直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

面对ai时代,开始出现ai焦虑症

回答

以下是关于面对 AI 时代出现 AI 焦虑症的相关内容:

红杉观点:生成式 AI 发展迅速,但很快出现了不可持续的融资、人才战和 GPU 采购的疯狂。裂痕开始显现,如艺术家等对机器生成 IP 的合法性提出挑战,关于伦理、监管和超级智能的辩论充斥华盛顿,产品低于预期,用户留存率糟糕,引发对其是否是泡沫周期的质疑。

音乐人的看法:音乐人不担心被 AI 取代,但担心人类把想象和思考的权力交给 AI,导致思考和自主决策能力退化,如同赫拉利在《人类简史》中提到的水稻驯化人类,担心 AI 与人类的关系也如此,科幻小说中描述的 AI 统治世界可能源于人类的选择和思考能力的退化。

AGI 相关论述:当前更多反映出人们对 AI 的焦虑,希望其拿来即用、马上见效。但 AI 的力量不应仅用于现有业务流程优化,而应重新定义未来业务。在 AGI 早期,2023 年的“AI 原生”应用还很少,亮点不多。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

红杉:生成式AI的第二阶段

但很快,AI的兴奋变成了近乎歇斯底里。突然,每家公司都成了“AI副驾驶(Copilot)”。我们的收件箱被“AI Salesforce”、“AI Adobe”和“AI Instagram”的无差别的宣传充满。1亿美元的种子轮又回来了。我们发现自己处于一个不可持续的融资、人才战和GPU采购的疯狂。果然,裂痕开始显现。艺术家、作家和歌手挑战机器生成的IP的合法性,关于伦理、监管和即将到来的超级智能的辩论充斥了华盛顿。更令人担忧的是,硅谷开始有传言称生成式AI实际上并不有用。产品远远低于预期,这可以通过糟糕的用户留存率来证明。对许多应用的最终用户需求开始达到高潮,这只是另一个蒸汽泡沫周期吗?对AI的不满之夏使批评者欢欣鼓舞地跳舞,让人想起互联网的初期,那时在1998年,一位著名的经济学家宣称:“到2005年,将变得清晰,互联网对经济的影响不会超过传真机。”

音乐人聊AI :Suno时代,音乐行业需要焦虑吗?

有人问我,会不会担心自己被人工智能取代。我始终都回答不会。即使有一部分工作被AI替代了,人类也总有其他事情可干,新的技术总会催生新的岗位。从长期看新技术会让社会整体更富裕。但我确实有担心的事情。赫拉利在《人类简史》里说,不是人类驯化了水稻,而是水稻驯化了人类。AI和人类的关系是否也会和水稻一样?我担心人类把想象和思考的权力交给AI,逐渐退化思考和自主决策的能力。科幻小说里描述的AI统治世界,未必是因为AI的背叛,也许是人类的选择——退化了思考能力的人类把决策权出让给了AI。

AGI 万字长文(下)| 2024,分叉与洪流

现在这种情况下反映出来的,更多是人们对于AI的焦虑:所以才会希望AI拿来就能用,马上能起效果。但我们不能止于焦虑:AI的力量并不应该只用在现有业务流程的优化上,而更应该用在对于未来业务的重新定义之上。这才是“AI原生公司”应该的做法。就像在电力发明的时候,我们不应该从“如何让电力赋能马车”出发,而应该从“电力能创造和满足什么新的需求”出发。落到实际,我们还处在AGI的早期,2023年的“AI原生”应用也还很少。“上篇”也讲了,目前除了OpenAI/Google/MS官方应用之外,上文的“AI陪聊Character.ai”是唯一上榜前十的“AI原生应用”。除此之外,国内的真正AI原生的还有出圈的“妙鸭相机”,以及春节附近的“哄哄AI女朋友”类型的应用;基本可以说还没有什么亮点。

