直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

请列出COZE智能体工作流搭建的知识库

回答

搭建 COZE 智能体工作流通常分为以下步骤:

  1. 规划:
    • 制定任务的关键方法。
    • 总结任务目标与执行形式。
    • 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。
    • 设计每个子任务的执行方法。
  2. 实施:
    • 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。
    • 详细配置子任务节点,并验证每个子任务的可用性。
  3. 完善:
    • 整体试运行 Agent,识别功能和性能的卡点。
    • 通过反复测试和迭代,优化至达到预期水平。

此外,在搭建整理入库工作流时,首先新建工作流「url2table」,然后根据弹窗要求自定义工作流信息,并进行工作流全局流程设置。但关于调试飞书多维表格插件的使用方式,由于篇幅原因不在此详述。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

一泽Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力

在上篇文章[Prompt工程|样例驱动的渐进式引导法:利用AI高效设计提示词,生成预期内容](https://mp.weixin.qq.com/s/3pFG_Tx7gcnnjOyqgM1P_w)中,我已经提到过Prompt工程的必备能力:通过逻辑思考,从知识经验(KnowHow)中抽象表达出关键方法与要求。这一理念同样适用在Coze中创建AI Agent。本文主要讨论工作流驱动的Agent,搭建工作流驱动的Agent,简单情况可分为3个步骤:1.规划:制定任务的关键方法总结任务目标与执行形式将任务分解为可管理的子任务,确立逻辑顺序和依赖关系设计每个子任务的执行方法1.实施:分步构建和测试Agent功能在Coze上搭建工作流框架,设定每个节点的逻辑关系详细配置子任务节点,并验证每个子任务的可用性1.完善:全面评估并优化Agent效果整体试运行Agent,识别功能和性能的卡点通过反复测试和迭代,优化至达到预期水平接下来,我们从制定关键方法与流程,梳理「结构化外文精读专家」Agent的任务目标。

一泽Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力

在上篇文章[Prompt工程|样例驱动的渐进式引导法:利用AI高效设计提示词,生成预期内容](https://mp.weixin.qq.com/s/3pFG_Tx7gcnnjOyqgM1P_w)中,我已经提到过Prompt工程的必备能力:通过逻辑思考,从知识经验(KnowHow)中抽象表达出关键方法与要求。这一理念同样适用在Coze中创建AI Agent。本文主要讨论工作流驱动的Agent,搭建工作流驱动的Agent,简单情况可分为3个步骤:1.规划:制定任务的关键方法总结任务目标与执行形式将任务分解为可管理的子任务,确立逻辑顺序和依赖关系设计每个子任务的执行方法1.实施:分步构建和测试Agent功能在Coze上搭建工作流框架,设定每个节点的逻辑关系详细配置子任务节点,并验证每个子任务的可用性1.完善:全面评估并优化Agent效果整体试运行Agent,识别功能和性能的卡点通过反复测试和迭代,优化至达到预期水平接下来,我们从制定关键方法与流程,梳理「结构化外文精读专家」Agent的任务目标。

Coze+飞书多维表格,打造专属 AI 智能体,享受 10 倍知识管理效率

接下来开始在Coze中逐步搭建AI智能体。首先搭建整理入库工作流。这一步是支撑整个AI稍后读服务的前置流程。需要实现以下功能流程:在搭建内容入库工作流这一步,我花了相当长的时间,调试飞书多维表格插件的使用方式,因为篇幅原因,不在此详述,我将直接分享最终的设置方式。首先新建工作流「url2table」:根据弹窗要求,自定义工作流信息。工作流全局流程设置如下:

其他人在问
我想用coze搭建一个智能体,关于自然语言课程的期末复习指南,要将我的教材导入扣子作为知识库,智能体支持用户提问,搜索知识点,结合知识库和互联网搜索的内容给出问答,需要使用多智能体或工作流,使用卡片功能进行显示,请给出我搭建这个智能体的步骤
