Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我想训练一个个人日程提醒工具,需要输入哪些信息,什么格式?

Answer

训练一个个人日程提醒工具通常需要输入以下几类信息:

  1. 日程的具体内容:包括活动的名称、描述等。
  2. 时间信息:明确日程开始和结束的具体时间。
  3. 重复模式:例如是否每天、每周、每月重复等。
  4. 提醒方式:如短信、邮件、应用内推送等,以及提前提醒的时间间隔。

输入格式可以是结构化的数据格式,如 JSON 格式,包含上述各个字段的键值对;也可以是表格形式,将不同的信息列在不同的列中;或者是文本形式,但需要有明确的分隔和标识,以便程序能够准确解析。

Content generated by AI large model, please carefully verify (powered by aily)
Others are asking
怎样利用AI进行广州小学语文数学英文各科的学习辅导,请给出具体可操作方案,及安排一个学期的日程。
目前没有关于利用 AI 进行广州小学语文、数学、英语各科学习辅导的具体可操作方案及学期日程的相关内容。但一般来说,可以考虑以下步骤: 首先,确定学习目标和重点。针对每门学科,明确本学期需要掌握的知识点和技能。 然后,选择适合的 AI 学习工具。例如,有一些在线学习平台或教育类的 APP ,它们可能提供课程讲解、练习题、智能辅导等功能。 在日程安排方面,可以每周安排一定的时间使用 AI 工具进行学习。比如,周一至周五每天晚上安排 12 小时,分别用于语文、数学、英语的学习。周末可以进行复习和总结。 具体到每天,可以先通过 AI 工具进行知识点的学习,然后做相关的练习题进行巩固,最后利用工具的智能辅导功能解决疑难问题。 需要注意的是,AI 只是辅助工具,不能完全替代教师和家长的指导与监督。
2025-02-17
我是一个英文CET4级水平的上班族,想要在一年内达成雅思7.5分,请问如何使用AI帮助我实现这个目标。请用简洁易懂的表达,使用项目日程表的形式,将计划分成月度、周和日。
很抱歉,目前没有相关的具体计划内容。但您可以利用一些 AI 工具来辅助学习,比如使用智能语言学习软件,它能根据您的水平制定个性化的学习计划、提供练习题目和模拟测试,并实时评估您的学习进度。您还可以利用 AI 翻译工具,帮助您理解复杂的英语文本。 以下是一个大致的月度、周和日的计划框架供您参考: 月度计划: 第一个月:熟悉雅思考试的题型和要求,通过 AI 工具进行基础评估,制定整体学习策略。 第二个月:重点提升听力和阅读能力,利用 AI 推荐的学习资源进行每日练习。 第三个月:加强写作和口语的训练,使用 AI 批改和模拟对话功能。 第四个月:进行阶段性模拟测试,分析薄弱环节,利用 AI 针对性地强化训练。 第五个月:继续巩固各项能力,增加练习难度和时长。 第六个月:参加真实的雅思模拟考试,根据结果调整学习计划。 第七个月:针对薄弱点进行最后的冲刺训练。 第八个月:进行全面复习,通过 AI 工具进行知识点的查漏补缺。 第九个月:保持练习状态,调整心态。 第十个月:再次进行模拟考试,评估学习效果。 第十一个月:做最后的强化复习和准备。 第十二个月:做好考试的各项准备,保持良好状态迎接考试。 周计划: 每周安排 5 天进行学习,每天至少 2 小时。 每周进行一次小测试,评估本周学习成果。 每周利用 AI 工具分析学习数据,调整下周学习重点。 日计划: 每天早上背诵单词和短语,可使用 AI 记忆辅助工具。 白天工作间隙利用碎片时间进行听力练习。 晚上集中进行阅读、写作和口语的练习。 睡前复习当天学习内容。 请注意,这只是一个初步的框架,您需要根据实际情况和 AI 工具的特点进行具体的调整和优化。祝您学习顺利,早日实现目标!
