Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

请列出COZE智能体工作流搭建的知识库

Answer

搭建 COZE 智能体工作流通常分为以下步骤:

  1. 规划:
    • 制定任务的关键方法。
    • 总结任务目标与执行形式。
    • 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。
    • 设计每个子任务的执行方法。
  2. 实施:
    • 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。
    • 详细配置子任务节点,并验证每个子任务的可用性。
  3. 完善:
    • 整体试运行 Agent,识别功能和性能的卡点。
    • 通过反复测试和迭代,优化至达到预期水平。

此外,在搭建整理入库工作流时,首先新建工作流「url2table」,然后根据弹窗要求自定义工作流信息,并进行工作流全局流程设置。但关于调试飞书多维表格插件的使用方式,由于篇幅原因不在此详述。

Content generated by AI large model, please carefully verify (powered by aily)

References

一泽Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力

在上篇文章[Prompt工程|样例驱动的渐进式引导法:利用AI高效设计提示词,生成预期内容](https://mp.weixin.qq.com/s/3pFG_Tx7gcnnjOyqgM1P_w)中,我已经提到过Prompt工程的必备能力:通过逻辑思考,从知识经验(KnowHow)中抽象表达出关键方法与要求。这一理念同样适用在Coze中创建AI Agent。本文主要讨论工作流驱动的Agent,搭建工作流驱动的Agent,简单情况可分为3个步骤:1.规划:制定任务的关键方法总结任务目标与执行形式将任务分解为可管理的子任务,确立逻辑顺序和依赖关系设计每个子任务的执行方法1.实施:分步构建和测试Agent功能在Coze上搭建工作流框架,设定每个节点的逻辑关系详细配置子任务节点,并验证每个子任务的可用性1.完善:全面评估并优化Agent效果整体试运行Agent,识别功能和性能的卡点通过反复测试和迭代,优化至达到预期水平接下来,我们从制定关键方法与流程,梳理「结构化外文精读专家」Agent的任务目标。

一泽Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力

在上篇文章[Prompt工程|样例驱动的渐进式引导法:利用AI高效设计提示词,生成预期内容](https://mp.weixin.qq.com/s/3pFG_Tx7gcnnjOyqgM1P_w)中,我已经提到过Prompt工程的必备能力:通过逻辑思考,从知识经验(KnowHow)中抽象表达出关键方法与要求。这一理念同样适用在Coze中创建AI Agent。本文主要讨论工作流驱动的Agent,搭建工作流驱动的Agent,简单情况可分为3个步骤:1.规划:制定任务的关键方法总结任务目标与执行形式将任务分解为可管理的子任务,确立逻辑顺序和依赖关系设计每个子任务的执行方法1.实施:分步构建和测试Agent功能在Coze上搭建工作流框架,设定每个节点的逻辑关系详细配置子任务节点,并验证每个子任务的可用性1.完善:全面评估并优化Agent效果整体试运行Agent,识别功能和性能的卡点通过反复测试和迭代,优化至达到预期水平接下来,我们从制定关键方法与流程,梳理「结构化外文精读专家」Agent的任务目标。

Coze+飞书多维表格,打造专属 AI 智能体,享受 10 倍知识管理效率

接下来开始在Coze中逐步搭建AI智能体。首先搭建整理入库工作流。这一步是支撑整个AI稍后读服务的前置流程。需要实现以下功能流程:在搭建内容入库工作流这一步,我花了相当长的时间,调试飞书多维表格插件的使用方式,因为篇幅原因,不在此详述,我将直接分享最终的设置方式。首先新建工作流「url2table」:根据弹窗要求,自定义工作流信息。工作流全局流程设置如下:

Others are asking
coze教程