以下是使用 Coze 搭建一个关于自然语言课程期末复习指南智能体的步骤: 1. 访问 Coze 官网(https://www.coze.cn),注册并登录。 2. 点击页面左上角的⊕,通过【标准创建】填入智能体的基本信息。 3. 了解 Bot 开发调试界面: 人设与回复逻辑(左侧区域):设定智能体的对话风格、专业领域定位,配置回复的逻辑规则和限制条件,调整回复的语气和专业程度。 功能模块(中间区域): 技能配置: 插件:扩展智能体的专业能力,如计算器、日历等工具。 工作流:设置固定的处理流程和业务逻辑。 图像流:处理和生成图像的相关功能。 触发器:设置自动化响应条件。 知识库管理: 文本:存储文字类知识材料。 表格:结构化数据的存储和调用。 照片:图像素材库。 记忆系统: 变量:存储对话过程中的临时信息。 数据库:管理持久化的结构化数据。 长期记忆:保存重要的历史对话信息。 文件盒子:管理各类文档资料。 交互优化(底部区域): 开场白:设置初次对话的问候语。 用户问题建议:配置智能推荐的后续问题。 快捷指令:设置常用功能的快速访问。 背景图片:自定义对话界面的视觉效果。 预览与调试(右侧区域):实时测试智能体的各项功能,调试响应效果,优化交互体验。 4. 设定智能体的人设与回复逻辑后,为智能体配置对应的技能,以保证其可以按照预期完成目标任务。例如,以获取 AI 新闻的智能体为例,需要为它添加一个搜索新闻的接口来获取相关新闻。具体操作如下: 在智能体编排页面的技能区域,单击插件功能对应的+图标。 在添加插件页面,选择相关功能,然后单击新增。 修改人设与回复逻辑,指示智能体使用相应插件来搜索所需内容。 (可选)为智能体添加开场白,让用户更好地了解智能体的功能。开场白功能目前支持豆包、微信公众号(服务号)。 5. 配置好智能体后,在预览与调试区域中测试智能体是否符合预期。可单击清除图标清除对话记录。 6. 完成测试后,将智能体发布到社交渠道中使用。具体操作如下: 在智能体的编排页面右上角,单击发布。 在发布页面输入发布记录,并勾选发布渠道。 单击发布。 更多内容,请访问 Coze 官方文档: 英文版:https://www.coze.com/docs/welcome.html 中文版:https://www.coze.cn/docs/guides/welcome
2024-12-20
怎么加入coze 通往AGI之路 团队
要加入 Coze 通往 AGI 之路团队,您可以按照以下步骤进行: 1. 5 月 7 号: 创建 https://www.coze.com 账号。 创建 https://www.coze.cn 账号。 加入共学的 team(看第三列备注)。 有精力的话,可以提前阅读:。 尝试创建自己的第一个 Bot,用来免费使用 GPT4(海外版本)。 Click the link to join my team WaytoAGI on the Coze Bot Platform 👉🏻https://www.coze.com/invite/8UrPdX0vuusXq5H6dF4P(海外版本)。 coze.cn 👉🏻https://www.coze.cn/invite/EpD2Ud0bdPcvutscWStY(国内版本)。 2. 5 月 10 号:罗文认领一个插件制作插件说明,可参考。 PS:上述两个作业在 5 月 8 号分享结束之后就可以上手进行了,5 月 9 号会针对工作流和多 Agent 模式进行进一步的讲解。大家制作的 Bot 都可以在飞书群中进行投稿,然后会有专门的同学记录到 Bot 收集板。 此外,共学已结束,您也可以自行查看教程学习,比如课程表。欢迎邀请您加入 Coze 扣子团队 AI Bot:通往 AGI 之路。可以看到大家历史捏的 bot:coze.cn 👉🏻https://www.coze.cn/invite/EpD2Ud0bdPcvutscWStY 。 第一期:COZE 的搭建,活动起源是之前在社区里搞了一期,大家反馈都不错,希望有更多一起学习的机会。最近对于 agent 搭建的呼声很大,刚好有几个对 coze 很熟悉的小伙伴出了一些教程,于是有了这一期的主题共学快闪。大家可以先进群,邀请您加入我的 Coze 扣子团 AI Bot:通往 AGI 之路。coze.com 👉🏻https://www.coze.com/invite/8UrPdX0vuusXq5H6dF4P ,coze.cn 👉🏻https://www.coze.cn/invite/EpD2Ud0bdPcvutscWStY 。活动的方式包括自学(这个活动希望通过文字资料+直播分享的方式带领大家了解 Coze 这款工具,但是主要还是要靠自学)、写作业(会留一些作业,帮助大家更好复盘看看有没有吸收知识点。看十遍不如实践一遍)、互助(在飞书群大家有问题可以互助)、交流(找一些 Coze 的玩家跟大家视频会议交流自己的入门和进阶心得)。
2024-12-19
coze 团队怎么加入
要加入 Coze 团队,您可以按照以下步骤进行: 1. 5 月 7 号: 创建 https://www.coze.com 账号。 创建 https://www.coze.cn 账号。 加入共学的 team(看第三列备注)。 有精力的话,可以提前阅读:。 尝试创建自己的第一个 Bot,用来免费使用 GPT4(海外版本),Click the link to join my team WaytoAGI on the Coze Bot Platform 👉🏻https://www.coze.com/invite/8UrPdX0vuusXq5H6dF4P ;国内版本,coze.cn 👉🏻https://www.coze.cn/invite/EpD2Ud0bdPcvutscWStY 。 2. 