2024-12-17
有没有根据课程进行日程安排并自动按照记忆曲线形成学习复习提醒的工具
以下是一些根据课程进行日程安排并自动按照记忆曲线形成学习复习提醒的工具: 1. Memrise:结合 AI 技术,根据学习者的记忆曲线提供复习和练习,增强记忆效果。使用方法是选择学习语言,使用应用提供的词汇卡和练习进行学习。 2. FluentU:使用真实世界的视频,通过 AI 生成个性化的词汇和听力练习。选择学习语言,观看视频并完成相关练习,积累词汇和提升听力理解能力。 此外,还有一些其他与 AI 学习外语相关的工具和平台: 1. Speechling:提供口语练习和发音反馈,帮助学习者改进口音和发音准确性。使用方法是录制语音,提交给 AI 系统或人类教练,获取反馈和改进建议。 2. Grammarly:可以帮助提高写作的语法和词汇准确性,支持多种语言。使用方法是将写作内容粘贴到 Grammarly 编辑器中,获取语法和词汇改进建议。 3. Google Translate:提供实时翻译、语音输入和图像翻译功能,适合快速查找和学习新词汇。输入或语音输入需要翻译的内容,查看翻译结果和示例句子。 4. Reverso Context:提供单词和短语的翻译及上下文例句,帮助理解和学习用法。输入单词或短语,查看翻译和例句,学习实际使用场景。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-10-07
能安排日程的AI助理
目前市面上有几款能够安排日程的AI助理,其中包括: 1. Google Assistant:Google Assistant是一款功能强大的AI助理,能够帮助用户安排日程、设置提醒、管理待办事项等。用户可以通过语音或文本输入与其交互,并且可以在多个设备上使用。 2. Apple Siri:Apple的Siri也是一个智能的AI助理,可以帮助用户安排日程、设置提醒、发送消息等。Siri可以在iPhone、iPad、Mac等多个设备上使用,并且支持语音和文本输入。 3. Microsoft Cortana:Microsoft的Cortana是一个智能的AI助理,能够帮助用户安排日程、设置提醒、管理待办事项等。Cortana可以在Windows 10设备、Android和iOS设备上使用。 4. Amazon Alexa:Amazon的Alexa是一个智能的AI助理,可以帮助用户安排日程、设置提醒、播放音乐等。Alexa可以在Amazon Echo设备上使用,并且支持语音输入。 这些AI助理都具备安排日程和管理时间的能力,用户可以根据自己的需求选择合适的AI助理。此外,还有一些专门的智能日程管理工具,如Google Calendar、Microsoft Outlook等,也能够帮助用户高效地管理时间和日程。
2024-05-21
我现在想根据我的博士论文,想出一个国家社科基金的选题。但是我的博士论文感觉核心不是特别突出,我希望找到一个AI助手,让AI帮我读论文的PDF格式然后总结出一个最合适的选题,有没有推荐的AI工具?
以下是一些关于利用 AI 辅助完成您需求的建议: 1. 先拆解您的博士论文工作流程,搞清楚每个步骤的输入输出和相互关系。 2. 思考论文中的哪些环节可以引入 AI 工具来提效,一切要从业务逻辑出发,AI 是锦上添花,不能本末倒置。 3. 搭建选题库,明确论文的定位(可用 AI 辅助分析),找相关的对标论文和优秀研究。 4. 在写作环节,可用 AI 辅助拆解对标论文,提炼写作技巧,然后根据借鉴的技巧结合自身特色列出写作大纲,并使用 AI 优化大纲、查找资料、润色文章,但核心内容要自己完成,不能过度依赖 AI。 5. 起标题与配图方面,用 AI 辅助批量生成标题,再自己修改优化,评估标题是否足够吸引眼球,让 AI 分析论文提供配图建议,去免费图库搜索配图。 6. 养成习惯与总结,做每件事前都思考 AI 能提供什么帮助,把整套流程实践几次,形成肌肉记忆,不断打磨完善属于自己的 AI 辅助流程,同时警惕过度依赖,AI 只是辅助,核心能力要靠自己。 目前常见的可用于辅助您的 AI 工具如 ChatGPT 等,但具体的选择还需根据您的实际需求和使用体验来决定。
2025-02-16
我的工作是财务会计,经常需要对账,输入是2个Excel表格,但格式内容都有不少差异,哪些大模型或者工具可以帮我快速完成这个工作?
