直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

请列出COZE智能体工作流搭建的知识库

回答

搭建 COZE 智能体工作流通常分为以下步骤:

  1. 规划:
    • 制定任务的关键方法。
    • 总结任务目标与执行形式。
    • 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。
    • 设计每个子任务的执行方法。
  2. 实施:
    • 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。
    • 详细配置子任务节点,并验证每个子任务的可用性。
  3. 完善:
    • 整体试运行 Agent,识别功能和性能的卡点。
    • 通过反复测试和迭代,优化至达到预期水平。

此外,在搭建整理入库工作流时,首先新建工作流「url2table」,然后根据弹窗要求自定义工作流信息,并进行工作流全局流程设置。但关于调试飞书多维表格插件的使用方式,由于篇幅原因不在此详述。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

一泽Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力

在上篇文章[Prompt工程|样例驱动的渐进式引导法:利用AI高效设计提示词,生成预期内容](https://mp.weixin.qq.com/s/3pFG_Tx7gcnnjOyqgM1P_w)中,我已经提到过Prompt工程的必备能力:通过逻辑思考,从知识经验(KnowHow)中抽象表达出关键方法与要求。这一理念同样适用在Coze中创建AI Agent。本文主要讨论工作流驱动的Agent,搭建工作流驱动的Agent,简单情况可分为3个步骤:1.规划:制定任务的关键方法总结任务目标与执行形式将任务分解为可管理的子任务,确立逻辑顺序和依赖关系设计每个子任务的执行方法1.实施:分步构建和测试Agent功能在Coze上搭建工作流框架,设定每个节点的逻辑关系详细配置子任务节点,并验证每个子任务的可用性1.完善:全面评估并优化Agent效果整体试运行Agent,识别功能和性能的卡点通过反复测试和迭代,优化至达到预期水平接下来,我们从制定关键方法与流程,梳理「结构化外文精读专家」Agent的任务目标。

一泽Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力

在上篇文章[Prompt工程|样例驱动的渐进式引导法:利用AI高效设计提示词,生成预期内容](https://mp.weixin.qq.com/s/3pFG_Tx7gcnnjOyqgM1P_w)中,我已经提到过Prompt工程的必备能力:通过逻辑思考,从知识经验(KnowHow)中抽象表达出关键方法与要求。这一理念同样适用在Coze中创建AI Agent。本文主要讨论工作流驱动的Agent,搭建工作流驱动的Agent,简单情况可分为3个步骤:1.规划:制定任务的关键方法总结任务目标与执行形式将任务分解为可管理的子任务,确立逻辑顺序和依赖关系设计每个子任务的执行方法1.实施:分步构建和测试Agent功能在Coze上搭建工作流框架,设定每个节点的逻辑关系详细配置子任务节点,并验证每个子任务的可用性1.完善:全面评估并优化Agent效果整体试运行Agent,识别功能和性能的卡点通过反复测试和迭代,优化至达到预期水平接下来,我们从制定关键方法与流程,梳理「结构化外文精读专家」Agent的任务目标。

Coze+飞书多维表格,打造专属 AI 智能体,享受 10 倍知识管理效率

接下来开始在Coze中逐步搭建AI智能体。首先搭建整理入库工作流。这一步是支撑整个AI稍后读服务的前置流程。需要实现以下功能流程:在搭建内容入库工作流这一步,我花了相当长的时间,调试飞书多维表格插件的使用方式,因为篇幅原因,不在此详述,我将直接分享最终的设置方式。首先新建工作流「url2table」:根据弹窗要求,自定义工作流信息。工作流全局流程设置如下:

其他人在问
coze工作流中提示词优化节点有吗?