以下是关于 Coze 教程的相关内容: 可能是全网最好的 Coze 教程之一,能一次性带您入门 Coze 工作流。即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。 阅读指南: 长文预警,请视情况收藏保存。 核心看点: 通过实际案例逐步演示,用 Coze 工作流构建一个能够稳定按照模板要求,生成结构化内容的 AI Agent。 开源 AI Agent 的设计到落地的全过程思路。 10+项常用的 Coze 工作流的配置细节、常见问题与解决方法。 适合人群: 任何玩过 AI 对话产品的一般用户(如果没用过,可以先找个国内大模型耍耍)。 希望深入学习 AI 应用开发平台(如 Coze、Dify),对 AI Agent 工作流配置感兴趣的爱好者。 注:本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。 此外,还有以下关于 Coze 的介绍: Coze 是新一代一站式 AI Bot 开发平台。无论是否有编程基础,都可以在 Coze 平台上快速搭建基于 AI 模型的各类问答 Bot,从解决简单的问答到处理复杂逻辑的对话。并且,可以将搭建的 Bot 发布到各类社交平台和通讯软件上,与这些平台/软件上的用户互动。 个人认为:Coze 是字节针对 AI Agent 这一领域的初代产品,在 Coze 中将 AI Agent 称之为 Bot。字节针对 Coze 这个产品部署了两个站点,分别是国内版和海外版。 国内版: 网址:https://www.coze.cn 官方文档教程:https://www.coze.cn/docs/guides/welcome 大模型:使用的是字节自研的云雀大模型,国内网络即可正常访问。 海外版: 网址:https://www.coze.com 官方文档教程:https://www.coze.com/docs/guides/welcome 大模型:GPT4、GPT3.5 等大模型(可以在这里白嫖 ChatGPT4,具体参考文档:),访问需要突破网络限制的工具。 参考文档:https://www.coze.com/docs/zh_cn/welcome.html AI Agent 的开发流程: Bot 的开发和调试页面布局主要分为如下几个区块:提示词和人设的区块、Bot 的技能组件、插件、工作流、Bot 的记忆组件、知识库、变量、数据库、长记忆、文件盒子、一些先进的配置、触发器(例如定时发送早报)、开场白(用户和 Bot 初次对话时,Bot 的招呼话语)、自动建议(每当和 Bot 一轮对话完成后,Bot 给出的问题建议)、声音(和 Bot 对话时,Bot 读对话内容的音色)。下面会逐一讲解每个组件的能力以及使用方式。
2025-02-16
coze的deepseek实践
以下是关于 coze 的 deepseek 实践的相关信息: 一个提示词让 DeepSeek 的能力更上一层楼: 效果对比:用 Coze 做了小测试,可对比查看相关视频。 如何使用:搜索 www.deepseek.com 点击“开始对话”,将装有提示词的代码发给 Deepseek,认真阅读开场白后正式开始对话。 设计思路:将 Agent 封装成 Prompt 并储存在文件,通过提示词文件让 DeepSeek 实现同时使用联网和深度思考功能,在模型默认能力基础上优化输出质量,设计阈值系统,用 XML 进行规范设定。 完整提示词:v 1.3 特别鸣谢:李继刚的【思考的七把武器】提供思考方向,Thinking Claude 是设计灵感来源,Claude 3.5 Sonnet 是得力助手。 字节火山上线了 DeepSeek 系列模型并更改了模型服务价格: 2 月 14 日 8 点有直播,直播结束可看回放,相关学习文档可查看。 重点更新:上线 DeepSeek 系列模型,DeepSeekR1、V3 模型分别提供 50 万免费额度和 API 半价活动,即日起至 2025 年 2 月 18 日 23:59:59 所有用户均可享受价格优惠。 2024 年 7 月 18 日历史更新(归档): 《长文深度解析 Coze 的多 Agent 模式的实现机制》:艾木老师深入研究了 Coze 的多 Agent 模式机制,分析了三种节点跳转模式及应用场景和不足。 《揭秘 DeepSeek: 一个更极致的中国技术理想主义故事》:DeepSeek 以独特技术创新崭露头角,发布颠覆性价格的源模型 DeepSeek V2,创始人梁文锋是技术理想主义者。 《10 万卡集群:通往 AGI 的新门票》:分析了 10 万 GPU 集群建设的相关问题,指出数据中心设计和网络拓扑结构对大型 AI 训练集的重要性。
2025-02-16
coze 教程