以下是一些可能有助于您快速完成对账工作的大模型或工具: 1. Coze 记账管家:它能通过大语言模型将用户输入的非结构化数据转变为结构化数据存入数据库。工作流程包括定义提示词,让大模型拆解并识别记账事项、发生时间、变动金额等,然后将这些数据存入数据库。 2. GLM4AllTools:可用于统计平台月度账单,例如您可以从平台导出月度明细数据,上传账单给沙盒,让模型统计账单数据和用量,还能分析账单数据波动。 3. 生成式 AI:在金融服务领域,它能帮助改进内部流程,如预测编写 Excel、SQL 和 BI 工具中的公式和查询,自动创建报告的文本、图表、图形等内容,为会计和税务团队提供税法和扣除项的可能答案,以及帮助采购和应付账款团队自动生成和调整合同、采购订单和发票等。
2025-02-15
有没有能帮助生成特殊格式文档的ai工具
以下是一些能帮助生成特殊格式文档的 AI 工具: 对于文章排版: Grammarly:不仅是语法和拼写检查工具,还提供排版功能,可改进文档风格和流畅性。 QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性,保持原意。 Latex:常用于学术论文排版,使用标记语言描述格式,有许多 AI 辅助的编辑器和插件简化排版。 PandaDoc:文档自动化平台,用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业,保持原始意图。 Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 对于论文写作: 文献管理和搜索: Zotero:结合 AI 技术,自动提取文献信息,管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 内容生成和辅助写作: Grammarly:提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,精简和优化论文内容。 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,帮助进行复杂的数据分析和模型构建。 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化论文编写过程。 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 对于制作 PPT: Gamma:在线 PPT 制作网站,通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式。 美图 AI PPT:通过输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素。 Mindshow:AI 驱动的 PPT 辅助工具,提供智能设计功能,如自动布局、图像选择和文本优化等。 讯飞智文:科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术,提供智能文本生成、语音输入、文档格式化等功能。 选择合适的工具取决于您的具体需求,如文档类型、出版标准和个人偏好。
2025-02-13
音频文件转为MP3格式的AI有哪些?是否需要付费?
目前市面上将音频文件转为 MP3 格式的 AI 工具较多,常见的有格式工厂、迅捷音频转换器等。这些工具部分提供免费服务,但也有一些功能或高级版本需要付费。具体的付费情况会因工具的不同而有所差异。
2025-02-13
如何构建一个检查word文档格式的智能体
构建一个检查 word 文档格式的智能体可以参考以下步骤: 1. 考虑到对照精读环节适合批处理形式,使用“分段输入正文”将正文分割,用 LLM 节点批处理每一段的对照精读,最终“拼合精读结果”以输出完整文本。 2. 用户输入原文时,在 AI 对话窗口中通过开场白提示用户按格式输入文章,用“”符标记标题句。 3. 用 Python 脚本去掉标题句,并把剩下内容按照段落的换行逐段输出为 Array<String>格式。附上相关 Python 代码。 4. 试运行以验证节点是否按预期运作,分次输出每一段原文。 此外,在创建智能体的知识库方面: 1. 手动清洗数据可提高准确性,如创建画小二课程的 FAQ 知识库,飞书在线文档中每个问题和答案以“”分割。 2. 对于本地 word 文件,注意不能一股脑将所有内容放入训练,应先放入大的章节名称内容,再按固定方式人工标注和处理章节内详细内容。 3. 完成后点击发布,确保在 Bot 商店中能搜到,否则无法获取 API。
2025-02-10
能够模仿产品经理,把我的需求描述整理成格式化的PRD的工具有什么
