khanlabs)提供由 GPT4 驱动的良好的人工智能驱动辅导。 需注意,如果打算使用人工智能作为搜索引擎,存在幻觉风险,大多数人工智能未连接到互联网。不过根据最近的一项试点研究,在某些情况下,如技术支持、决定在哪里吃饭或获得建议,必应通常比谷歌更好。 360AI 浏览器:用户浏览提效需求迫切,希望浏览器能够把深度文件、长视频自动看一遍,总结核心要点和高潮片段,从而实现学习工作效率提升。今年浏览器的很多功能被 APP 取代,要赋予浏览器新的概念,将其变成学习工具。官网地址:ai.se.360.cn
2024-09-07
汽车自动驾驶处理器
汽车自动驾驶处理器是一种在自动驾驶汽车中发挥关键作用的部件。智能体可以根据其复杂性和功能分为多种类型,其中基于模型的智能体就像自动驾驶汽车,不仅感知当前环境,还维护和更新周围环境的模型,从而做出驾驶决策。 在 AI 领域,有多种与汽车自动驾驶处理器相关的技术和概念。例如,黄仁勋在 AI 界超级碗 GTC2024 的主旨演讲中提到,世界上第一个机器人处理器专为高速传感器处理和人工智能而设计,如用于汽车中运行 Transformer 的处理器。同时,还提到了一些相关的系统和算法,如用于训练 AI 的 DGX、自主处理器 Jetson 等。 智能体在自动驾驶领域有广泛应用,其设计和实现通常涉及定义目标、感知系统、决策机制、行动系统以及学习与优化等步骤。
2024-11-11
帮我写一段120字的英文短文,回答这个问题:描述一下自动驾驶
Autonomous driving is a revolutionary technology that enables vehicles to operate without human control. It uses sensors, cameras, and advanced algorithms to perceive the environment, make decisions, and navigate safely. This technology holds the potential to greatly enhance transportation efficiency and reduce human errors on the road. However, it also faces challenges such as legal and ethical issues.
2024-11-04
智能驾驶开发
以下是关于智能驾驶开发的相关信息: 首先,在“ In order to help drive forward advances in”中提到,人工智能(Artificial Intelligence)被定义为一种基于机器的系统,对于给定的一组人类定义的目标,能够在影响真实或虚拟环境方面进行预测、推荐或决策,并且使用机器和基于人的输入来制定信息或行动的选项。 其次,在同一部分还提到了机器学习(Machine Learning)方面的内容,包括支持跨学科研究、教育和培训项目,以促进学生和研究人员在人工智能所使用的方法和系统中的学习,并培养相关领域(包括计算机科学、数学、统计学、工程、社会科学、心理学、行为科学、伦理学、安全、法律学术和其他学科)的学科专家之间的跨学科视角和合作,这对于负责任地推进人工智能的研究和开发是必要的。 另外,拜登签署的 AI 行政命令中指出,要确保美国在抓住人工智能的前景和管理其风险方面发挥引领作用。该行政命令建立了新的 AI 安全和保障标准,保护美国人的隐私,推进公平和公民权利,维护消费者和工人的权益,促进创新和竞争,提升美国在全球的领导地位等。 综上所述,这些内容从不同方面涉及了与智能驾驶开发可能相关的人工智能和机器学习的概念、研究支持以及政策导向等方面的信息。
2024-10-21
无人驾驶开发工程师
以下是为您提供的关于无人驾驶开发工程师的相关信息: 在生成式人工智能的行动方面,目前出现的趋势是首先将 AI 作为辅助驾驶(humanintheloop)部署,并通过使用机会积累经验,最终实现全自动化部署。例如 Sierra 就是一个例子,它在无法解决问题时能优雅地转交给人工处理。同时,新一代自主型应用随着生成式 AI 推理能力的提升而涌现,如 L4 智能驾驶可能是第一个具身智能最大的应用场景,目前其安全性比人类高 10 倍。 在 2024 北京智源大会的主题讨论中,张亚勤认为目前真正赚钱的是 2B 领域,如芯片、服务器等,应用是先 2C 再 2B。他把智能分成信息智能、具身智能、生物智能 3 个阶段,预测 05 年是信息智能,510 年是物理智能(具身智能),1520 年是生物智能。李开复认为无人驾驶面临巨大机会,FSD 会为无人驾驶带来新机遇,大模型适合虚拟世界,而接入物理世界会面临很多现实问题,创业者更适合从虚拟世界的 AI 创业开始。
2024-10-21
学习自动驾驶
