直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

想利用AI做房屋设计

回答

以下是一些能够帮助进行房屋设计的 AI 工具:

  1. HD-AidMaster:这是一款云端工具,在建筑设计、室内设计和景观设计领域表现出色。搭载自主训练的建筑大模型 ArchiMaster,软件 UI 和设计成果颜值在线,建筑师可使用主流 AIGC 功能进行有趣的集卡式方案创作。
  2. Maket.ai:主要面向住宅行业,在户型设计和室内软装设计方面有探索。设计师输入房间面积需求和土地约束,软件能自动生成户型图并查看详细设计结果。
  3. ARCHITEChTURES:AI 驱动的三维建筑设计软件,在住宅设计早期阶段可引入标准和规范约束 AI 生成的设计结果,保证设计合规性。
  4. Fast AI 人工智能审图平台:形成从住宅设计图构件开始的全自动智能审图流程,能自动导入、划分区域、识别构件、审查强条和导出结果,为建筑信息自动建模打下基础,实现建筑全寿命周期内信息集成与数据汇总管理。

但每个工具都有特定应用场景和功能,建议您根据具体需求选择合适的工具。

此外,用 Coze 的工作流创建室内设计师可以实现让 AI 快速出家装设计效果图,并根据客户咨询信息收集用户联系方式形成销售线索。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问: 有没有能够帮助建筑设计师审核规划平面图的AI工具

有一些AI工具可以帮助建筑设计师审核规划平面图,以下是一些例子:1.HD-AidMaster:这是一款云端工具,建筑师可以在平台上使用主流的AIGC功能,进行有趣的集卡式方案创作。它在建筑设计、室内设计和景观设计三个领域都有很惊艳的表现。平台搭载了自主训练的建筑大模型ArchiMaster,作为一家建筑设计院开发出的成果,无论是软件的UI还是建筑设计的成果,颜值都很在线。2.Maket.ai:这款软件主要面向住宅行业,在户型设计和室内软装设计方面做出了AI技术的探索。设计师只要预先输入不同房间的面积需求和周边土地约束,软件就能自动生成几个户型图,点击可以查看详细的设计结果。3.ARCHITEChTURES:这是一个AI驱动的三维建筑设计软件,给设计师提供了一种全新的设计模式。在住宅设计的早期阶段,ARCHITEChTURES可以引入相关的标准和规范,用于约束AI生成的设计结果,比如净面积要求、房间大小要求、净高要求等,保证设计的合规性。

问: 有没有能够帮助建筑设计师审核规划平面图的AI工具

4.Fast AI人工智能审图平台:这个平台从住宅设计图的构件开始,形成一套集“自动导入设计图”、“自动区域划分、构件识别、强条审查”、“自动导出结果”于一体的全自动智能审图流程,同时为建筑信息自动建模打下基础,最终将规划设计、施工、运维管理等建筑全寿命周期内的所有信息集成在一起,实现数据的汇总与管理。以上工具都可以帮助建筑设计师在设计过程中提高效率,减少错误,并提供更多的设计可能性。但是,每个工具都有其特定的应用场景和功能,建议您根据自己的具体需求来选择合适的工具。内容由AI大模型生成,请仔细甄别