其他人在问
哪款AI能高效提取文章/文件的核心信息?
以下是一些能够高效提取文章或文件核心信息的 AI 工具: 1. 文献管理和搜索方面: Zotero:结合 AI 技术,可自动提取文献信息,助力管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供文献推荐和引用分析。 2. 内容生成和辅助写作方面: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化内容。 3. 研究和数据分析方面: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,助力复杂数据分析和模型构建。 此外,在收集和整理资料方面,可利用以下工具和方法: 1. 收集资料: 如使用 Perplexity.AI 的强大搜索功能,还可启用 Pro 功能获取更专业深入的结果。也可使用微软的 Bing 搜索引擎等具备联网搜索功能的工具,快速搜集大量相关资料。 2. 整理资料: 可使用月之暗面开发的 Kimi 这个 AI 会话助手,分批次提供资料以克服其阅读能力限制,让其整理资讯内容。 需要注意的是,使用这些工具时,应结合自身写作风格和需求,选择最合适的辅助工具。同时,内容由 AI 大模型生成,请仔细甄别。
2024-11-14
AI 图像识别的发展历程
AI 图像识别的发展历程如下: 早期处理印刷体图片的方法是将图片变成黑白、调整为固定尺寸,与数据库对比得出结论,但这种方法存在多种字体、拍摄角度等例外情况,且本质上是通过不断添加规则来解决问题,不可行。 神经网络专门处理未知规则的情况,如手写体识别。其发展得益于生物学研究的支持,并在数学上提供了方向。 CNN(卷积神经网络)的结构基于大脑中两类细胞的级联模型,在计算上更高效、快速,在自然语言处理和图像识别等应用中表现出色。 ImageNet 数据集变得越来越有名,为年度 DL 竞赛提供了基准,在短短七年内使获胜算法对图像中物体分类的准确率从 72%提高到 98%,超过人类平均能力,引领了 DL 革命,并开创了新数据集的先例。 2012 年以来,在 Deep Learning 理论和数据集的支持下,深度神经网络算法大爆发,如卷积神经网络(CNN)、递归神经网络(RNN)和长短期记忆网络(LSTM)等,每种都有不同特性。例如,递归神经网络是较高层神经元直接连接到较低层神经元;福岛邦彦创建的人工神经网络模型基于人脑中视觉的运作方式,架构基于初级视觉皮层中的简单细胞和复杂细胞,简单细胞检测局部特征,复杂细胞汇总信息。
2024-11-14
我现在是一个AI小白,我想学习AI相关知识,我要怎么进阶学习?
对于 AI 小白的进阶学习,您可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能、机器学习、深度学习等主要分支及其之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,根据自身兴趣选择特定模块深入学习。 掌握提示词的技巧,因其上手容易且实用。 4. 实践和尝试: 理论学习后,通过实践巩固知识,尝试使用各种产品创作自己的作品。 分享实践后的经验和成果。 5. 体验 AI 产品: 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获取实际应用中的体验,激发对 AI 潜力的认识。 同时,您还需要掌握以下基础知识: AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2024-11-14
哪里可以学习AI
以下是为您提供的新手学习 AI 的建议: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,您可以按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 持续学习和跟进: AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-11-14
让AI帮我操作电脑
目前在让 AI 操作电脑方面,有以下相关信息: 去年夏天在处理自动备份配置脚本的任务中,尽管对运维领域不熟悉且编写 Shell 脚本遇到困难,但 AI 可以作为很好的教练,通过请教如“请告诉我 rclone 命令的用法”“Shell 里面的循环怎么写”等具体问题,AI 能提供解决方案,甚至写出带详细中文注释的代码。 4 月动态中有一些相关的 AI 新产品,如 AutoGPT GUI 开放了 waitlist,MULTI·ON plugin 能在笔记本电脑上自动执行许多任务,BabyBeeAGI 有更强的任务管理等能力,MiniAGI 基于 GPT3.5Turbo/4 能执行多种任务。 生成式 AI Studio 中,可定义场景让 AI 响应特定查询,如设定名字和身份后对 help desk 查询做出特定回应。还提到 Google 提供了 API 和 SDK 帮助构建应用程序,以及调整语言模型以提高响应质量,提示的设计会影响模型结果,但制作提示可能存在一定难度。