5 月 10 号,罗文认领一个插件制作插件说明,可参考。 PS:上述两个作业在 5 月 8 号分享结束之后就可以上手进行了,5 月 9 号会针对工作流和多 Agent 模式进行进一步的讲解。大家制作的 Bot 都可以在飞书群中进行投稿,然后会有专门的同学记录到 Bot 收集板。 使用 Coze IDE 创建插件的操作步骤: 1. 登录。 2. 在左侧导航栏的工作区区域,选择进入指定团队。 3. 在页面顶部进入插件页面,或者在某一 Bot 的编排页面,找到插件区域并单击+图标。 4. 单击创建插件。 5. 在新建插件对话框,根据以下信息完成配置并单击确认: 插件图标:(可选)单击默认图标后,您可以上传本地图片文件作为新的图标。 插件名称:自定义插件名称,用于标识当前插件。建议输入清晰易理解的名称,便于大语言模型搜索与使用插件。 插件描述:插件的描述信息,一般用于记录当前插件的用途。 插件工具创建方式:选择在 Coze IDE 中创建。 IDE 运行时:选择 Node.js 或者 Python3。 6. 在插件详情页,单击在 IDE 中创建工具。 7. 在弹出的创建工具对话框,设置工具名称和介绍,以明确工具的用途,并单击确定。工具名称和介绍越清晰,大语言模型就越能理解并使用它。创建后,您将跳转到 Coze IDE 页面进行编码。 8. (可选)在 IDE 左上角工具列表区域,单击+图标,向插件添加更多工具。您还可以通过单击列表内某一工具的设置图标,来编辑、删除或重置代码。 9. (可选)在 IDE 左下角依赖包区域,管理依赖包,所有工具共用该依赖列表。 【共学最全版本】微信机器人共学教程第二天教程内容: 1. 二、修改配置:主要更改的是标黄的四行,可以直接清空原文件配置,把以下配置粘贴进您的 config.json 文件中。 2. 三、获取 key 和 id: 进入官网:https://www.coze.cn/home 。 欢迎邀请您加入 Coze 扣子团队 AI Bot:通往 AGI 之路。可以看到大家历史捏的 bot,coze.cn:👉🏻https://www.coze.cn/invite/EpD2Ud0bdPcvutscWStY 。 获取 key:获取到的这个令牌,就是"coze_api_key",像下方一样填入即可。"coze_api_key":"pat_diajdkasjdlksajdlksajdasdjlkasjdlas" 。 获取 bot id:把 bot_id 填入:"coze_bot_id":"86787989080" 。 大家可以一起分享提示词: 。 提示词案例一、苏苏;案例二、老王 。 历史资料参考: 。 。
2024-12-19
Coze有什么用
Coze 是由字节跳动推出的 AI 聊天机器人和应用程序编辑开发平台,具有以下用途和特点: 1. 专为开发下一代 AI 聊天机器人而设计,旨在简化 AI 机器人的开发过程,使开发者和非技术用户都能快速搭建基于 AI 模型的各类问答 Bot,处理从简单问答到复杂逻辑对话的任务。 2. 多语言模型支持:使用了大型语言模型如 GPT48K 和 GPT4128K,并提供云雀语言模型等,支持不同场景下的对话和交互。 3. 插件系统:集成超过 60 款插件,涵盖资讯阅读、旅游出行、效率办公、图片理解等功能,同时支持用户创建自定义插件以扩展 Bot 能力。 4. 知识库功能:允许用户上传和管理数据,支持 Bot 与用户数据交互,可上传 TXT、PDF、DOCX、Excel、CSV 格式的文档,或基于 URL 获取在线内容和 API JSON 数据。 5. 数据库和记忆能力:提供数据库功能,允许 Bot 访问会话内存和上下文,持久记住用户对话中的重要参数或内容。 6. 工作流设计:用户可通过拖拉拽方式快速搭建工作流,处理逻辑复杂的任务流,提供大量灵活可组合的节点,如大型语言模型(LLM)、自定义代码、判断逻辑等。 7. 多代理模式:在一个机器人中可以运行多个任务,允许添加多个代理,每个代理都是一个能够独立执行特定任务的智能实体。 8. 免费使用:目前对用户完全免费,用户可利用其强大功能而无需支付费用。 9. 易于发布和分享:用户可以将搭建的 Bot 发布到各类社交平台和通讯软件上,让更多用户与之互动。 此外,Coze 记账管家是基于 Coze 平台的能力搭建的一个记账应用,用户可以直接和 Coze 说明收入或支出情况,Coze 会自动记账并计算账户余额,每一笔记账记录都不会丢失,下次仍记得历史记账记录。其 bot 基于提示词、数据库和工作流三部分构成,数据库用于长久存放用户自己生成的数据,在记账功能中定义了记账事项(字段类型为 string)、记账发生时间(字段类型为 string)、变得的金额(字段类型为 integer,单位是分)等字段。
2024-12-19
coze工作流