以下是一些能够模仿产品经理,把您的需求描述整理成格式化 PRD 的工具: 1. 用户研究、反馈分析:Kraftful(kraftful.com) 2. 脑图:Whimsical(whimsical.com/aimindmaps)、Xmind(https://xmind.ai) 3. 画原型:Uizard(https://uizard.io/autodesigner/) 4. 项目管理:Taskade(taskade.com) 5. 写邮件:Hypertype(https://www.hypertype.co/) 6. 会议信息:AskFred(http://fireflies.ai/apps) 7. 团队知识库:Sense(https://www.senseapp.ai/) 8. 需求文档:WriteMyPRD(writemyprd.com) 9. 敏捷开发助理:Standuply(standuply.com) 10. 数据决策:Ellie AI(https://www.ellie.ai/) 11. 企业自动化:Moveworks(moveworks.com)
2025-02-09
你是一名电商专家,有没有哪个AI大模型或者智能体可以完成以下功能:输入材质图片,得到经过设计后的成品衣服
目前尚未有成熟的 AI 大模型或智能体能够直接实现输入材质图片就得到经过设计后的成品衣服的功能。但在 AI 领域的不断发展中,可能会有相关的技术和模型在未来出现。
2025-02-16
你是一名电商专家,有没有哪个AI大模型或者智能体可以完成以下功能:输入衣服材质图片,得到经过设计后的材质成品衣服
目前尚未有专门的 AI 大模型或智能体能够直接实现您所描述的输入衣服材质图片就得到经过设计后的材质成品衣服的功能。但随着 AI 技术的不断发展,未来可能会出现相关的应用。
2025-02-16
如何输入一个话题自动化生成小红书配文
以下是关于输入一个话题自动化生成小红书配文的方法: 首先,有一个名为“小红书文案专家”的工具。 它的功能价值在于:见过多个爆款文案,只需输入一个网页链接或视频链接,就能生成对应的小红书文案,可辅助创作者生成能一键复制发布的初稿,提供创意和内容,能节约 10 倍文字内容创作时间。其应用链接为:https://www.coze.cn/s/ij5C6LWd/ 。 设计思路方面: 痛点是个人时间有限,希望有人帮忙写初稿再进行二创,最好还能生成配图。 实现思路是给自己和团队小伙伴设计工作流,让 AI 按照运营日常工作思路和流程工作。 一期产品功能包括: 可以提取任何链接中的标题和内容。 按照小红书平台文案风格重新整理内容。 加入 emoji 表情包,使文案更有活力。 为文案配图片。 二期计划功能持续优化升级中,包括增加全网搜索热点功能,提炼热点新闻或事件关键信息,结合用户想要生成的内容方向输出文案和配图。
2025-02-14
如何在coze已经建好的智能体上搭建一个用户登陆的模块,让用户在使用前输入姓名,序号
要在已建好的 Coze 智能体上搭建用户登陆模块,让用户在使用前输入姓名和序号,您可以参考以下步骤: 1. 服务器设置: 购买云服务器,推荐使用腾讯云服务器。新用户专享 28 元/年一台云服务器,若售罄可购买 82 元/年的,并选择宝塔 Linux 面板 8.1.0 腾讯云专享。 云服务器设置密码,选择暂不需要教学场景,通过远程登录的密码/密钥登录的重置密码来初始化密码,并妥善保存。 获取宝塔 Linux 地址,点击控制面板中的应用信息的管理应用,有两种获取方法。 设置宝塔的密码,登录宝塔 Linux 面板,输入相关操作并保存用户名和密码。 2. 变现模板配置: 超级管理员和普通用户的定义:超级管理员拥有管理整个系统的最高权限,普通用户没有项目配置权限和进入管理后台页的权限。 成为超级管理员:点击【成为超级管理员】按钮,进入用户注册登录页面,完成注册后获得超级管理员账户。 选择智能体配置模式,包括 Zion 默认智能体模式和您的 Coze 智能体模式。 3. API 接入微信群 Bot: 登录宝塔面板,在宝塔面板中可视化控制云服务器,部署 docker 容器,启动 COW 项目与微信取得关联。 在“Docker”中的“项目模板”中添加,将编译好的内容复制进来,创建容器并确定。 查看运行服务,扫码接入微信,手动刷新日志,若看到 WeChat login success 则接入成功。
2025-02-14
有什么免费的AI软件,输入照片,自动修饰,生成2寸证件照的软件
目前免费且能实现输入照片自动修饰生成 2 寸证件照功能的 AI 软件相对较少。一些常见的图像处理软件可能具备部分类似功能,但可能并非完全免费或需要一定的付费升级才能达到理想效果。您可以关注一些在线图片处理平台,有时它们会提供一定程度的免费服务,但功能可能有限。
2025-02-08
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
主流的LORA 训练工具是什么?
主流的 LORA 训练工具包括: 1. B 站 UP 主“朱尼酱”的赛博丹炉,其界面友好、美观,适合新手入门。 2. 训练器,支持 Kolors 开源模型。 3. Kolors+Refiner,由 AIKSK 开发的工作流应用。 4. Kolors可图大模型XL 精修工作流,由@AiARTiST 非人类开发。 5. kolors+SDXL 细节修复+instant+ipa,由@谷尘 DesignDog 开发。 6. kolors 一键设计中文海报,由亦诚视觉开发。 7. ,魔搭社区官方模型。 8. InstantIDKolors 专属模型,由 InstantX 开发。
2025-02-18
flux lora训练