以下是关于学习自动驾驶的相关知识: 深度 Q 学习在自动驾驶中的应用: 一辆自动驾驶汽车需要考虑多种状态,相似状态可组合,深度学习在此发挥作用。可将驾驶员当前视野的图像输入卷积神经网络(CNN),训练其预测下一个可能行动的奖励。相似状态的图像相似,行动也相似,网络能针对不同左转弯进行速度和位置微调。但成功使用深度 Q 学习不能简单应用规则训练 Q 函数,需将所有输入图像和输出动作存储为“经验”,即状态、动作和奖励存储在一起。 强化学习在自动驾驶中的应用: 强化学习是机器学习的重要分支,关注智能体与环境交互以实现长期回报最大化。在自动驾驶领域,强化学习可用于汽车的控制和决策,使其在复杂道路环境中保持安全驾驶、规避障碍物、遵守交通规则等。 学习自动驾驶的建议: 目前没有直接针对学习自动驾驶的具体建议,但学习 LLM 开发可关注顶会最新论文、技术博客等资源,参与相关社区交流和项目实践。总的来说,相关领域的学习是多学科、系统性的,需要理论学习和工程实践经验结合,熟练使用开源框架工具,保持对前沿动态的跟踪并参与项目。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-10-14
AI在智能驾驶领域的发展
AI 在智能驾驶领域的发展十分显著,主要体现在以下几个方面: 1. 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定,像特斯拉、Waymo 和 Cruise 等公司都在开发和测试自动驾驶汽车,使汽车能够自主导航和驾驶。 2. 车辆安全系统:AI 用于增强车辆的安全性能,例如自动紧急制动(AEB)、车道保持辅助(LKA)和盲点检测系统,通过分析摄像头和传感器的数据来预防事故。 3. 个性化用户体验:AI 能够根据驾驶员的偏好和习惯调整车辆设置,如座椅位置、音乐选择和导航系统,提供更个性化和舒适的驾驶体验。 4. 预测性维护:通过分析车辆的实时数据,AI 可以预测潜在的故障和维护需求,减少停机时间和维修成本,提高车辆的可靠性和效率。 5. 生产自动化:在汽车制造过程中,AI 用于自动化生产线,提高生产效率和质量控制,监测设备状态,优化生产流程,并减少人为错误。 此外,还有一些相关的观点认为,让机器能像生物拥有视觉一样获取信息,可能会带来新的突破。同时,有预测称 2024 年将是真正的应用从辅助人类转变为可以完全将人类排除在外的代理的一年,AI 将更像同事而非工具。
2024-09-12
一个大学生,如果要了解学习通用人工智能,提高其通用人工智能素养,请给出你的建议
以下是给大学生了解学习通用人工智能、提高通用人工智能素养的建议: 1. 从编程语言入手学习: 可以选择 Python、JavaScript 等编程语言,学习编程语法、数据结构、算法等基础知识,为后续学习打下基础。 2. 尝试使用 AI 工具和平台: 体验如 ChatGPT、Midjourney 等 AI 生成工具,了解其应用场景。 探索百度的“文心智能体平台”、Coze 智能体平台等面向大学生的平台。 3. 学习 AI 基础知识: 掌握 AI 的基本概念、发展历程。 熟悉主要技术,如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注权威媒体和学者,了解最新进展。 思考 AI 技术对未来社会的影响,培养思考和判断能力。 6. 深入学习数学知识: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等基本概念。 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。 7. 掌握算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:了解基本概念。 8. 了解评估和调优: 性能评估:学会评估模型性能的方法,如交叉验证、精确度、召回率等。 模型调优:学习使用网格搜索等技术优化模型参数。 9. 学习神经网络基础: 网络结构:理解前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)等基本结构。 激活函数:熟悉常用的激活函数,如 ReLU、Sigmoid、Tanh。
2024-11-17
典型的通用人工智能应用有哪些
以下是一些典型的通用人工智能应用: 1. 医疗保健: 医学影像分析:用于辅助诊断疾病。 药物研发:加速药物研发过程。 个性化医疗:提供个性化治疗方案。 机器人辅助手术:提高手术精度和安全性。 2. 金融服务: 风控和反欺诈:降低金融机构风险。 信用评估:帮助做出贷款决策。 投资分析:辅助投资者决策。 客户服务:提供 24/7 服务并回答常见问题。 3. 零售和电子商务: 产品推荐:根据客户数据推荐产品。 搜索和个性化:改善搜索结果和提供个性化体验。 动态定价:根据市场需求调整价格。 聊天机器人:回答客户问题和解决问题。 4. 制造业: 预测性维护:预测机器故障。 质量控制:检测产品缺陷。 供应链管理:优化供应链。 机器人自动化:提高生产效率。 5. 交通运输:暂未提及具体应用。 此外,通用人工智能模型还具有以下特点: 大型生成式人工智能模型可以灵活生成文本、音频、图像或视频等内容,适应各种不同任务。 当通用人工智能模型集成到人工智能系统中,该系统可服务于各种目的。 通用人工智能模型的提供者在人工智能价值链中具有特殊作用和责任,应提供适度的透明度措施和相关文件。