在 Coze 工作流中存在提示词优化节点。这个节点比较容易理解,如果觉得提示词需要优化,可加入该节点进行处理。其参数很简单,只有一个要优化的提示词。例如,用一开始就在用的文生图提示词“1 girl in real world”进行试用。优化后添加了很多具体信息,如在带着好奇心看书,环境中有阳光,色彩搭配的特点等。但修改后的提示词在控制图片生成真实照片的感觉方面,“in real world”控制真实图片生成的效果比“realistic”好。
2024-11-16
coze中提示词优化节点怎么加
在 Coze 中添加提示词优化节点的方法如下: 这个节点比较容易理解,如果觉得提示词需要优化,可以加入它进行优化。其参数很简单,只有一个要优化的提示词。 通常这类节点很好用。例如用一开始就在用的文生图提示词“1 girl in real world”来试试。优化前和优化后都生成一张图做效果对比,它会为我们添加很多具体信息,比如在带着好奇心看书,环境中有阳光,色彩搭配的特点。但修改后的提示词在控制图片为真实照片的感觉上,测试结果中文生图模型中“in real world”来控制更真实的图片生成效果比“realistic”效果好。(喜欢哪个见仁见智,不过也有抽卡因素,至少右边的打光感觉不错。)
2024-11-16
coze中提示词优化节点怎么加
在 Coze 中添加提示词优化节点的方法如下: 这个节点比较容易理解,如果觉得提示词需要优化,可以加入它进行优化。 参数很简单,只有一个要优化的提示词。 例如,用一开始就在用的文生图提示词“1 girl in real world”来试用。优化后会为提示词添加很多具体信息,比如在带着好奇心看书,环境中有阳光,色彩搭配的特点。但修改后的提示词在控制图片生成真实照片的感觉方面,“in real world”来控制比“realistic”效果好。
2024-11-16
coze中的提示词优化节点在哪里
在 Coze 中,提示词优化节点的相关信息如下: 这个节点比较容易理解,如果觉得提示词需要优化,可以加入它进行优化。参数很简单,只有一个要优化的提示词。 以文生图提示词“1 girl in real world”为例进行试用,优化后添加了很多具体信息,如在带着好奇心看书、环境中有阳光、色彩搭配的特点。但修改后的提示词在控制图片生成真实照片的感觉方面,“in real world”控制效果比“realistic”好。 此外,Coze 还涉及其他节点,如智能抠图、画质提升等。在复刻吴恩达开源的 AI 翻译项目时,工作流分为新建工作流、导入核心流程、设置节点等步骤,包括选择翻译的源语言和目标语言、选择大模型、配置反思优化的提示词等。
2024-11-16
coze web sdk 的具体测试的案例
以下是关于 Coze Web SDK 具体测试的案例: 1. 提示词母体测试: 测试平台包括海外版 Coze 和国内版 Coze。 目的是测试提示词母体模板是否能按规定指令进行生成。 测试模型有 Claude3.5 Sonnet等。 进行了现实主义人物角色、虚幻主义人物角色等方面的测试。 测试感受是基线达到,国内外模型都能按要求生成拟人化提示词,但效果不一,Claude 生成质量最好。 2. 分步构建和测试 Agent 功能: 进入 Coze 后,点击「个人空间工作流创建工作流」打开弹窗。 根据弹窗要求自定义工作流信息,确认后完成新建。 左侧「选择节点」模块中,根据子任务需要实际用到插件、大模型、代码等。 编辑面板中的开始节点和结束节点分别对应分解子任务流程图中的原文输入和结果输出环节。 按照流程图在编辑面板中拖入对应的 LLM 大模型、插件、代码节点即可完成工作流框架搭建。
2024-11-15
学习coze的教程
以下是一些学习 Coze 的教程资源: 概览与介绍:https://waytoagi.feishu.cn/wiki/YGgzwDfWLiqsDWk2ENpcSGuqnxg 基础教程: 大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库 https://waytoagi.feishu.cn/wiki/CT3UwDM8OiVmOOkohPbcV3JCndb 大聪明:保姆级教程:Coze 打工你躺平 https://waytoagi.feishu.cn/wiki/PQoUwXwpvi2ex7kJOrIcnQTCnYb 安仔:Coze 全方位入门剖析免费打造自己的 AI Agent https://waytoagi.feishu.cn/wiki/SaCFwcw9xi2qcrkmSxscxTxLnxb Coze “图像流”抢先体验 https://waytoagi.feishu.cn/wiki/AHs2whOS2izNJakGA1NcD5BEnuf YoYo:Coze 图像流小技巧:探索视觉艺术的隐藏宝藏 https://waytoagi.feishu.cn/wiki/CTajwJnyZizxlJk8a4AcJYywnfe 【智能体】让 Coze 智能体机器人连上微信和微信群详细配置文档 https://waytoagi.feishu.cn/wiki/ExHMwCDZ7i6NA7knCWucFvFvnvJ 