以下是关于 Flux 的 Lora 模型训练的详细步骤: 模型准备: 1. 下载所需模型:t5xxl_fp16.safetensors、clip_l.safetensors、ae.safetensors、flux1dev.safetensors。 注意:不使用时存放位置不限,只要知晓路径即可。训练时建议使用 flux1dev.safetensors 版本的模型和 t5xxl_fp16.safetensors 版本的编码器。 下载脚本: 1. 网盘链接: 夸克网盘链接:https://pan.quark.cn/s/ddf85bb2ac59 百度网盘链接:https://pan.baidu.com/s/1pBHPYpQxgTCcbsKYgBi_MQ?pwd=pfsq 提取码:pfsq 安装虚拟环境: 1. 下载完脚本并解压。 2. 在文件中找到 installcnqinglong.ps1 文件,右键选择“使用 PowerShell 运行”。 3. 新手在此点击“Y”,然后等待 1 2 小时的下载过程。下载完成后会提示是否下载 hunyuan 模型,选择“n”不用下载。 数据集准备: 1. 进入厚德云 模型训练 数据集:https://portal.houdeyun.cn/sd/dataset 2. 创建数据集:在数据集一栏中,点击右上角创建数据集,输入数据集名称。 可以上传包含图片 + 标签 txt 的 zip 文件,也可以上传只有图片的文件(之后可在 c 站使用自动打标功能),或者一张一张单独上传照片。建议提前将图片和标签打包成 zip 上传,Zip 文件里图片名称与标签文件应当匹配,例如:图片名“1.png”,对应的达标文件就叫“1.txt”。 上传 zip 以后等待一段时间,确认创建数据集。返回到上一个页面,等待一段时间后上传成功,可以点击详情检查,可预览到数据集的图片以及对应的标签。 Lora 训练: 1. 点击 Flux,基础模型会默认是 FLUX 1.0D 版本。 2. 选择数据集,点击右侧箭头,会跳出所有上传过的数据集。 3. 触发词可有可无,取决于数据集是否有触发词。模型效果预览提示词则随机抽取一个数据集中的标签填入即可。 4. 训练参数这里可以调节重复次数与训练轮数,厚德云会自动计算训练步数。如果不知道如何设置,可以默认 20 重复次数和 10 轮训练轮数。 5. 可以按需求选择是否加速,点击开始训练,会显示所需要消耗的算力。 6. 等待训练,会显示预览时间和进度条。训练完成会显示每一轮的预览图。鼠标悬浮到想要的轮次模型,中间会有个生图,点击会自动跳转到使用此 lora 生图的界面。点击下方的下载按钮则会自动下载到本地。 数据集存放位置:.Flux_train_20.4\\train\\qinglong\\train 运行训练:约 1 2 小时即可训练完成。 验证和 lora 跑图:有 ComfyUI 基础的话,直接在原版工作流的模型后面,多加一个 LoraloaderModelOnly 的节点就可以,自行选择您的 Lora 和调节参数。
2025-02-17
LLM 训练推理模型有哪些
以下是一些常见的 LLM 训练推理模型: 1. FengshenbangLM: 地址: 简介:是 IDEA 研究院认知计算与自然语言研究中心主导的大模型开源体系,开源了姜子牙通用大模型 V1,是基于 LLaMa 的 130 亿参数的大规模预训练模型,具备翻译、编程、文本分类、信息抽取、摘要、文案生成、常识问答和数学计算等能力。除姜子牙系列模型之外,还开源了太乙、二郎神系列等模型。 2. BiLLa: 地址: 简介:开源了推理能力增强的中英双语 LLaMA 模型。较大提升 LLaMA 的中文理解能力,并尽可能减少对原始 LLaMA 英文能力的损伤;训练过程增加较多的任务型数据,利用 ChatGPT 生成解析,强化模型理解任务求解逻辑;全量参数更新,追求更好的生成效果。 3. Moss: 地址: 简介:支持中英双语和多种插件的开源对话语言模型,MOSS 基座语言模型在约七千亿中英文以及代码单词上预训练得到,后续经过对话指令微调、插件增强学习和人类偏好训练具备多轮对话能力及使用多种插件的能力。 此外,Andrej Karpathy 的相关介绍中提到了 LLM 训练的一些情况,如训练过程涉及大约 10TB 的文本,通常来源于互联网的抓取,需要大量的互联网资源和一个 GPU 集群,费用大约 200 万美元。Karpathy 的视频还详细介绍了 LLM 训练的全部过程,包括预训练、有监督微调和强化学习等。
2025-02-16
RVC声音模型训练
RVC 声音模型训练是将输入音频转换为训练的声音,即变声。它对训练素材量级要求较高,最少需要 20 分钟的素材才能达到理想效果,并且可以选择是否关联音高,以区分说话和唱歌两个不同场景。 在节目《马上封喉》中,负责马季老师语音生成部分的人员提到,AI 语音主要涉及 TTS(文本转语音)和 RVC 两项技术。此次的 AI 马季主要以 gptsovits 为主。 在 AI 春晚《西游不能停》的创作过程中,尝试了用 RVC 进行 vocal 变声的两种办法,但效果均不理想。第一种方法是训练声音模型后直接变声,存在变声后 AI 味儿太重、丢失原有强调的问题;第二种方法是训练声音模型,自己录 rap 后再变声,但需要在录音时尽量模仿还原出特点和感觉,这涉及到专业配音技巧,超出了能力范围。此外,八戒和沙僧声音的训练文件丢失,效果也不理想。
2025-02-13