2024-11-17
什么是通用人工智能
通用人工智能(AGI)是指具有人类水平的智能和理解能力的 AI 系统。它有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 目前,AGI 还只是一个理论概念,尚未有任何 AI 系统能达到这种通用智能水平。实现 AGI 是人工智能研究的长期目标,这需要开发出在各种任务和环境中都能够进行推理、学习、理解和适应的 AI 系统。 OpenAI 在其内部会议上分享了关于通用人工智能(AGI)的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力的 AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平的 AI,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明的 AI,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 常见名词解释: AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),就是处理人类的自然语言。 LLM:大型语言模型(Large Language Model),数据规模很大,耗费资金多。
2024-11-17
你觉得人工智能带给人类的到底是提升还是毁灭呢?
人工智能带给人类的影响既有提升也有潜在的挑战,但并非必然导致毁灭。 从提升的方面来看: 技术上可以解决类似于社会歧视等问题,如通过 RLHF 等方法。 优化工作效率,虽然可能导致某些岗位的调整,但实际每个工作的组成部分不是单一的,人可以和人工智能更好地协同。例如放射科医生的案例,解读 X 光照片只是其工作的一部分,实际并未失业。 可以成为解决气候变化和大流行病等问题的关键。 作为自主的个人助理,代表人们执行特定任务,如协调医疗护理。帮助构建更好的下一代系统,并在各个领域推动科学进展。 潜在的挑战和担忧包括: 可能放大人类的负面影响,需要在技术层级加以解决。 导致失业,但能掌握人工智能的人会取代不会的人。 存在人类毁灭的担忧,不过目前此类观点缺乏具体的说明和论证。 对于强人工智能,目前 ChatGPT 的崛起引发了相关讨论,但通用技术并非等同于强人工智能。对于复杂的神经网络和黑箱模型的研究仍在进行,如何使用和控制这些模型是业界和社会争论的热点。科技公司倾向于训练辅助人类的超级智能助手,而非自我改进升级的超级智能体,以推动新一轮的工业革命和经济增长。 总之,人工智能的发展带来了巨大的机遇和挑战,需要我们聪明而坚定地采取行动,以实现其正面影响并应对潜在风险。
2024-11-16
人工智能最新信息
以下是人工智能的一些最新信息: 神经网络研究在 2010 年左右开始有巨大发展,ImageNet 大型图像集合催生了相关挑战赛。 2012 年卷积神经网络用于图像分类使错误率大幅下降,2015 年微软研究院的 ResNet 架构达到人类水平准确率。 从 2015 年到 2020 年,神经网络在图像分类、对话语音识别、自动化机器翻译、图像描述等任务中陆续实现人类水平准确率。 过去几年大型语言模型如 BERT 和 GPT3 取得巨大成功,得益于大量通用文本数据。 OpenAI 通用人工智能(AGI)的计划中,原计划 2026 年发布的 GPT7 因埃隆·马斯克的诉讼被暂停,计划 2027 年发布的 GPT8 将实现完全的 AGI。GPT3 及其升级版本 GPT3.5 是朝着 AGI 迈出的巨大一步。
2024-11-16
智能体
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 智能体的定义: 智能体是自主系统,通过感知环境(通常借助传感器)并采取行动(通常通过执行器)来达成目标。在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并包含以下关键组成部分: 规划 子目标和分解:将大型任务分解为更小、可管理的子目标,以有效处理复杂任务。 反思和完善:对过去行为进行自我批评和反思,从错误中吸取教训,完善未来步骤,提高最终结果质量。 记忆 短期记忆:利用模型的短期记忆进行上下文学习。 长期记忆:通过外部向量存储和快速检索实现长时间保留和回忆(无限)信息。 工具使用:学习调用外部 API 获取模型权重中缺失的额外信息,包括当前信息、代码执行能力、对专有信息源的访问等。 