以下是为您提供的 Coze 教程相关信息: 一泽 Eze 的教程:可能是全网最好的 Coze 教程之一,一次性带您入门 Coze 工作流。即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。阅读指南中提到长文预警,请视情况收藏保存。核心看点包括通过实际案例逐步演示用 Coze 工作流构建能稳定按模板要求生成结构化内容的 AI Agent、开源 AI Agent 的设计到落地的全过程思路、10+项常用的 Coze 工作流的配置细节、常见问题与解决方法。适合人群为玩过 AI 对话产品的一般用户,以及对 AI 应用开发平台(如 Coze、Dify)和 AI Agent 工作流配置感兴趣的爱好者。注:本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。 相关比赛中的教程: 基础教程: 大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库(https://waytoagi.feishu.cn/wiki/CT3UwDM8OiVmOOkohPbcV3JCndb) 大聪明:保姆级教程:Coze 打工你躺平(https://waytoagi.feishu.cn/wiki/PQoUwXwpvi2ex7kJOrIcnQTCnYb) 安仔:Coze 全方位入门剖析免费打造自己的 AI Agent(https://waytoagi.feishu.cn/wiki/SaCFwcw9xi2qcrkmSxscxTxLnxb) 基础教程:Coze“图像流”抢先体验(https://waytoagi.feishu.cn/wiki/AHs2whOS2izNJakGA1NcD5BEnuf) YoYo:Coze 图像流小技巧:探索视觉艺术的隐藏宝藏(https://waytoagi.feishu.cn/wiki/CTajwJnyZizxlJk8a4AcJYywnfe) 【智能体】让 Coze 智能体机器人连上微信和微信群详细配置文档(https://waytoagi.feishu.cn/wiki/ExHMwCDZ7i6NA7knCWucFvFvnvJ)
2025-02-16
coze工作流搭建
以下是在 Coze 上搭建工作流的步骤: 1. 进入 Coze,点击「个人空间工作流创建工作流」,打开创建工作流的弹窗。 2. 根据弹窗要求,自定义工作流信息,点击确认完成工作流的新建。 3. 新建后可看到编辑视图与功能,左侧「选择节点」模块中,根据子任务需要实际用到的有: 插件:提供一系列能力工具,拓展 Agent 的能力边界。如本案例中涉及的思维导图、英文音频,因无法通过 LLM 生成,需依赖插件实现。 大模型:调用 LLM,实现各项文本内容的生成。如本案例中的中文翻译、英文大纲、单词注释等。 代码:支持编写简单的 Python、JS 脚本,对数据进行处理。 4. 编辑面板中的开始节点、结束节点,分别对应分解子任务流程图中的原文输入和结果输出环节。 5. 按照流程图,在编辑面板中拖入对应的 LLM 大模型、插件、代码节点,即可完成工作流框架的搭建。 此外,在一些具体的案例中,如“随机召唤”工作流 Random_Card_Pet_pro 中: 随机生成属性和宠物描述时,因星级属性需要稳定输出,选择代码节点实现。对于不会写代码的小伙伴,可使用内置的“尝试 AI”功能,但需注意尽量选择 python 代码编写,书写前先确定好要输出的变量,给 AI 写需求时要加上“实现”二字。 生成宠物形象使用 coze 自带的文生图工具 text2image 插件。 宠物形象描述文字生成使用图片理解插件 imgUnderstand。 生成宠物的名字使用大模型节点,借鉴特定逻辑命名。 生成宠物小传/技能/使命时,调用前面节点的相关数据,并按照特定提示词和格式进行操作。 整理输出时,引用前面节点的多个数据,并按照规定的回答格式进行。
2025-02-15
coze 有什么好的样例么?
以下是关于 coze 的一些好的样例: 1. CT:coze 应用实例“最美证件照” 新创建一个应用:新建项目时新增创建应用选项,分为业务逻辑设计页面和用户界面两个卡片选项。 增加业务逻辑:与之前版本类似,添加工作流、插件、数据等工具和知识库类调用,编辑完工作流有更多发布选项,如发布为 API、扣子商店、模版等,并发布了自己的令牌。 增加用户界面:相当于以前的 bot 总调试页面,增加了很多 UI 组件,使用拖拽方式交互。 入参配置:需按特定格式填写入参。 出参这里:绑定输出的图片链接 output。 产品效果:优化排版和过场动画,将排版搞好看,设置过场的 gif 动画,调用工作流时按钮处于禁用状态。 2. 一泽 Eze:样例驱动的渐进式引导法——利用 AI 高效设计提示词,生成预期内容 渐进式引导法的实战分享 评估样例,尝试提炼模板 与 AI 开始对话:借助擅长扮演专家角色的 AI 改进初始的正向样例,如使用 Claude 3.5 进行对话,输入初始指令并获取回复,通过回复侧面印证 AI 对样例的理解与建议。 提炼初始模板:当确保 AI 基本理解样例与需求目标时,进入提炼初始模板步骤。 多轮反馈,直至达到预期:AI 可能犯错输出要求外内容,需多轮对话引导修正理解,直至达成共识。 用例测试,看看 AI 是否真正理解:找 1~3 个用例让 AI 根据模板生成知识卡片,根据结果验证是否符合预期,不符合则继续调整。
2025-02-15
coze和dify哪个对知识库的支持更好,检索和总结能力更强