Coze 的工作流具有以下特点和步骤: 特点: 是一种可视化的方式,允许用户组合各种功能模块,如插件、大语言模型、代码块等,实现复杂和稳定的业务流程编排。 由多个节点组成,包括 Start 节点和 End 节点,用户可在节点间添加各种功能模块构建业务流程。 支持丰富的功能模块,可根据需求灵活组合,如调用大语言模型进行文本生成、调用插件进行数据处理等。 工作流的创建和编辑通过可视化拖拽界面完成,无需编写代码,降低了搭建门槛。 创建好的工作流可直接集成到 Coze 的聊天机器人中使用,实现复杂业务逻辑。 为用户提供了可视化、低代码的方式,快速搭建满足业务需求的 AI 应用和服务,降低开发门槛,提升工作效率。 步骤: 梳理清楚工作流,例如对于复刻吴恩达开源的 AI 翻译项目,先新建工作流,逐步导入核心流程,工作流分为若干节点,每个节点完成特定任务,组合形成完整翻译流程。 查看导入后的整体工作流及测试效果,工作流分为初始翻译、反思优化、结果输出等主要部分,运行测试时可看到每个节点的执行过程和结果。 对每个节点的配置进行核心讲解,如开始节点需选择翻译的源语言和目标语言,还可设置其他参数;初步的翻译大模型节点需选择大模型进行初始翻译。
2024-12-17
如何用coze的智能体自动存储在飞书智能表格里
要将 Coze 的智能体自动存储在飞书智能表格里,可参考以下步骤: 1. 前期准备: 设计 AI 稍后读助手的方案思路,包括简化“收集”,实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作,输入 URL 完成收集,借鉴微信文件传输助手通过聊天窗口输入;自动化“整理入库”,系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态,且支持跨平台查看;智能“选择”推荐,根据收藏记录和用户阅读兴趣生成阅读计划。 发现同在字节生态中的 Coze、飞书、飞书多维表格可构建完整的 AI 工作流,通过飞书机器人与 Coze 搭建的智能体对话,在聊天窗口完成链接输入和阅读计划输出,由 Coze 调用大模型、插件完成内容整理、推荐,利用飞书多维表格存储和管理稍后读数据,理论上无需开发插件、APP 就能实现跨平台的稍后读收集与智能阅读计划推荐。 2. 逐步搭建 AI 智能体: 搭建整理入库工作流,设置大模型节点提取稍后读元数据,使用 MiniMax 6.5s 245k,设置最大回复长度至 50000 以解析长内容网页。 进行日期转时间戳,使用「日期转时间戳time_stamp_13」插件进行格式转化,因后续的飞书多维表格插件节点入库日期字段只支持 13 位时间戳。 把稍后读元数据转换为飞书多维表格插件可用的格式,飞书多维表格插件目前只支持带有转义符的 string,以 Array<Object>格式输入,需将元数据数组进行格式转换。 添加「飞书多维表格add_records」插件,设置{{app_token}}与{{records}}参数。 结束节点返回入库结果,「飞书多维表格add_records」插件返回入库结果,用于通知外层 bot 工作流的入库是否成功,别忘了对整个工作流进行测试。
2024-12-17
在WAY TO AGI 知识库有没有适合老师备课用的AI?请推荐
以下是为老师备课推荐的一些 AI 相关内容: B 站 up 主 Nally 的课程,免费且每节 15 分钟,内容很棒。 14、15 号左右白马老师和麦菊老师将带大家用 AI 做生图、毛毡字、光影字、机甲字等。 16 号晚上中老师将带大家动手操作炼丹,炼丹可能需要准备一些图,后续会让中老师提前发布内容方便大家准备。 工程生产有很多可控性,AI 视频相关内容丰富,文档会列出工具优劣及操作。很多工具每天有免费积分,共学课程基本不用花钱。每周有 AI 视频挑战赛。 有 AI 音乐的流派和 prompt 电子书,格林同学做了翻译。 此外,还有以下相关信息: 高效 PB 及相关案例:高效 PB 投入力度大,有厉害的伙伴,案例在社区,有多种 battle 方式,会有菩萨老师专门介绍。 11 月 2 号左右将开展博物馆奇妙日主题活动,在各地博物馆进行新创意。 关于 AI 知识库及学习路径的介绍,包括时代杂志评选的领军人物、AI 相关名词解释、知识库的信息来源、社区共创项目、学习路径、经典必读文章、初学者入门推荐、历史脉络类资料等。
2024-12-20
怎么构建个人本地知识库
构建个人本地知识库可以按照以下步骤进行: 1. 了解 RAG 技术: 利用大模型的能力搭建知识库是 RAG 技术的应用。 大模型训练数据有截止日期,RAG 可解决依靠不在训练集中的数据的问题。 RAG 应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载可从多种来源加载,如 PDF 等非结构化数据、SQL 等结构化数据和代码等。 文本分割将文档切分为指定大小的块。 存储涉及将文档块嵌入转换为向量形式并存储到向量数据库。 检索通过算法找到与输入问题相似的嵌入片。 输出是将问题和检索出的嵌入片提交给 LLM 生成答案。 文本加载器将用户提供的文本加载到内存以便后续处理。 2. 准备软件: 需要一个额外的软件 AnythingLLM,它包含所有 Open WebUI 的能力,并额外支持选择文本嵌入模型和向量数据库。 3. 安装和配置: 安装地址:https://useanything.com/download 。 安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 4. 构建本地知识库: 在 AnythingLLM 中创建自己独有的 Workspace 与其他项目数据隔离。 首先创建一个工作空间。 上传文档并在工作空间中进行文本嵌入。 选择对话模式,AnythingLLM 提供 Chat 模式(大模型根据训练数据和上传文档综合给出答案)和 Query 模式(大模型仅依靠文档中的数据给出答案)。 完成配置后进行测试对话。 本文的思路来源于视频号博主黄益贺,作者按照其视频进行了实操并附加了一些关于 RAG 的额外知识。