智能体的类型: 智能体可根据复杂性和功能分为以下几种类型: 简单反应型智能体(Reactive Agents):根据当前感知输入直接行动,不维护内部状态,不考虑历史信息。例如温控器,根据温度传感器输入直接控制加热器。 基于模型的智能体(Modelbased Agents):维护内部状态,对当前和历史感知输入建模,能推理未来状态变化并据此行动。比如自动驾驶汽车,不仅感知当前环境,还维护和更新周围环境模型。 目标导向型智能体(Goalbased Agents):具有明确目标,能根据目标评估不同行动方案并选择最优行动。例如机器人导航系统,有明确目的地并规划路线以避开障碍。 效用型智能体(Utilitybased Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动优劣并权衡利弊。比如金融交易智能体,根据市场条件选择最优交易策略。 学习型智能体(Learning Agents):能通过与环境交互不断改进性能,学习模型、行为策略以及目标函数。例如强化学习智能体,通过与环境互动不断学习最优策略。 此外,还有来源于 Cathy 教练和 Leah 老师的情绪力手册中的情绪主题角色扮演小游戏,这是帮助家长和孩子从源头了解、分辨、分析、处理和控制情绪的手册,包含多个相关智能体。其创作思路和理念包括需求分析、分步实现需求、提示词编写测试、GPTs 使用链接和总结等内容。
2024-11-15
做ppt做的最好的ai
以下是一些做 PPT 做得较好的 AI 产品: 1. Gamma:这是一个在线 PPT 制作网站,允许用户通过输入文本和想法提示快速生成幻灯片。它支持嵌入多媒体格式,如 GIF 和视频,以增强演示文稿的吸引力。网址:https://gamma.app/ 2. 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出。用户通过输入简单的文本描述来生成专业的 PPT 设计,包含丰富的模板库和设计元素,适用于多种场合。网址:https://www.xdesign.com/ppt/ 3. Mindshow:一款 AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能,还可能包括互动元素和动画效果。网址:https://www.mindshow.fun/ 4. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用科大讯飞在语音识别和自然语言处理领域的技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/ 目前市面上大多数 AI 生成 PPT 通常按照以下思路完成设计和制作: 1. AI 生成 PPT 大纲 2. 手动优化大纲 3. 导入工具生成 PPT 4. 优化整体结构 推荐 2 篇市场分析的文章供参考: 1. 《》 2. 《》 Gamma 作为一款优秀的产品,在各种交流群中被频繁推荐。即使是免费版本,也能生成高质量的 PPT,且随着不断优化改进,能满足大多数用户需求。从个人使用体验来看,其在内容组织、设计美观度和整体专业感方面表现卓越,能稳定输出高质量的 PPT。
2024-11-17
年终汇报及活动方案最好用的ai
以下是为您提供的一些关于年终汇报及活动方案的 AI 相关信息: 在智能纪要方面,有多种相关技术和活动,如 AI 音乐创作,通过输入更高级词汇与 AI 音乐对话能产生更好效果,有相关版块、挑战、分享会和教程,可加入 AI 音乐社区;数字人语音合成,介绍了声音克隆技术及微软、阿里等的成果,常用 JPT service;config UI 的应用能降低成本、提高效率,在图书出版、引流等方面有应用,社区有相关共学课程。 社区共创项目丰富,包括东京的 confii 生态大会、AI 文旅视频、娃卡奖、李普村共创故事、AI 春晚等活动。 作业是询问对 AI 方向的兴趣和想做的项目,活动报名可通过填写名字和申请新增学校参与。 线下寄送物料组织活动,会给大家寄送线下活动物料,在学校内组织。 AIPO 活动及相关挑战,如 10 月 20 日的 AIPO 活动,可提前构思展示项目,有会话和视频相关的挑战赛。 共学活动与技能提升,接下来 10 天有从零基础到建站等内容的讲解,回放会放在链接里,可先从练习提示词入手。 硬件机器人部分材料需尽快购买。 在自媒体发布与流量扶持方面,在小红书发布活动内容带特定标签有流量扶持,作品也可发布在 GitHub 等平台。 活动奖项与历史玩法,设最佳创业奖和最佳投资奖各四个,有线下摆摊展示交流、IPO 路演等玩法,之前在多个城市举办过 AI 切磋大会。 工具使用与新大赛预告,可使用多种 AI 工具,新的大赛即将开启,有百万奖金池,相关动态会在社区活动栏目公布。 同时,为您提供一些会议总结相关的 AI 工具: 但目前没有直接针对年终汇报及活动方案最好用的 AI 的明确推荐。