Coze 对知识库的支持具有以下特点: 支持上传和存储外部知识内容,包括从多种数据源如本地文档、在线数据、Notion、飞书文档等渠道上传文本和表格数据。 提供多样化的检索能力,可通过多种方式对存储的内容片段进行高效检索。 具有增强检索功能,能显著提升大模型回复的准确性。 但也存在一些缺点,如跨分片总结和推理能力弱、文档有序性被打破、表格解析失败、对 PDF 的解析效果不佳等。 目前没有关于 Dify 对知识库支持情况的相关内容,无法直接将 Coze 和 Dify 进行对比。
2025-02-15
给我flux的提示词结构的知识库我以他作为知识库
以下是关于 Flux 提示词结构的相关知识: 大语言模型就像一个学过无数知识、拥有无穷智慧的人,但在工作场景中,需要通过提示词来设定其角色和专注的技能,使其成为满足需求的“员工”。知识库则相当于给“员工”发放的工作手册,提供特定的信息。 提示词可以设定 Bot 的身份及其目标和技能,例如产品问答助手、新闻播报员、翻译助理等,决定 Bot 与用户的互动方式。详情可参考。 学习提示词可以分为五个维度,从高到低依次是思维框架、方法论、语句、工具和场景。但舒适的学习顺序应反过来,先从场景切入,直接了解在不同场景下提示词的使用及效果对比;然后使用提示词工具,如 Meta Prompt、Al 角色定制等;接着学习有效的提示语句,包括经典论文中的相关语句;再学习有效的方法论,将有效语句及其背后的原理整合成稳定可控的方法;最后掌握思维框架。 此外,还可以通过插件、工作流、记忆库等功能定制 AI Bot。插件可通过 API 连接集成各种平台和服务扩展 Bot 能力,详情参考。
2025-02-16
知识库RAG方案
RAG(检索增强生成)是一种在 AI 领域中用于处理知识库的方案。 大模型的训练数据有截止日期,当需要依靠不包含在大模型训练集中的数据时,RAG 是主要方法之一。 RAG 的应用可以抽象为以下 5 个过程: 1. 文档加载:从多种不同来源加载文档,如 PDF 等非结构化数据、SQL 等结构化数据以及代码等。 2. 文本分割:把文档切分为指定大小的块,称为“文档块”或“文档片”。 3. 存储:包括将切分好的文档块进行嵌入转换成向量形式,并将向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示生成更合理的答案。 基于 Coze 的知识库问答是典型的 RAG 方案,其重要一环是文档切片。但 RAG 方案存在一些缺点,如跨分片总结和推理能力弱、文档有序性被打破、表格解析失败等。 相关的海外官方文档:https://www.coze.com/docs/zh_cn/knowledge.html ,国内官方文档:https://www.coze.cn/docs/guides/use_knowledge 。 在实际操作中,如使用外贸大师产品的帮助文档创建知识库时,要注意文档的分片策略会严重影响查询结果。
2025-02-16
你的知识库架构是怎样的,普通人如何迅速找到目标靶向,比如我想学ai绘画
以下是关于您想学习 AI 绘画的相关内容: 1. 知识库提到明天银海老师将详细讲解 AI agent,同时表示知识库内容丰富,您可挑选感兴趣的部分学习,比如较轻松的 AI 绘画等。 2. 强调 AI 绘画是视觉基础,还介绍了针对 AI 绘画学社做的关键词词库精选活动。 3. 讲述了 AI 绘画中的 stable diffusion 扩散模型的运作方式,是通过加噪和去噪,随机生成种子来形成最终图像,还提到生成式 AI 做高清放大可增加细节的原理。 您可以根据以上信息,逐步深入了解 AI 绘画的相关知识。
2025-02-15
知识库里面哪里有讲解AI在各行业应用现状的材料
以下是知识库中关于 AI 在各行业应用现状的相关材料: 在音乐创作方面,通过输入更高级的词汇与 AI 音乐对话能产生更好效果,有 AI 音乐的版块、挑战、分享会和教程,可通过王贝加入 AI 音乐社区。 在数字人语音合成方面,介绍了声音克隆技术,提到了微软、阿里等的相关成果,常用的是 JPT service。 在 config UI 的应用方面,能降低成本、提高效率,在图书出版、引流等方面有应用,岗位稀缺,社区有相关共学课程。 在零售电商行业,有《2024 生成式 AI 赋能零售电商行业解决方案白皮书》。 在招聘领域,牛客的《AI 面试实践手册(2024)》深入探讨了 AI 面试的应用现状、价值和未来发展,指出其在多个行业尤其在管培生、产品、IT 基础岗位和蓝领岗位中广泛应用。 在 PC 行业,腾讯广告 TMI 与 GfK 联合发布了《AI PC 行业趋势与潜力消费者洞察白皮书(2024 版)》。 在医疗领域,蛋壳研究院发布了《医疗人工智能走到新的十字路口》。 在新闻媒体领域,新华社研究院发布了《人工智能时代新闻媒体的责任与使命》。 在情感陪伴方面,头豹研究院发布了《AI 情感陪伴:缔造温情链接,拥抱智慧关怀新纪元》。