一泽 Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力 阅读指南:长文预警,请视情况收藏保存 核心看点:通过实际案例逐步演示,用 Coze 工作流构建一个能够稳定按照模板要求,生成结构化内容的 AI Agent;开源 AI Agent 的设计到落地的全过程思路;10+项常用的 Coze 工作流的配置细节、常见问题与解决方法 适合人群:任何玩过 AI 对话产品的一般用户(如果没用过,可以先找个国内大模型耍耍);希望深入学习 AI 应用开发平台(如 Coze、Dify),对 AI Agent 工作流配置感兴趣的爱好者 注:本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。
2024-11-15
如何创建个人专属知识库
以下是创建个人专属知识库的相关内容: 私人知识库中的内容通常包括从互联网收集的优质信息以及个人日常的思考和分享。 基于私人知识库打造个人专属的 ChatGPT 常见有两种技术方案: 训练专有大模型:可以使用个人知识库训练专有大模型,但此方案并非当下主流,存在高成本、更新难度大等缺陷。 利用 RAG(检索增强生成)技术:先将文本拆分成若干小文本块并转换为 embeddings 向量,保存在向量储存库中。当用户提出问题时,将问题转换为向量与储存库中的向量比对,提取关联度高的文本块与问题组合成新的 prompt 发送给 GPT API。 搭建基于 GPT API 的定制化知识库时,由于 GPT3.5 一次交互支持的 Token 有限,OpenAI 提供了 embedding API 解决方案。embeddings 是一个浮点数字的向量,向量之间的距离衡量关联性,小距离表示高关联度。
2024-11-16
如何创建coze知识库
以下是创建 Coze 知识库的步骤: 1. 来到个人空间,找到知识库导航栏,点击创建知识库。 知识库是共享资源,多个 Bot 可以引用同一个知识库。 选择知识库的格式并填写相关信息。目前(2024.06.08)Coze 支持三种格式:文档、表格(CSV、Excel 等)、图片(上传图片并填写图片文字说明)。格式不重要,重要的是要了解影响 RAG 输出质量的因素。 例如选择本地文档(问答对可选择表格),还可选择自定义的文档切割,数据处理完成后,一个问答对会被切割成一个文档片。 2. 在线知识库: 点击创建知识库,创建一个如画小二课程的 FAQ 知识库。 选择飞书在线文档,每个问题和答案以分割。 选择飞书文档、自定义,输入,可点击编辑修改和删除,然后添加 Bot,并在调试区测试效果。 3. 本地文档: 本地 word 文件要注意拆分内容以提高训练数据准确度,例如对于画小二课程,要先将大章节名称内容放入,再按固定方式细化章节内详细内容。 然后选择创建知识库自定义清洗数据。 4. 发布应用:点击发布,确保在 Bot 商店中能够搜到。 关于使用知识库,您可以查看教程: 。
2024-11-15
你的知识库来源于哪里
我的知识库来源较为广泛,包括以下方面: 符号人工智能的早期成就之一——专家系统,其基于从人类专家提取的知识库,并包含推理引擎进行推理。专家系统包含问题记忆、知识库、推理引擎等部分。 “通往 AGI 之路「WaytoAGI」,这是一个由开发者、学者和有志人士等参与的学习社区和开源的 AI 知识库。 扣子的知识库,功能强大,可上传和存储外部知识内容,并提供多种查找知识的方法,能解决大模型的某些问题,使其回复更准确。
2024-11-13
什么是知识库,以及他的运作原理是什么,请用小白也能理解的语言进行说明
知识库可以用比较通俗的方式来理解: 想象一个大语言模型就像一个非常聪明、读过无数书的人,但对于一些特定的工作场景中的细节,比如见到老板娘过来吃饭要打三折,张梦飞过去吃饭要打骨折,它可能并不清楚。这时候,知识库就像是给这个聪明的人发的一本工作手册。 从更专业的角度来说,知识库的运作原理通常包括以下几个步骤: 1. 文档加载:从各种不同的来源,比如 PDF、SQL 数据、代码等加载相关的文档。 2. 文本分割:把加载的文档分割成指定大小的块,称为“文档块”或“文档片”。 3. 存储:这包括两个环节,一是将分割好的文档块进行嵌入,转换成向量的形式;二是将这些向量数据存储到向量数据库中。 4. 检索:当需要使用数据时,通过某种检索算法从向量数据库中找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给大语言模型,大语言模型会根据问题和检索出来的提示一起生成更合理的答案。 以车型数据为例,每个知识库的分段中保存了一种车型的基础数据。当用户问宝马 X3 的售价是多少时,就能匹配到对应车型的分段,然后从其中获取到售价信息。 海外官方文档:https://www.coze.com/docs/zh_cn/knowledge.html 国内官方文档:https://www.coze.cn/docs/guides/use_knowledge
2024-11-13
我没有知识库,如何让AI就某一问题穷尽搜索