2024-12-19
可不可以提供一个本地化的大模型方法,让我建立这个合规法律的知识库
以下是为您提供的本地化大模型及搭建合规法律知识库的方法: 一、通过 Open WebUI 使用大模型 1. 首先访问相关网址。打开页面时需使用邮箱注册账号。 2. 登陆成功后,若您使用过类似 ChatGPT 的大模型对话网站,对该页面不会陌生。 3. Open WebUI 一般有两种使用方式: 聊天对话。 RAG 能力,即让模型根据文档内容回答问题,这是构建知识库的基础之一。 4. 如果要求不高,此时已搭建本地大模型,并通过 Web UI 实现对话功能。 5. ChatGPT 访问速度快且回答效果好的原因: 速度快是因为 GPT 大模型部署的服务器配置高。 效果好是因为 GPT 大模型的训练参数多、数据更优及训练算法更好。 二、您的硬件达标了么 运行大模型需要很高的机器配置,个人玩家大多负担不起。以下是不同类型大模型的配置要求: 1. 生成文字大模型: 最低配置:8G RAM + 4G VRAM 建议配置:16G RAM + 8G VRAM 理想配置:32G RAM + 24G VRAM(如果要跑 GPT3.5 差不多性能的大模型) 2. 生成图片大模型(比如跑 SD): 最低配置:16G RAM + 4G VRAM 建议配置:32G RAM + 12G VRAM 3. 生成音频大模型: 最低配置:8G VRAM 建议配置:24G VRAM 最低配置运行非常慢,不建议使用。但这不妨碍我们亲自实操一遍,以加深对大模型构建知识库底层原理的了解。若想要更顺滑的体验知识库,可以参考文章: 三、本地知识库进阶 若要更灵活掌控知识库,需额外软件 AnythingLLM。它包含 Open WebUI 的所有能力,并额外支持以下能力: 1. 选择文本嵌入模型。 2. 选择向量数据库。 AnythingLLM 安装和配置 安装地址:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步: 1. 第一步:选择大模型。 2. 第二步:选择文本嵌入模型。 3. 第三步:选择向量数据库。 构建本地知识库 AnythingLLM 中有 Workspace 的概念,可创建独有的 Workspace 与其他项目数据隔离。具体步骤: 1. 首先创建一个工作空间。 2. 上传文档并在工作空间中进行文本嵌入。 3. 选择对话模式。AnythingLLM 提供两种对话模式: Chat 模式:大模型会根据自己的训练数据和上传的文档数据综合给出答案。 Query 模式:大模型仅依靠文档中的数据给出答案。 4. 测试对话。完成上述配置后,即可与大模型进行对话。 四、写在最后 “看十遍不如实操一遍,实操十遍不如分享一遍”。若您对 AI Agent 技术感兴趣,可以联系我或者加我的免费知识星球(备注 AGI 知识库)。
2024-12-18
基于知识库系统的人工智能
基于知识库系统的人工智能包括以下方面: 专家系统: 是符号人工智能的早期成就之一,为充当有限问题领域的专家而设计。 基于从人类专家提取的知识库,并包含推理引擎。 像人类推理系统一样,包含短期记忆(问题记忆)和长期记忆(知识库)。 问题记忆包含与当前要解决问题有关的知识,称为静态知识。 知识库代表问题领域的长期知识,是动态知识。 推理引擎协调问题状态空间中的搜索过程,必要时向用户提问并找到适用规则。 例如,可根据动物物理特征判断动物的专家系统,其图称为 ANDOR 树,早期提取知识时绘制树形图有用,计算机中用规则表示更方便。 FastGPT: 基于 LLM 技术,能理解自然语言并生成高质量答案。 支持连接外部知识库获取更全面信息。 具有可视化工作流编排工具,方便创建复杂问答场景。 具备开箱即用的数据处理和模型调用功能,上手速度快。 是功能强大、易于使用的知识库问答系统,可帮助企业构建智能客服、知识库搜索、文档生成等应用。 相关资源: 您可以为喜欢的主题写一个 ANDOR 树。同时,可参见了解实施正向推理和反向推理的专家系统示例。需注意,此例简单,规则达一定数量(约 200 多条)时才会有智能行为,规则复杂时可能难以牢记,基于知识的系统重要特点是能准确解释任何决定的做出过程。
2024-12-17
我是一个投资人,我想针对每个项目建立知识库,类似一个个对话的形式,我把关于某个项目的材料全部丢进一个对话中,然后可以针对每个项目进行提问,或者要求AI帮我产出某种类型的文件。哪个App可以最好的满足我的需求?