2025-02-15
怎么创建自己的知识库
以下是创建自己知识库的步骤: 1. 来到个人空间,找到知识库导航栏,点击创建知识库。需要注意的是,知识库是共享资源,您的多个 Bot 可以引用同一个知识库。 2. 选择知识库的格式并填写一些信息。目前(2024.06.08)支持三种格式:文档、表格(CSV、Excel 等)、图片(上传一张图片并填写图片文字说明)。格式并不重要,重要的是要了解影响 RAG 输出质量的因素。 3. 以本地文档为例(问答对可以选择表格),选择自定义的文档切割。 4. 完成数据处理。处理完成后,一个问答对会被切割成一个文档片。 关于使用知识库,您可以参考这篇教程: 。 创建知识库的小技巧:知识库好不好用,跟内容切分粒度有很大关系,我们可以在内容中加上一些特殊分割符,比如“”,以便于自动切分数据。分段标识符号要选择“自定义”,内容填“”。最终的知识库结果中,同一颜色代表同一个数据段,如果内容有误需要编辑,可以点击具体内容,鼠标右键会看到“编辑”和“删除”按钮,可以进行编辑或删除。
2025-02-15
怎么快速做一个知识库
以下是快速创建知识库的方法: 1. 在 Coze 中创建知识库: 来到个人空间,找到知识库导航栏,点击创建知识库。 选择知识库的格式,目前(2024.06.08)Coze 支持文档、表格(CSV、Excel 等)、图片三种格式。 选择本地文档或问答对选择表格等方式。 选择自定义的文档切割。 数据处理完成后,一个问答对会被切割成一个文档片。 关于使用知识库,可参考教程:。 2. 通过其他方式创建并上传表格数据: API 方式:获取在线 API 的 JSON 数据,将 JSON 数据上传至知识库。在表格格式页签下,选择 API,然后按照以下步骤操作:单击下一步、新增 API、输入网址 URL 并选择数据的更新频率、输入单元名称或使用自动添加的名称、配置数据表信息(包括确认表结构、指定语义匹配字段等)、查看表结构和数据,确认无误后单击下一步、完成上传后单击确定。 自定义方式:手动创建数据表结构和数据。在表格格式页面下,选择自定义,然后按照以下步骤操作:单击下一步、输入单元名称、在表结构区域添加字段、设置列名,并选择指定列字段作为搜索匹配的语义字段、单击确定、单击创建分段,然后在弹出的页面输入字段值,然后单击保存。 3. 在 FastGPT+OneAPI+COW 中创建知识库: 地址输入浏览器:http://这里替换为你宝塔左上角的那一串:3000/ 进入后,点击应用并创建,选择 qwen 模型。 创建知识库。点击知识库 选择 qwen Embedding 1 点击确认创建。 上传文件,等待处理,直到文本状态是“已就绪”。 回到刚刚创建的应用,关联上创建的知识库。 点击两个发布。之前第一个叫做保存。 点击新建,创建 key。创建后保存同时将 API 根地址最后加上/v1 也保存下来。 回到宝塔,打开【终端】,依次输入以下命令: cd/root git clone https://github.com/zhayujie/chatgptonwechat cd chatgptonwechat/ pip install r requirements.txt pip install r requirementsoptional.txt
2025-02-15
帮我找一些具有文件上传功能的AI智能体或应用的搭建教程
以下是一些具有文件上传功能的 AI 智能体或应用的搭建教程: 使用 Coze 搭建: 方法一:直接使用 Coze 的 API 对接前端 UI 框架,将工作流逻辑集中在工程模板端,实现前后端分离的处理方式。 方法二:直接调用大模型 API,并通过前端代码实现提示词处理和逻辑控制,将交互流程完全放入前端代码中。 实现文件上传:通过 Coze 的,用户可将本地文件上传至 Coze 的云存储。在消息或对话中,文件上传成功后可通过指定 file_id 来直接引用该文件。 Coze 的 API 与工作流执行:关于 API 的使用及工作流执行流程可以参考。 设计界面:搭建 Demo 最简单的方式是首先绘制草图,然后借助多模态 AI 工具(如 GPT/Claude)生成初步的前端结构代码。前端开发语言包括 HTML 用于构建网页基础框架,定义整体页面结构;CSS 负责网页布局样式美化;JavaScript 实现交互逻辑,如信息处理、网络请求及动态交互功能。 Stuart 教学 coze 应用中的“上传图片”: 传递上传图片地址:首先,把工作流的入参设置为 File>Image。然后,注意代码内容,其中 ImageUpload1 部分是可以替换成实际的文件上传组件的组件名称的,一个引号,一个大括号都不能错。 获得图片 URL:接下来就比较简单了,工作流中可以直接用这个 image 变量,也可以用 string 模式输出,它会在工作流中变成图片的 URL。 无企业资质也能 coze 变现: 以 API 形式链接 Zion 和 Coze:同理也可以为 dify、kimi 等给任何大模型&Agent 制作收费前端。参考教程: 自定义配置:变现模版 UI 交互、API、数据库等拓展功能,支持在 Zion 内自由修改,可参考文档配置。相关链接:支付: 微信小程序变现模版正在开发中,不久将会上线。目前实现小程序端可以通过 API 形式搭建。 Zion 支持小程序,Web,AI 行为流全栈搭建,APP 端全栈搭建 2025 上线。