要让 AI 就某一问题进行穷尽搜索,一般会涉及以下步骤: 1. 文档向量化:知识库中的文档需要被转换成向量形式,以便在数值级别上与问题向量进行比较。使用知识库工具上传文档时,会完成文档的向量化,这依靠 Embedding Model 实现。 2. 知识库检索: 相似性计算:使用相似性度量方法(如余弦相似性)计算问题向量和各个文档向量之间的相似度,以找出与问题内容最接近的文档。 排序与选择:根据相似性得分对所有文档进行排序,通常会选择得分最高的几个文档,认为这些文档与问题最相关。 信息抽取:从选定的高相关性文档中抽取具体的信息片段或答案,可能涉及进一步的文本处理技术,如命名实体识别、关键短语提取等。 3. 信息整合阶段:将检索到的全部信息连同用户问题和系统预设整合成一个全新的上下文环境,为生成回答提供基础。 此外,像生物进化中通过自然选择的方式,从特定规则开始逐步改变(可能随机),在每一步保留最有效的规则并丢弃其他,这种方法不是我们通常定义的“人工智能”(更像是“遗传算法”),但在高维规则空间中往往比低维规则空间效果更好,因为维度越多,陷入局部最小值的可能性越小。 同时,给 AI 配备随时更新的“活字典”即知识库是一个好方法。知识库就像 AI 随时可查阅的百科全书,当 AI 遇到不确定问题时,可从知识库中检索相关信息给出更准确回答。比如建立包含最新新闻、科技发展、法律法规等内容的知识库,或者利用整个互联网的实时数据作为知识库,通过搜索引擎获取最新信息。
2024-11-13
你的知识库是怎么部署的
部署个人知识库需要考虑硬件配置和相关技术原理。 硬件方面: 生成文字大模型,最低配置为 8G RAM + 4G VRAM,建议配置为 16G RAM + 8G VRAM,理想配置为 32G RAM + 24G VRAM(如果要跑 GPT3.5 差不多性能的大模型)。 生成图片大模型(比如跑 SD),最低配置为 16G RAM + 4G VRAM,建议配置为 32G RAM + 12G VRAM。 生成音频大模型,最低配置为 8G VRAM,建议配置为 24G VRAM。 技术原理方面: 利用大模型的能力搭建知识库本身就是一个 RAG 技术的应用。在这个过程中,首先检索外部数据,然后在生成步骤中将这些数据传递给 LLM。 RAG 应用包括文档加载、文本分割、存储、检索和输出这 5 个过程。 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器。 文本分割:把 Documents 切分为指定大小的块。 存储:涉及将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 检索:通过某种检索算法找到与输入问题相似的嵌入片。 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。 此外,搭建基于 GPT API 的定制化知识库,涉及给 GPT 输入(投喂)定制化的知识。GPT3.5 一次交互(输入和输出)只支持最高 4096 个 Token。为了处理大量领域知识,OpenAI 提供了 embedding API 解决方案。embeddings 是一个浮点数字的向量(列表),两个向量之间的距离衡量它们的关联性,小距离表示高关联度。
2024-11-11
如何用coze搭建一个总结聊天记录的功能
以下是用 Coze 搭建一个总结聊天记录功能的步骤: 1. 设计 Bot 目的:明确 Bot 的用途,例如作为一个 AI 学习助手,帮助职场专业人士提升在人工智能领域的知识和技能,并提供高效的站内信息检索服务。 2. 了解 Coze 平台常用概念和功能:包括提示词(设定 Bot 的身份和目标)、插件(通过 API 连接集成各种平台和服务)、工作流(设计复杂的多步骤任务)、触发器(创建定时任务)、记忆库(保留对话细节,支持外部知识库)、变量(保存用户个人信息)、数据库(存储和管理结构化数据)、长期记忆(总结聊天对话内容)。 3. 进行 Bot 基础设置:根据机器人的作用,设计人设和回复逻辑,限制机器人的功能使其更专注于 AI 相关的知识回答和服务,还可以加入长期记忆功能来总结聊天对话内容以更好地响应用户消息,以及设计更加美观的 Bot 开场白。 注:Coze 官方使用指南见链接:https://www.coze.cn/docs/guides/welcome ,遇到疑问也可以查官方指南。
2024-11-15
使用coze搭建一个心理咨询机器人,将机器人接入自己开发的应用后,如何再进一步实现让ai把每个用户每天的聊天内容,总结成日记,并传回给应用展示日记
目前知识库中没有关于使用 Coze 搭建心理咨询机器人,并将用户每天聊天内容总结成日记传回应用展示的相关内容。但一般来说,要实现这个功能,您可能需要以下步骤: 1. 数据采集与存储:在机器人与用户交互过程中,采集并妥善存储聊天数据。 2. 自然语言处理与分析:运用相关的自然语言处理技术,对聊天内容进行理解和分析,提取关键信息。 3. 内容总结:基于分析结果,使用合适的算法和模型将聊天内容总结成日记形式。 4. 数据传输:建立与应用的稳定接口,将总结好的日记数据传输回应用。 这只是一个大致的思路,具体的实现会涉及到很多技术细节和开发工作。