以下是一些可能满足您需求的 App 选项: 1. WaytoAGI 网站: 提供和 AI 知识库对话的功能,您可以在此询问任何关于 AI 的问题。 集合了精选的 AI 网站,方便您按需求找到适合的工具。 有精选的 AI 提示词,可复制到 AI 对话网站使用。 会将每天知识库的精华内容呈现给大家。 2. 阿里千问模型:可以作为 AI 模型用于问答机器人的配置。 在配置问答机器人时,需要注意模型、提示词和知识库的协同作用。模型就像拥有无穷智慧的人,提示词能设定其角色和专注技能,知识库则如同工作手册,为其提供特定项目的详细信息。
2024-12-17
本地化搭建问答机器人流程
本地化搭建问答机器人的流程如下: 1. 加载所需的库和模块:包括用于解析 RSS 订阅源的 feedparse,用于在 Python 程序中跑大模型的 ollama(使用前需确保 ollama 服务已开启并下载好模型)。 2. 从订阅源获取内容:通过函数从指定的 RSS 订阅 url 提取内容,如需接收多个 url 稍作改动即可。然后使用专门的文本拆分器将长文本拆分成较小的块,并附带相关元数据,最终合并成列表返回用于后续处理或提取。 3. 为文档内容生成向量:使用文本向量模型 bgem3(从 hf 下载好模型后假设放置在某个路径,通过函数利用 FAISS 创建高效的向量存储)。 4. 推荐 RSSHub 项目:可将关注的信息汇聚在同一平台,一旦有更新能在各种终端收到提醒。其为各种网站生成 RSS 源,大部分社交媒体、传统媒体和金融媒体都能配合订阅。 5. 流程拆解: 创建 Python 虚拟环境,并安装相关库,如 ollama(0.1.8)、langchain(0.1.14)、faisscpu(1.8.0,有 gpu 则安装 gpu 版本)、gradio(4.25.0)、feedparser(6.0.11)、sentencetransformers(2.6.1)、lxml(5.2.1)。 6. 了解 ollama: 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同场景。 易于使用,适用于 macOS、Windows 和 Linux 系统,支持 cpu 和 gpu。 提供模型库,用户可从中下载不同模型,满足不同需求和硬件条件,模型库可通过 https://ollama.com/library 查找。 支持自定义模型,可修改温度参数等。 提供 REST API 用于运行和管理模型及与其他应用集成。 社区贡献丰富,有多种集成插件和界面。 先安装 ollama,访问 https://ollama.com/download/ 下载安装。安装完确保 ollama 后台服务已启动(在 mac 上启动应用程序,在 linux 上通过 ollama serve 启动),可通过 ollama list 确认,未下载模型时正常显示空,可通过 ollama 命令下载模型。
2024-12-21
智能体搭建案例
以下为您提供两个智能体搭建案例: 案例一: 智能体名称:市场分析报告 智能体简介:品牌营销公司在用的生成智能体,输入行业/类目关键词自动检索关联信息并生成报告。数据化呈现更具真实性,附带信息来源网址便于源信息校正。可帮助品牌主/营销人员减少信息收集时间,聚焦决策判断。 应用场景: 目标人群:企业管理层(做发展策略评估)、投资者(评估投资机会)、创业者(评估项目可行性)、营销人员(做营销计划依据)。 当前痛点:信息收集需要长时间;报告的真实性是否可验证;现有大模型做的市场报告太过概念化,不能做有效参考。 应用价值:减少信息收集时间、真实可验证、聚焦决策判断。 智能体主要功能:根据用户的要求或指定的行业、产品,搜索网络信息,生成一份完整的市场调研报告,用数据支撑,并附引用链接。 案例二: 智能体开发平台:字节扣子和腾讯元器。 概念定义:智能体(Agent)简单理解就是 AI 机器人小助手,参照移动互联网,类似 APP 应用的概念。AI 大模型是技术,面向用户提供服务的是产品,很多公司开始关注 AI 应用层的产品机会。 C 端案例:社交方向,用户注册后先捏一个自己的 Agent,然后让自己的 Agent 和其他人的 Agent 聊天,两个 Agent 聊到一起后再真人介入;还有借 Onlyfans 入局打造个性化聊天的创业公司。 B 端案例:帮助 B 端商家搭建 Agent。 智能体开发平台介绍:字节于 2 月 1 日正式推出 AI 聊天机器人构建平台 Coze 的国内版“扣子”,主要用于开发下一代 AI 聊天机器人。国内还有很多智能体开发平台,如 Dify.AI,但个人比较常用的还是扣子。
2024-12-20
怎么用扣子搭建一个仿写文章的智能体
以下是关于用扣子搭建仿写文章智能体的相关信息: 生物医药小助手:这是生物医药垂直领域的第一个智能体,其创建者将个人发布的大量生物医药文章转化为可交互数据库,以解决读者咨询占用过多时间的问题。通过扣子平台,解决了高成本搭建问题,并实现了一问一答的形式,用户可在扣子的 bot 商店或公众号中发起问答。 手搓插件:可参考相关文章和链接,了解在扣子中手搓插件的方法,包括 API 参数测试等步骤。 竖起耳朵听智能体:其编排包括插件、工作流和知识库。插件如同工具箱,可添加现有或自制的 API 以增强智能体能力;工作流像可视化拼图游戏,由多个节点组成,可组合各种功能创建复杂稳定的业务流程。 如果您想进一步了解具体的搭建步骤和细节,还需要您提供更明确的需求。
2024-12-19
零基础模板化搭建 AI 聊天机器人