2025-02-16
帮我查找关于文件上传的智能体搭建教程 、
以下是关于文件上传的智能体搭建教程: 1. 上传文档至知识库: 点击【上传知识】按钮,进入知识上传和配置页面。 上传文档文件或 URL 导入。 上传文档类知识:支持上传 pdf(建议)、doc/docx、ppt/pptx、xlsx、csv、txt、md 等类型的文档,当前文档默认上传大小不超过 50M。对于本地化部署的知识库,可通过配置文件调整此限制。 可以添加 URL 类知识:支持添加多个 url 链接,添加后将会至网页中抓取静态内容,当前暂不支持下钻抓取其他网页的内容;手动点击更新后将会从网页上重新爬取内容(仅包含静态网页内容,不可下钻爬取内容)。若企业自有网站会做知识的动态更新,可以手动快速同步到清流平台上。 配置知识的切片方式:切片类型选择当前系统会根据解析的知识类型自动选择,若想了解更多信息,可至【进阶功能】【文档切片调优】处查看。设置支持配置图片处理方式和自定义切片方式,了解更多信息,可至【进阶功能】【文档切片调优】、【图片解析】处查看。 知识预览:根据选择的知识类型,展示预览内容方便查看切片效果。 2. 知识处理学习:配置完成后知识将进入数据处理中状态,主要对知识进行解析、切片和向量化处理,此时耐心等待数据处理完成即可。
2025-02-16
零基础,如何开始学搭建
对于零基础学习搭建,以下是一些建议和相关资源: 从网站搭建方面,您可以参考以下直播内容: 大雨将介绍软件安装情况并分享零基础搭建可修改网站的目标。在直播中,大雨会先介绍需要下载的东西并去转发,还会询问观众编程基础、学习目标等。当天目标是搭建网站并修改,目的是降低编程难度。 大雨介绍了自己的职业背景,包括曾在央企做架构师、外企做咨询顾问、互联网公司产品经理,现在运营公众号。他提到去年开始认识一些人,上个月在切磋大会后开始做 AI 编程相关的事,表示做编程不是为成为程序员,而是提高日常工作学习效率,还提及后续的共学安排。 共学搭建网站部分,主要围绕搭建自己网站所需的账号注册展开,包括 GitHub 与 Radio 账号注册流程。 关于 Stable Diffusion 方面,您可以在知乎上查看以下教程: 深入浅出完整解析 Stable Diffusion(SD)核心基础知识,涵盖系列资源、核心基础原理、核心网络结构解析、搭建使用推理流程、经典应用场景、训练自己的 AI 绘画模型等多个方面。 如果您想搭建 AI 微信聊天机器人,可以参考以下内容: 纯 GPT 大模型能力的微信聊天机器人搭建,重点是修改 dockercompose.yml 文件中的具体配置来串联微信号和已创建好的 AI 机器人。配置时需留意相关参数,如私聊或群聊的触发前缀、群组自动回复的配置等。
2025-02-16
如何在coze已经建好的智能体上搭建一个用户登陆的模块,让用户在使用前输入姓名,序号
要在已建好的 Coze 智能体上搭建用户登陆模块,让用户在使用前输入姓名和序号,您可以参考以下步骤: 1. 服务器设置: 购买云服务器,推荐使用腾讯云服务器。新用户专享 28 元/年一台云服务器,若售罄可购买 82 元/年的,并选择宝塔 Linux 面板 8.1.0 腾讯云专享。 云服务器设置密码,选择暂不需要教学场景,通过远程登录的密码/密钥登录的重置密码来初始化密码,并妥善保存。 获取宝塔 Linux 地址,点击控制面板中的应用信息的管理应用,有两种获取方法。 设置宝塔的密码,登录宝塔 Linux 面板,输入相关操作并保存用户名和密码。 2. 变现模板配置: 超级管理员和普通用户的定义:超级管理员拥有管理整个系统的最高权限,普通用户没有项目配置权限和进入管理后台页的权限。 成为超级管理员:点击【成为超级管理员】按钮,进入用户注册登录页面,完成注册后获得超级管理员账户。 选择智能体配置模式,包括 Zion 默认智能体模式和您的 Coze 智能体模式。 3. API 接入微信群 Bot: 登录宝塔面板,在宝塔面板中可视化控制云服务器,部署 docker 容器,启动 COW 项目与微信取得关联。 在“Docker”中的“项目模板”中添加,将编译好的内容复制进来,创建容器并确定。 查看运行服务,扫码接入微信,手动刷新日志,若看到 WeChat login success 则接入成功。
2025-02-14
知识库中是否有搭建在线RAG知识库的相关内容?