2024-11-15
搭建一个总结聊天记录的ai
以下是搭建一个总结聊天记录的 AI 的步骤: 1. 整理聊天记录为数据集: 如果导出了多个人的聊天记录,需手动将文件下的内容汇总到一起。 汇总完成后,保存汇总文件为“train.json”。 在当前文件夹下新建一个文本文档,重命名为“1.py”,用记事本打开并粘贴相应代码。注意标红的地方需要修改。 打开命令行窗口,输入“python 1.py”完成聊天记录整理,此步骤在后续第 31 步会用到。 2. 图文原文处理: 微信无法批量复制聊天内容,多选想要复制的聊天内容,转发到群里或文件传输助手。 收藏批量转发的聊天记录,打开收藏,点进笔记,点右上角三个点,转存为笔记,返回即可全选复制所有内容。 可使用能让电脑设备和手机设备剪切板共享的工具,避免在微信文件传输助手间折腾。 3. GPTs: 若重复做同一件事三次以上,应考虑优化步骤,可创建内容排版大师的 GPTs。 GPTs 链接:https://chat.openai.com/g/gt9dIHp4Ntneirongpaibandashi 。 该 GPTs 已加入 webpilot 的 actions,可直接将文章发给它总结内容。 4. 小卡片软件: 使用的卡片软件是小作卡片 app,官网链接:https://kosaku.imxie.club/ 。 操作步骤:打开软件,点击「自制卡片」,在「记录些什么...」中粘贴 AI 生成文本内容,点击右下角保存图标即可导出。
2024-11-15
搭建个人知识库,请推荐的免费人工智能软件
以下为您推荐一些可用于搭建个人知识库的免费人工智能软件: 1. AnythingLLM:包含所有 Open WebUI 的能力,额外支持选择文本嵌入模型和向量数据库。安装地址:https://useanything.com/download 。安装完成后需进行配置,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。在 AnythingLLM 中可创建独有的 Workspace 与其他项目数据隔离,包括创建工作空间、上传文档并进行文本嵌入、选择对话模式(Chat 模式会综合给出答案,Query 模式仅依靠文档数据给出答案),配置完成后可进行测试对话。 2. Coze 或 FastGPT 等工具可搭建知识库,但当下其 RAG 能力仅对问答场景友好,复杂企业级知识库场景可能需要专业团队,收费几万到几十万不等。若想使用专门搭建个人知识库的软件,可参考文章 ,忽略本地部署大模型环节,直接看其中推荐的软件。 此外,还有一些相关工具和方法: 用通义听悟整理录音笔记:https://tingwu.aliyun.com 用 React 实现选中即解释 定义提示语提取有用信息:https://memo.ac/zh/ 开源免费屏幕录制工具 OBS,下载地址:https://obsproject.com/ Mac 用 Downie,Windows 推荐 IDM 淘宝数码荔枝店购买 用 losslessCut 快速切块:https://github.com/mifi/losslesscut 希望这些信息对您有所帮助。
2024-11-11
飞书和notion,在搭建个人知识库方面,各自的优点和缺点是什么
飞书在搭建个人知识库方面的优点: 可以方便地分类和整理知识,例如个人搭建某一领域知识库或企业搭建产品资料知识库。 有相关的分享和直播,能帮助用户轻松打造知识管理体系。 缺点: 随着知识库中信息增多,如果分类不合理,很难找到所需文章。 问题答案可能在文章某一段落,每次都需重新阅读文章才能找到答案。 Notion 在搭建个人知识库方面的优点: 是功能强大的知识管理和项目管理工具,可将各种信息 all in one place。 数据库可定制性高,接近关系型数据库,适合有相关需求的用户。 数据库的每一条记录都是一个页面,页面包含可自定义的属性和丰富内容。 支持的块类型非常丰富。 缺点:暂未提及。 此外,Notion 在创建知识库并上传文本内容方面,有特定的操作步骤,如在文本格式页签下选择 Notion 并进行授权,还可选择自动分段与清洗或自定义分段等方式。
2024-11-11
合适搭建个人知识库的人工智能软件有哪一些
以下是一些适合搭建个人知识库的人工智能软件: 1. AnythingLLM:包含所有 Open WebUI 的能力,额外支持选择文本嵌入模型和向量数据库。安装地址为 https://useanything.com/download 。安装完成后需进行配置,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。在使用时,可创建独有的 Workspace 与其他项目数据隔离,包括创建工作空间、上传文档并进行文本嵌入、选择对话模式(Chat 模式会综合训练数据和上传文档给出答案,Query 模式仅依靠文档数据给出答案),配置完成后可进行测试对话。 2. Coze:如果您想使用专门搭建个人知识库的软件,可参考文章 ,忽略本地部署大模型环节,直接看其中推荐的软件。但使用该软件可能需要对接一些额外的 API 。