以下是零基础模板化搭建 AI 微信聊天机器人的相关内容: 开始搭建 1. 配置腾讯云轻量应用服务器 重点在于修改 dockercompose.yml 文件中的具体配置,以串联微信号和已创建好的 AI 机器人。配置参考来源为:https://docs.linkai.tech/cow/quickstart/config 。 配置参数中,名称的全大写描述需对应编排模板,如 open_ai_api_key 对应 OPEN_AI_API_KEY ,model 对应 MODEL 等。 私聊或群聊交流时,最好加上前缀触发机器人回复,如配置的 ,即 SINGLE_CHAT_PREFIX ,私聊或群里发消息包含 bot 或 @bot 才会触发机器人回复。在群组里,对应配置参数是 GROUP_CHAT_PREFIX ,机器人只会回复群里包含 @bot 的消息。 GROUP_NAME_WHITE_LIST 用于配置哪些群组的消息需要自动回复,例如 ,即只有这些群组的消息才会自动回复。 2. 配置部署 COW 组件 假设对接的微信号名称叫安仔机器人,更新最终版的配置参数(GROUP_NAME_WHITE_LIST 参数根据交互的群组进行具体修改),查看无误后点击保存,编排模板创建成功。 切换到容器编排界面,基于创建的模板进行 COW 服务部署,点击添加后等待部署完成。 疑问解答 1. 容器编排模板是一种配置文件,定义了如何在 Docker 中部署和管理多个容器。通过编排模板,可一键部署复杂的应用环境,无需手动配置每个容器细节。本文中通过容器编排模板配置了 COW 组件,使其能与微信和极简未来平台交互。 2. Docker 提供隔离运行环境,确保应用程序在任何环境稳定运行。通过 Docker 部署 COW 组件,可简化安装和配置过程,确保每次部署环境一致,且易管理和维护。 3. 配置多个前缀(如“bot”、“@bot”)可确保只有特定情况下机器人才会回复,避免在群聊或私聊中频繁干扰,提高响应准确性和用户体验。 4. 扫码登录失败时,可尝试以下步骤: 重启 Docker 容器:在宝塔面板中找到对应的容器,点击“重启”。 检查网络连接:确保服务器和微信客户端能正常访问互联网。 重新扫描二维码:等待容器重新启动后,重新扫描日志中生成的二维码。 5. 实际上使用不会很贵。极简未来平台按使用量收费,对于一般用户费用相对低廉,充值少量费用通常可用很长时间。同时,平台还提供每天签到免费领取积分的福利,进一步降低使用成本。 6. 极简未来平台创建 AI 机器人的费用,具体因使用量而异。
2024-12-18
搭建一个专业的律师智能体
搭建一个专业的律师智能体需要考虑以下几个方面: 1. 多智能体的通信问题:不同智能体之间的通信至关重要,包括如何传递信息以及传递哪些信息。之前的很多多智能体开源框架存在效率低下和 token 消耗大的问题,而像 OpenAI 官方开源的多智能体框架「Swarm」在「Handoffs」方面处理得较为优雅。 2. 智能体的角色和职责:以客服多智能体为例,只需要准备如普通接线客服和宽带客服这样必要的 Agent,并明确其职责和交接逻辑。 3. 提示词的编写:对于律师智能体,写好提示词很重要。例如,在写作时需要对文章中出现的案例进行脱敏处理,替换具体的人物姓名、时间和地点。同时,注意深化写作时的分段和字数要求。 4. 遵循特定的规则和要求:像令中规定的初始化问候语、牢记并遵守全部要求等。 5. 决策智能体的应用:决策智能体在企业自动化中发挥作用,如在复杂、多步骤的推理流程中导航并做出业务决策。以 Anterior 为例,将付款方规则转换为有向无环图,利用智能体遍历决策树并评估相关文件。其他领域如 Norm AI 和 Parcha 也在利用决策智能体。
2024-12-17
怎么用已经公布的源代码,自己拥有一个私人ai。详细步骤让小白都能成功,并且列出硬件设施。
以下是使用已公布的源代码拥有一个私人 AI 的详细步骤,适合小白操作,并列出所需的硬件设施: 硬件设施: 云服务器 步骤: 1. 利用云服务器,在宝塔面板的终端安装相关命令。可通过以下链接获取详细信息:https://docs.dify.ai/v/zhhans/gettingstarted/installselfhosted/dockercompose 。这些命令在宝塔面板的终端安装,安装的 dockercompose 文件位于 /root/dify/docker 目录下。 2. 检查运行情况,使用 docker compose ps 命令,如果 nginx 容器无法运行,可能是 80 端口被占用。将终端输出的代码粘贴给 AI ,按照 AI 的方法检查谁占用了端口,并停止占用进程。确保每一步成功后再进行下一步,可将代码复制询问 AI 以确认。 3. 在浏览器地址栏输入公网 IP(可在腾讯云服务器或宝塔面板地址栏查看,去掉后面的:8888),随便填写邮箱密码建立一个知识库,在知识库中选择设置。 4. 选择模型,国内模型通常有免费额度,例如智谱 AI 。点击设置,从智谱 AI 获取钥匙,进入智谱官网用手机号注册,添加 API keys 并复制。查看免费额度(智谱在资源包管理中查看,赠送 500 万一个月)。 5. 回到之前的页面,复制钥匙并保存,随便创建一个应用。 6. 可以先选择智谱 glm4 进行测试,聊两句看是否有回应,然后点击发布。 7. 点击 api 秘钥,创建一个并复制。
2024-12-20
怎么用已经公布的源代码,自己拥有一个私人ai。详细步骤,并且列出硬件设施,说明jetson orin nano可以使用什么模型?