知识库中有搭建在线 RAG 知识库的相关内容。 RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型提供额外的、来自外部知识源的信息。 自顶向下,RAG 的流程分为离线数据处理和在线检索两个过程。离线数据处理的目的是构建知识库,知识按某种格式及排列方式存储在其中等待使用。在线检索是利用知识库和大模型进行查询的过程。 对于 RAG 来讲,检索的质量直接影响生成的结果,常见的检索方法有关键词检索和语义检索。关键词检索是最传统和基础的方法,基于查询词与文档中词语的精确或近似匹配,实现简单但难以处理同义词和上下文语义。语义检索将查询和文档映射到同一语义空间,通过计算向量相似度判断相关性,能捕捉深层语义但计算成本较高。 在构建知识库的流程中,在线检索各个流程的“是什么”与“为什么”同等重要。例如在检索环节,选择合适的检索方法或组合对系统性能至关重要。 大模型存在无法记住所有知识尤其是长尾知识、知识容易过时且不好更新、输出难以解释和验证、容易泄露隐私训练数据、规模大导致训练和运行成本高等缺点,而 RAG 具有数据库存储和更新稳定、数据更新敏捷且可解释、降低大模型输出出错可能、便于管控用户隐私数据、降低大模型训练成本等优点。
2025-02-14
如何基于你的模型对一台工业设备(钢板划线印字装备)进行故障诊断和预测性维护,从以下几个方面进行分析 1.技术栈:数据采集与通讯,数据库,算法,前端,微服务、应用等,并进行软件选型 2.硬件选型:工业设备、边缘计算设备,软件部署硬件,分别列出性能最优和国产化替代方案 3.算法创新性:要求可发表高水平论文和申请发明专利 4.算法通用性:考虑如何通过一个通用模型经过简单配置适应不同船舶建造工业设备的故障诊断和预测性维护 5.考虑前后合理性,若以此进行招标,如何描述招标内容
以下是为您整合的相关内容: Transformer 模型和 BERT 模型: 模型训练与评估:定义模型后,传递训练数据集和验证数据集及训练时期数,训练完成后评估性能,如达到 85%准确率。 模型性能可视化:绘制准确性和随时间的损失图。 保存与加载模型:使用 model.save 方法导出并保存模型到本地路径,保存后可加载进行预测。 预测示例:对不同情感的评论句子进行预测。 部署模型到 Vertex AI:检查模型签名,上传本地保存的模型到 Google Cloud 存储桶,在 Vertex 上部署模型并获得在线预测。 提示工程: 策略:将复杂任务分解为更简单的子任务。 技巧:使用意图分类识别用户查询中最相关的指令。例如在故障排除场景中,根据客户查询分类提供具体指令,如检查路由器连接线、询问路由器型号、根据型号提供重启建议等。模型会在对话状态变化时输出特定字符串,使系统成为状态机,更好控制用户体验。 OpenAI 官方指南: 战术:将复杂任务拆分为更简单的子任务。 策略:使用意图分类来识别与用户查询最相关的指令。例如在故障排除场景中,基于客户查询分类向 GPT 模型提供具体指令。已指示模型在对话状态变化时输出特殊字符串,将系统变成状态机,通过跟踪状态等为用户体验设置护栏。
2025-02-12
需要做一个AI知识分享专题会,大概15分钟的时间,请帮忙列出大纲和主题内容
以下是为您生成的 15 分钟 AI 知识分享专题会大纲和主题内容: 大纲: 1. 开场介绍(2 分钟) 2. 主题分享(8 分钟) 3. 交流互动(3 分钟) 4. 总结结束(2 分钟) 主题内容: 开场介绍(2 分钟): 简要介绍本次专题会的目的和流程。 主题分享(8 分钟): 1. 介绍 AI 的基本概念和发展现状。 2. 分享几个 AI 在不同领域的应用案例,如医疗、教育、金融等。 3. 探讨 AI 未来的发展趋势和可能带来的影响。 交流互动(3 分钟): 鼓励参会者提出问题和分享自己的看法,进行简单的交流。 总结结束(2 分钟): 总结本次专题会的重点内容,感谢参会者的参与。
2024-12-30
今天为止,列出你认为最好的前十个AI