2024-11-11
列出最常用的20个AI咒语
以下为您列出一些常用的 AI 咒语示例: 1. 人物表情: 高兴的:young girl,smiling,front view,ar 16:9 生气的:young girl,angry,front view,ar 16:9 哭泣的:young girl,crying,front view,ar 16:9 2. 人物风格: 写实人物:A couple taking street snaps in a 90s Hong Kongstyle street,Eye level view,Waist shot,detailed face,detailed eyes,beautiful,ar 3:4 丙烯酸绘画:acrylic painting,illustration,futurism,NFT art,Fluorescent color,Laser color,A cute girl who looks up and smiles,Combination of 2d and 3d,solid color background,cel shading,Tindal effect,Nonphotorealistic rendering,Transparency,Color Slant,animation,blender,geometry art 轻质感 3D 3. 人物服装: 中国清代宫廷刺绣旗袍:1 girl,she was wearing a Chinese dress,wide sleeves gradient red x embroidered chiffon fabric,qing dynasty palace embroidery,canary and white roses element,embroidered hosta,x diamondencrusted craftsmanship,elegant,fairy air,digital rendering,super lifelike,super detailed,luxury,movie lighting,super clear details,super clear materials,closeup,complex textures,octane rendering,Zbrush,8K,Vray super lifelike,ar 9:16
2024-09-26
waytoAGI是什么,现在你要给学校老师介绍,列出相关的数据
WaytoAGI 是由一群热爱 AI 的狂热爱好者、专家共同建设的开源 AI 知识库。它诞生于 2023 年 4 月 26 日,在没有任何推广的情况下,一年时间已有超过 70 万用户和超千万次的访问量。 其知识库内容丰富,覆盖 AI 绘画、AI 视频、AI 智能体等多个版块,不仅有最新的 AI 教程、工具和一线实战案例,还有开放共享的 AI 知识体系,倡导共学共创等形式,孵化了如 AI 春晚、离谱村等大型共创项目。 WaytoAGI 不仅是一个普通的 AI 技术社区,更是一个汇聚 AI 行业顶尖创作者和 KOL 的思想交流平台,社区制作的优质作品多次登上央视首页,广受好评。社群的口号是“让更多的人因 AI 而强大”,有很多学社和共学共建的活动。您打开“waytoagi.com”就可以找到社群。
2024-09-18
国内外的智能体平台都有哪些?尽可能罗列出来
国内外的智能体平台有: 国内:Dify.AI、字节扣子、腾讯元器。 需要注意的是,个人比较常用的国内智能体平台是字节扣子,相关文章主要对比了字节扣子和腾讯元器。智能体相当于个人的数字员工,可以不断提效,帮助实现制定的目标,这和现实中老板给员工下达任务有相似之处。
2024-08-31
如果要创建一个和你一样的ai,你可以把技术栈给我罗列出来吗,从数据库到后端到前端分别用到了哪些技术
如果要创建一个类似我的 AI ,以下是从数据库到后端到前端可能用到的技术栈: 前端:推荐使用 React.js 或 Vue.js 框架,它们适合构建动态的用户界面,且有丰富的组件库支持多媒体内容展示。 后端:采用 Node.js 加上 Express.js ,能使用 JavaScript 同时开发前端和后端,简化开发过程,Node.js 的非阻塞 IO 特性适合处理实时通讯需求。 数据库:选择 MongoDB ,对于可能需要存储的文档形式数据(如离谱生物档案和相关事件),它在存储此类灵活数据方面表现良好。 语音处理:可以考虑使用 Google Cloud SpeechtoText 和 TexttoSpeech API 来实现语音与文本的相互转换,以支持语音对话。
2024-08-25
列出生成儿童摄影的SD模型的prompt提示词