2024-11-13
给出指令,让AI帮我执行的网页,app,大模型,小程序
以下为一些可以给出指令让 AI 帮您执行的网页、app、大模型和小程序: 1. Midjourney:在生成 UI 界面方面表现出色。如果想指定生成某个页面(如首页、登录页等),只需添加页面指令描述,例如“landing page”(社交平台登录页)、“Profile Page”(人力资源类产品的个人资料页)。其产出的设计图视觉效果不错,适合在 APP 设计的初始阶段提供灵感和创意,但目前直接用于落地开发仍有距离。 2. 很多 AI 网站可以创建“智能体”,例如您可以为其配置提示词、知识库、能力配置等,让其为您工作,如出试题、找资料、画插图、专业翻译等。 3. 在使用生成式人工智能时,要把大模型当作大学生而非专家,“实习生”只能执行任务,需要您指明方向、拆解任务、教其一步步操作,像导演一样编排具体流程、检查结果、修改流程并反复迭代。提示语的核心是逻辑,要将复杂任务拆分成科学合理的步骤,且确保每个步骤的结果能为后续步骤提供基础。同时,即使在 Prompt 里指明了步骤,如果没有打印出来,也无法达到理想效果。
2024-11-13
如何借鉴“决战拜年之巅”:这是一款基于 GLM 大模型开发的微信小程序游戏,玩家在 10 个 AI 角色组成的家人群里,面对“七大姑八大姨”的连环拷问,自由对话打出属于自己的结局。实现一个工作场合的游戏
以下是借鉴“决战拜年之巅”实现一个工作场合游戏的相关要点: 1. 开发背景:“决战拜年之巅”是参加 Globalgamejam 游戏比赛时,在 48 小时内开发的,主题源于“make me laugh”,产品负责人谐音想到江浙沪孝子排行榜的“孝”,结合春节想到做类似拜年的东西。 2. 火爆情况:在参赛群发布半成品后,在 QQ、微信迅速火爆,两天内有 200 万用户,最高峰同时在线 6 万人,服务器一度支持不了,凌晨才做好调整,后续有厂商赞助服务器,上线约一周。 3. 游戏特点:基于 GLM 大模型开发,又称过年模拟器,玩家在 10 个 AI 角色组成的家人群里,面对“七大姑八大姨”的连环拷问自由对话打出结局。 4. 借鉴要点: 明确创新主题和玩法,结合特定场景和需求。 注重用户体验,及时应对服务器等技术支持问题。 利用 AI 技术实现角色互动和自由对话。 需要注意的是,“决战拜年之巅”被认为可能是一个 chatbot 而非严格意义上的游戏。在设计工作场合的游戏时,要明确以下三个点:(具体要点未在提供的内容中明确)
2024-11-02
人工智能时代下最重要的三个基石是什么,我们可以在哪里找到这三个基石的资源
在人工智能时代,最重要的三个基石通常包括以下方面: 1. 架构:如 Transformer 和 Diffusion 这两种核心架构,分别在数据转换和数据向图像转换方面发挥关键作用,构成了当前 AI 技术的重要基础。 2. 算力:自 2010 年以来,GPU 等计算资源的快速发展使算力得到空前爆发,为 AI 技术的进步提供强大支持。 3. 人才网络:AI 领域的关键人才网络起到不可忽视的作用,例如 Google 及其相关实验室和收购的公司培养和汇聚了众多杰出人才,他们的流动与合作推动了 AI 技术的发展。 关于这三个基石的资源,您可以通过以下途径获取: 1. 科技类的专业网站和论坛,如一些知名的技术社区和学术网站。 2. 相关的学术研究报告和论文,可在学术数据库中查找。 3. 行业内的权威专家和学者的讲座、演讲等。 4. 科技公司发布的技术文档和报告。
2024-10-10
人工智能时代下最重要的三个基石是什么,我们可以在哪里找到这三个基石的资源? 例如: huggingface
在人工智能时代,最重要的三个基石分别是架构、算力和人才网络。 架构方面,当前市场上许多令人惊叹的 AI 技术成就都可追溯到两个核心架构——Transformer 和 Diffusion。Transformer 代表了数据转换的能力,Diffusion 代表了数据向图像转换的能力,它们构成了当前 AI 技术的重要基石。 算力方面,自 2010 年以来,GPU 等计算资源的快速发展使算力得到了空前的提升,为 AI 技术的进步提供了强大支持。 人才网络方面,AI 领域的关键人才大多源自于 Google,特别是其在加拿大多伦多和蒙特利尔成立的两个实验室,以及收购的英国公司 DeepMind。这些机构和个人形成了强大的人才网络,推动了 AI 技术的发展,并培养了一批杰出的领军人物。人才在不同公司之间的流动和合作也促进了 AI 技术的快速进步。 关于这三个基石的资源,目前没有明确提及具体的获取渠道。但您可以通过以下途径寻找相关资源: 1. 学术研究网站和数据库,如知网、Web of Science 等,以获取关于架构、算力和人才网络的学术研究成果。 2. 科技行业的专业论坛和社区,与同行交流和分享资源。 3. 关注知名科技公司和研究机构的官方网站和社交媒体账号,获取最新的研究动态和资源。
2024-10-10
人工智能时代下最重要的三个基石是什么,我们可以在哪里找到这三个基石的资源? 例如: huggingface