目前已公布的源代码种类繁多,要利用其拥有一个私人 AI 并非简单直接的过程,且需要一定的技术知识和经验。 一般来说,以下是大致的步骤: 1. 选择合适的源代码:根据您的需求和技术能力,从众多已公布的源代码中选择适合的项目。 2. 环境搭建:安装所需的开发工具、编程语言和相关依赖库。 3. 数据准备:收集和整理适合训练和优化模型的数据。 4. 代码理解与修改:深入理解所选源代码的结构和逻辑,根据您的需求进行必要的修改和优化。 5. 训练模型:使用准备好的数据对模型进行训练。 6. 评估与优化:对训练好的模型进行评估,根据评估结果进行进一步的优化。 关于硬件设施,Jetson Orin Nano 是一款性能不错的嵌入式计算设备。它可以支持多种模型,例如常见的深度学习模型如卷积神经网络(CNN)、循环神经网络(RNN)等。但具体能使用哪些模型,还取决于模型的规模、计算需求以及您对性能和资源的要求。
2024-12-20
列出2-3个精选的比较好的文本处理类的AI工具或网站,要求尽量是国内的产品,最好是免费的。罗列时应包含以下信息:名称、简介、2-3个主要功能、横向对比的优缺点
以下为您精选的国内文本处理类 AI 工具或网站: 1. 秘塔写作猫 简介:利用 AI 技术辅助用户进行高质量写作。 主要功能:检查语法、拼写错误;提供写作改进建议;进行智能润色和内容创作辅助。 优点:功能较为全面,能有效提升写作质量。 缺点:可能存在对某些特定领域的适应性不足。 2. Lettria 简介:处理个人文本材料。 主要功能:对个人文本进行分析和处理。 优点:专注于个人文本处理,针对性较强。 缺点:功能相对较单一。
2024-11-19
列出2-3个精选的比较好的文本处理类的AI工具或网站,要求尽量是国内的产品,最好是免费的。罗列时应包含以下信息:
以下为您精选的 23 个国内的、免费的文本处理类 AI 工具或网站: 1. 🍓 JamGPT:AI Debug 小助手。网址:https://jam.dev/jamgpt 2. ✅ Lettria:个人文本材料处理。网址:https://www.lettria.com/ 3. 🔗 Bloks:个人笔记、任务列表和会议记录自动处理。网址:https://www.bloks.app/
2024-11-19
列出最常用的20个AI咒语
以下为您列出一些常用的 AI 咒语示例: 1. 人物表情: 高兴的:young girl,smiling,front view,ar 16:9 生气的:young girl,angry,front view,ar 16:9 哭泣的:young girl,crying,front view,ar 16:9 2. 人物风格: 写实人物:A couple taking street snaps in a 90s Hong Kongstyle street,Eye level view,Waist shot,detailed face,detailed eyes,beautiful,ar 3:4 丙烯酸绘画:acrylic painting,illustration,futurism,NFT art,Fluorescent color,Laser color,A cute girl who looks up and smiles,Combination of 2d and 3d,solid color background,cel shading,Tindal effect,Nonphotorealistic rendering,Transparency,Color Slant,animation,blender,geometry art 轻质感 3D 3. 人物服装: 中国清代宫廷刺绣旗袍:1 girl,she was wearing a Chinese dress,wide sleeves gradient red x embroidered chiffon fabric,qing dynasty palace embroidery,canary and white roses element,embroidered hosta,x diamondencrusted craftsmanship,elegant,fairy air,digital rendering,super lifelike,super detailed,luxury,movie lighting,super clear details,super clear materials,closeup,complex textures,octane rendering,Zbrush,8K,Vray super lifelike,ar 9:16
2024-09-26
waytoAGI是什么,现在你要给学校老师介绍,列出相关的数据
WaytoAGI 是由一群热爱 AI 的狂热爱好者、专家共同建设的开源 AI 知识库。它诞生于 2023 年 4 月 26 日,在没有任何推广的情况下,一年时间已有超过 70 万用户和超千万次的访问量。 其知识库内容丰富,覆盖 AI 绘画、AI 视频、AI 智能体等多个版块,不仅有最新的 AI 教程、工具和一线实战案例,还有开放共享的 AI 知识体系,倡导共学共创等形式,孵化了如 AI 春晚、离谱村等大型共创项目。 WaytoAGI 不仅是一个普通的 AI 技术社区,更是一个汇聚 AI 行业顶尖创作者和 KOL 的思想交流平台,社区制作的优质作品多次登上央视首页,广受好评。社群的口号是“让更多的人因 AI 而强大”,有很多学社和共学共建的活动。您打开“waytoagi.com”就可以找到社群。
2024-09-18