生成儿童摄影的稳定扩散(Stable Diffusion)模型的prompt提示词需要精心设计,以确保生成的图像既符合儿童摄影的特点,又能激发模型创作出温馨、有趣且适合儿童的画面。以下是一些可用于生成儿童摄影SD模型的prompt提示词示例: 1. 温馨家庭时刻: "A heartwarming family portrait with children laughing and playing in a cozy living room." 2. 户外探险: "Curious children exploring a lush green forest, filled with wonder and excitement." 3. 生日派对: "A joyful birthday celebration with a smiling child surrounded by colorful balloons and cake." 4. 校园生活: "Playful children at school, engaged in various activities, showcasing the spirit of learning and fun." 5. 季节变换: "Children playing in a golden autumn park, with leaves crunching under their feet." 6. 艺术创作: "A young artist at an easel, painting with vibrant colors, surrounded by art supplies." 7. 运动与活力: "Energetic children participating in a soccer match, displaying teamwork and determination." 8. 自然亲近: "Curious kids discovering the beauty of nature, interacting with animals in a serene meadow." 9. 节日庆典: "A festive holiday scene with children dressed in traditional attire, celebrating with joy." 10. 成长里程碑: "Capturing the milestones of a child's first steps, first day of school, and other memorable moments." 11. 幻想世界: "Children embarking on a magical adventure in a fantastical land with whimsical creatures." 12. 日常趣味: "A candid shot of children playing with their favorite toys, filled with laughter and innocence." 13. 文化体验: "Children experiencing cultural traditions, learning and appreciating diversity." 14. 亲子互动: "Tender moments between parents and children, sharing love and creating lasting memories." 15. 睡前故事: "A cozy bedtime story session with a child cuddled up with their favorite stuffed animal." 使用这些提示词时,可以根据需要添加更多的细节和描述,以引导模型生成更符合预期的图像。此外,根据所使用的具体模型和版本,可能需要对提示词进行调整以获得最佳效果。
2024-05-26
帮我把关于agent的知识全部列出来
以下是关于 Agent 的一些知识: 什么是 Agent:Agent 是执行特定任务的 AI 实体,可以迭代运行并拥有复杂的工作流程,可以自我对话,无需人类驱动每一部分的交互。 Agent 的组成:LLM(核心大脑)、Memory(记忆)、Planning Skills(任务规划)以及 Tool Use(工具使用)。 Agent 的案例:斯坦福 25 人小镇。 Agent 构建平台: Coze:新一代的一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot。 Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 文心智能体:百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据自身需求打造大模型时代的产品能力。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行设计良好的工作流。 斑头雁:一个 2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景。 钉钉 AI 超级助理:依托于钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能。
2024-05-13