在人工智能时代,最重要的三个基石分别是架构、算力和人才网络。 架构方面,当前市场上许多令人惊叹的 AI 技术成就都可追溯到两个核心架构——Transformer 和 Diffusion。Transformer 代表了数据转换的能力,Diffusion 代表了数据向图像转换的能力,它们构成了当前 AI 技术的重要基石。 算力方面,自 2010 年以来,GPU 等计算资源的快速发展使算力得到了空前的爆发,为 AI 技术的进步提供了强大支持。 人才网络方面,AI 领域的关键人才几乎都源自于 Google,特别是 Google 在加拿大多伦多和蒙特利尔成立的两个实验室,以及它收购的英国公司 DeepMind。这些机构和个人形成了强大的人才网络,推动了 AI 技术的发展,并培养了一批杰出的 AI 领军人物。从 Google 到 OpenAI,再到 Facebook 和其他多家公司,人才的流动和合作推动了 AI 技术的快速进步。 关于这三个基石的资源,您可以通过以下途径获取: 1. 学术研究论文:在相关的学术数据库中搜索关于 AI 架构、算力和人才发展的研究成果。 2. 专业技术论坛和社区:例如一些知名的 AI 技术论坛,开发者们会在其中分享和讨论相关的知识和经验。 3. 科技公司的官方网站和技术博客:如 Google、NVIDIA 等公司的网站,可能会发布有关其在 AI 领域的技术创新和人才培养的信息。 4. 在线教育平台:一些提供 AI 课程的平台,可能会涵盖这三个方面的知识和案例。
2024-10-10
人工智能时代下最重要的三个基石是什么,我们可以在哪里找到这三个基石的资源? 例如: huggingface
在人工智能时代,最重要的三个基石分别是架构、算力和人才网络。 架构方面,当前市场上许多出色的 AI 技术成就都可追溯到 Transformer 和 Diffusion 这两个核心架构,它们分别在数据转换和数据向图像转换方面发挥着关键作用。 算力方面,自 2010 年以来,GPU 等计算资源的快速发展使算力得到空前爆发,为 AI 技术进步提供了强大支持。 人才网络方面,AI 领域的关键人才大多源自 Google 及其相关机构,如在加拿大多伦多和蒙特利尔成立的实验室以及收购的英国公司 DeepMind,这些人才的流动与合作推动了 AI 技术的发展。 关于这三个基石的资源,目前没有明确提及具体的获取渠道。但您可以通过以下途径寻找相关资源: 1. 学术研究网站和数据库,获取关于架构、算力和人才网络的最新研究成果和报告。 2. 科技公司的官方网站和技术文档,了解其在相关领域的创新和实践。 3. 专业的 AI 技术论坛和社区,与同行交流和分享资源。
2024-10-10
人工智能时代下最重要的三个基石是什么,我们可以在哪里找到这三个基石的资源? 例如: huggingface ​
在人工智能时代,以下是被认为最重要的三个基石: 1. 架构:当前市场上许多出色的 AI 技术成就可追溯到两个核心架构——Transformer 和 Diffusion。Transformer 代表了数据转换的能力,Diffusion 代表了数据向图像转换的能力,它们构成了当前 AI 技术的重要基础。 2. 算力:自 2010 年以来,GPU 等计算资源的快速发展使算力得到空前爆发,为 AI 技术的进步提供了强大支持。 3. 人才网络:AI 领域的关键人才网络起到了不可忽视的作用,特别是 Google 在加拿大多伦多和蒙特利尔成立的两个实验室以及其收购的英国公司 DeepMind 培养和汇聚的人才,他们的流动与合作推动了 AI 技术的发展。 关于这三个基石的资源,您可以通过以下途径获取: 1. 学术研究网站和数据库,例如一些知名的科技学术数据库。 2. 专业的 AI 技术论坛和社区,与同行交流获取相关信息。 3. 大型科技公司的官方网站和技术文档,如 Google 等。 4. 相关的学术会议和研讨会。
2024-10-10
我是一个老师,相信AI时代人人都能成为学霸,我认为学霸具有三个心法和一个方法,方法一,建立学霸的信念系统(我行、我能、我可以),方法二,不要和别人比,方法三、主动积极的思考力。学霸的终极方法是自学。自学+AI无所不能。你觉得我怎么能帮助每一个学生成为学霸,有哪些步骤和要点?
在 AI 时代帮助每个学生成为学霸,以下是一些步骤和要点: 1. 培养获取知识的能力:教导学生掌握利用 AI 技术获取和处理信息的方法,提高获取知识的效率。 2. 促进知识内化:引导学生将获取的信息和知识有效内化,转化为智慧。例如,通过实践反思、交流讨论等方式,提升知识的转化速度和质量。 3. 建立信念系统:帮助学生树立“我行、我能、我可以”的信念,增强学习的自信心。 4. 培养独立思考:鼓励学生主动积极思考,不盲目与他人比较,专注自身的成长和进步。 5. 强调自学:引导学生重视自学,让他们明白自学结合 AI 能够带来强大的能力。 6. 培养创造能力: 鼓励学生勇于尝试新事物,将失败视为学习的一部分。 培养批判性思维,不盲目跟从权威。 引导学生从实践中反思,提炼洞见。 促进学生与不同背景的人交流,激发新的思路。 持续学习和不断创造是相辅相成的,通过积累知识和经验,并将其转化为实际价值,学生能够在 AI 时代更好地成长和发展。
2024-10-08