以下是截至今天认为较好的前十个 AI: 1. ChatGPT:在 2022 年 9 月至 2023 年 8 月期间拥有 146 亿次访问量,在美国使用率最高,受众以男性为主,多数通过移动设备访问,每次会话平均参与时间接近 10 分钟。 2. Character AI 3. QuillBot 4. Midjourney 5. Hugging Face 6. Google Bard 7. NovelAI 8. CapCut 9. JanitorAI 10. Civitai 此外,还有一些在特定领域表现出色的 AI 应用,如: 作业帮智能辅导:提供 AI 在线教育个性化辅导,利用机器学习和自然语言处理技术,市场规模百亿美元以上。 小红书穿搭推荐:通过图像识别和数据分析为用户提供时尚穿搭建议,市场规模数十亿美元。 蚂蚁财富智能理财助手:运用数据分析和机器学习提供专业投资建议,市场规模百亿美元以上。 以上信息仅供参考,AI 领域发展迅速,排名和评价可能会随时间变化。
2024-12-28
怎么用已经公布的源代码,自己拥有一个私人ai。详细步骤让小白都能成功,并且列出硬件设施。
以下是使用已公布的源代码拥有一个私人 AI 的详细步骤,适合小白操作,并列出所需的硬件设施: 硬件设施: 云服务器 步骤: 1. 利用云服务器,在宝塔面板的终端安装相关命令。可通过以下链接获取详细信息:https://docs.dify.ai/v/zhhans/gettingstarted/installselfhosted/dockercompose 。这些命令在宝塔面板的终端安装,安装的 dockercompose 文件位于 /root/dify/docker 目录下。 2. 检查运行情况,使用 docker compose ps 命令,如果 nginx 容器无法运行,可能是 80 端口被占用。将终端输出的代码粘贴给 AI ,按照 AI 的方法检查谁占用了端口,并停止占用进程。确保每一步成功后再进行下一步,可将代码复制询问 AI 以确认。 3. 在浏览器地址栏输入公网 IP(可在腾讯云服务器或宝塔面板地址栏查看,去掉后面的:8888),随便填写邮箱密码建立一个知识库,在知识库中选择设置。 4. 选择模型,国内模型通常有免费额度,例如智谱 AI 。点击设置,从智谱 AI 获取钥匙,进入智谱官网用手机号注册,添加 API keys 并复制。查看免费额度(智谱在资源包管理中查看,赠送 500 万一个月)。 5. 回到之前的页面,复制钥匙并保存,随便创建一个应用。 6. 可以先选择智谱 glm4 进行测试,聊两句看是否有回应,然后点击发布。 7. 点击 api 秘钥,创建一个并复制。
2024-12-20
怎么用已经公布的源代码,自己拥有一个私人ai。详细步骤,并且列出硬件设施,说明jetson orin nano可以使用什么模型?
目前已公布的源代码种类繁多,要利用其拥有一个私人 AI 并非简单直接的过程,且需要一定的技术知识和经验。 一般来说,以下是大致的步骤: 1. 选择合适的源代码:根据您的需求和技术能力,从众多已公布的源代码中选择适合的项目。 2. 环境搭建:安装所需的开发工具、编程语言和相关依赖库。 3. 数据准备:收集和整理适合训练和优化模型的数据。 4. 代码理解与修改:深入理解所选源代码的结构和逻辑,根据您的需求进行必要的修改和优化。 5. 训练模型:使用准备好的数据对模型进行训练。 6. 评估与优化:对训练好的模型进行评估,根据评估结果进行进一步的优化。 关于硬件设施,Jetson Orin Nano 是一款性能不错的嵌入式计算设备。它可以支持多种模型,例如常见的深度学习模型如卷积神经网络(CNN)、循环神经网络(RNN)等。但具体能使用哪些模型,还取决于模型的规模、计算需求以及您对性能和资源的要求。
2024-12-20
列出2-3个精选的比较好的文本处理类的AI工具或网站,要求尽量是国内的产品,最好是免费的。罗列时应包含以下信息:名称、简介、2-3个主要功能、横向对比的优缺点
以下为您精选的国内文本处理类 AI 工具或网站: 1. 秘塔写作猫 简介:利用 AI 技术辅助用户进行高质量写作。 主要功能:检查语法、拼写错误;提供写作改进建议;进行智能润色和内容创作辅助。 优点:功能较为全面,能有效提升写作质量。 缺点:可能存在对某些特定领域的适应性不足。 2. Lettria 简介:处理个人文本材料。 主要功能:对个人文本进行分析和处理。 优点:专注于个人文本处理,针对性较强。 缺点:功能相对较单一。
2024-11-19