以下是关于图片生成线稿图的相关内容:
ControlNet 中的线稿相关功能:
使用多种 AI 工具组合生成线稿图:
ControlNet 中可用的预处理/模型:
如果想绘制符合 segmentation 规范的图像,可以使用color_coding_semantic_segmentation_classes - Google 表格 中的色表绘制。
相关模型文件可添加公众号【白马与少年】,回复【SD】获取。
lineart线稿提取:这个是ControlNet1.1版本新出的预处理和模型,可能是ControlNet目前最强的线稿上色功能了。我从花瓣上找了一张线稿图来试验一下,这幅线稿来自画师“原画人”的创作。我们可以先通过invert预处理将白底黑线处理成黑底白线,因为ControlNet中都是黑色作为背景。然后,将处理好的图拖到左边重新载入,切换到lineart预处理器和模型进行生成。文生图关键词填写——(Best quality,masterpiece),((girl)),solo,Blue hair,white clothes,white background。点击生成,得到上色稿。我接着用canny模型也绘制了一遍,可以对比一下这两款模型上色的差别,大家自己感受一下。mlsd直线线条检测:这个线条检测和之前的几个有一些不同,它一般用在建筑或者室内设计上。可以看到,这个预处理器提炼出了这个室内的结构线。我们输入关键词:木制、简约、无印良品。点击生成4张图,得到了与原图结构一致的设计图。好了,今天我们介绍了ControlNet中关于线条约束类的预处理器和模型。这些模型文件我也整理好了,如果想要这些模型的话,可以添加我的公众号【白马与少年】,回复【SD】即可。最后附上一张图,可以帮助大家理解ControlNet模型的命名规则,以便能够正确地使用模型。-END-白马与少年
在学习AI绘画这段时间,发现AI绘画并不会完全替代设计师,而是可以让出图质量更好,效率更高。比如上面是用midjourney生成线稿,PS稍微做一些修正,再用controlnet控制,stable diffusion上色,多套AI组合拳,可以快速生成效果惊艳的图作者:三思先欣赏下作品
canny用于识别输入图像的边缘信息。depth用于识别输入图像的深度信息。hed用于识别输入图像的边缘信息,但边缘更柔和。mlsd用于识别输入图像的边缘信息,一种轻量级的边缘检测。它对横平竖直的线条非常敏感,因此更适用于于室内图的生成。normal用于识别输入图像的法线信息。openpose用于识别输入图像的动作信息。OpenPose Editor插件可以自行修改姿势,导出到文生图或图生图。scribble将输入图像作为线稿识别。如果线稿是白色背景,务必勾选“Invert Input Color”fake_scribble识别输入图像的线稿,然后再将它作为线稿生成图像。segmentation识别输入图像各区域分别是什么类型的物品,再用此构图信息生成图像。如果想绘制一张符合segementation规范的图像,可以使用以下色表绘制。[color_coding_semantic_segmentation_classes - Google表格](https://link.zhihu.com/?target=https%3A//docs.google.com/spreadsheets/d/1se8YEtb2detS7OuPE86fXGyD269pMycAWe2mtKUj2W8/edit%23gid%3D0)