2024-11-14
文字生图最好的平台是什么
目前文字生图较好的平台有以下几种: 1. Pika:是一款出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 2. SVD:如果熟悉 Stable Diffusion,可以直接安装这款最新的插件,在图片基础上直接生成视频。这是由 Stability AI 开源的 video model。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但需要注意其是收费的。 4. Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可以生成长达 1 分钟以上的视频。 另外,更多的相关网站可以查看: 。内容由 AI 大模型生成,请仔细甄别。
2024-11-14
现在在生成思维导图方面做的最好的ai是哪个
以下是一些在生成思维导图方面表现出色的 AI 工具: 1. GitMind:免费的跨平台 AI 思维导图软件,支持多种模式,如提问、回答、自动生成等。 2. ProcessOn:国内思维导图与 AIGC 结合的工具,可利用 AI 生成思维导图。 3. AmyMind:轻量级在线 AI 思维导图工具,无需注册登录,支持自动生成节点。 4. Xmind Copilot:Xmind 推出的基于 GPT 的 AI 思维导图助手,能一键拓展思路,生成文章大纲。 5. TreeMind:“AI 人工智能”思维导图工具,输入需求即可由 AI 自动完成思维导图生成。 6. EdrawMind:提供一系列 AI 工具,包括 AI 驱动的头脑风暴功能,有助于提升生产力。 此外,还有以下相关产品: 1. Mymap:打磨出色,图表种类多,能根据问题自动选择和询问合适的图表类型,速度快且信息准确。 2. AmyMind:特色是可将创建的思维导图变成 PPT 并下载编辑。
2024-11-14
现在在学术论文文献查询方面做的最好的ai是哪个
在学术论文文献查询方面,以下是一些表现较好的 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,可提供相关文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,利于数据分析和可视化。 Knitro:用于数学建模和优化的软件,有助于复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 此外,还有一些专门的工具,如: 1. TXYZ: 帮助搜索、查询专业文献并进行对话,提供一站式服务。 是与预印本文库 arxiv.org 官方合作的 AI 工具,ArXiv 的每篇论文下有直达 TXYZ 的按钮。 支持用户上传 PDF 论文或链接,迅速找到所需答案和内容。 在对话中提供论文参考,给出可信背书。 2. 开搜 AI 搜索: 免费无广告,直达结果。 帮助在校学生快速搜集学术资料,智能总结关键信息,助力撰写论文和报告,且支持查看来源出处。 为教师群体获取教学资源、生成教案和课题研究报告提供帮助。 方便职场办公人群高效查找工作信息,简化文案撰写、PPT 制作和工作汇报准备。 为学术研究人员提供行业分析,整合和总结大量数据形成研究报告。 需要注意的是,使用这些工具时,应结合自身写作风格和需求,选择最合适的辅助工具。同时,内容由 AI 大模型生成,请仔细甄别。
2024-11-14
最好的视频生成软件是什么
以下是一些较好的视频生成软件: 1. Pika:是出色的文本生成视频 AI 工具,擅长动画制作且支持视频编辑。 2. SVD:若熟悉 Stable Diffusion,可安装此最新插件,能在图片基础上直接生成视频,由 Stability AI 开源。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频功能,但需收费。 4. Kaiber:视频转视频 AI,能将原视频转换成各种风格。 5. Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 此外,还有 Viggle,它能直接通过文字描述让任何静态图动起来,能做各种动作,其核心技术基于 JST1 模型,能理解真实世界物理运动原理,生成的视频真实。还具备可控制的视频生成、基于物理的动画、3D 角色和场景创建等核心功能。 Adobe Firefly 中的“生成视频”(测试版)也能将书面描述转换为视频剪辑。可使用文本提示定义内容、情感和设置(包括摄像机角度)以指导摄像机移动,还能合并图像为视频生成提供视觉提示。 以上工具适合于不同的使用场景和需求,您可以根据自己的具体情况进行选择。更多的文生视频的网站可以查看: 。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-11