【图像流】用Coze的工作流创建随便虐的室内设计师

1、让AI能够快速的出家装设计效果图;2、同时根据客户咨询的信息,收集用户联系方式信息形成销售线索。内部工作流

其他人在问
想用AI做房屋设计
以下是一些能够帮助进行房屋设计的 AI 工具: 1. HDAidMaster:这是一款云端工具,在建筑设计、室内设计和景观设计领域表现出色。搭载自主训练的建筑大模型 ArchiMaster,软件 UI 和设计成果颜值在线,建筑师可使用主流 AIGC 功能进行集卡式方案创作。 2. Maket.ai:主要面向住宅行业,在户型设计和室内软装设计方面有探索。设计师输入房间面积需求和土地约束,软件能自动生成户型图并查看详细设计结果。 3. ARCHITEChTURES:AI 驱动的三维建筑设计软件,在住宅设计早期阶段可引入标准和规范约束 AI 生成的设计结果,保证设计合规性。 4. Fast AI 人工智能审图平台:形成全自动智能审图流程,从住宅设计图构件开始,集自动导入、区域划分、构件识别、强条审查和自动导出结果于一体,为建筑信息自动建模打下基础,实现建筑全寿命周期内信息集成与数据汇总管理。 每个工具都有特定应用场景和功能,建议您根据具体需求选择合适的工具。
2024-09-05
有哪些关于toB 营销的 ai应用
在 ToB 营销领域,目前常见的 AI 应用主要有以下几类: 1. 智能办公:在办公垂域场景中发挥作用,比如快速总结群聊内容或会议信息,为写公文提供结构模板参考等。 2. 智能客服:通常借助 agent 实现,接入企业的 QA 知识库,回应用户信息并下达诸如取消订单、催快递之类的 action 指令。 3. AI 导购:在用户和商家之间发挥作用,依据用户问题,结合产品介绍和评论信息等,为用户推荐更准确、精准的产品。 4. 智能营销:应用于营销环节,通过 AIGC 生成话术、物料、口播等内容,有些还会融入用户的个性化元素以指导物料生成。 5. 智能人力资源:主要利用模型进行简历初筛、JD 自动生成、数据分析等工作。 此外,在 AI 产品的发展中,还呈现出从通用能力到专业化细分的趋势,如图像生成的 Midjourney、Stable Diffusion 等,视频制作的 Pika、Runway 等,音频处理的各种 AI 配音、音乐生成工具等。商业模式上也有创新尝试,如 ToB 市场的深耕,如针对内容创作者的 ReadPo 等。
2024-11-16
AI写信息报道软件
以下为您推荐一些好用的 AI 写信息报道软件: 1. Copy.ai:是一款功能强大的 AI 写作助手,提供丰富的新闻写作模板和功能,可快速生成新闻标题、摘要、正文等内容,节省写作时间并提高效率。 2. Writesonic:专注于写作的 AI 工具,提供新闻稿件生成、标题生成、摘要提取等功能,其智能算法能根据用户提供的信息快速生成高质量新闻内容,适合新闻写作和编辑人员使用。 3. Jasper AI:人工智能写作助手,虽主打博客和营销文案,但也可用于生成新闻类内容,写作质量较高,支持多种语言。 此外,随着人工智能技术的迅猛发展,小型企业在 2024 年也迎来了新的应用场景: 1. 聊天机器人:分为信息型和实用型,在企业网站上用于回答常见问题或执行特定任务,能大幅减少客户服务方面的人力成本。 2. AI 撰写内容:如 ChatGPT 等工具,为内容创作有困难或资源有限的小型企业提供高效解决方案,快速生成高质量文本内容。 3. 语音搜索优化:小型企业需优化网站以适应语音搜索普及的趋势,确保内容清晰准确,使用架构标记等技术提高语音助手理解度。 4. 网站个性化:为每位访客提供定制化体验,增强客户参与度和忠诚度。 5. 利用 AI 分析客户数据:通过机器学习算法进行预测性分析,发现模式和趋势,为营销活动或个性化体验提供有价值洞见。 6. 社交媒体管理与情绪分析:利用情绪分析工具深入了解客户反馈,调整产品和营销策略。 以下是 1 月 3 日的一些 AI 相关资讯: 1. 微软研究团队利用合成数据训练 AI,减少成本和偏见,生成 100 种语言的文本数据提高训练效率。论文链接:https://arxiv.org/abs/2401.00368 。 2. Pile:开源的 AI 日记软件,界面美观,集成 OpenAI API,有 AI 搜索和问题解答功能,保证安全隐私。下载链接:https://udara.io/pile/ ,项目源码:https://github.com/UdaraJay/Pile 。 3. VCoder:视觉编码器增强模型,增强 LLM 的视觉理解和分析能力,处理分割图和深度图,改善对象感知,在对象识别任务中表现优于 GPT4V。项目链接:https://praeclarumjj3.github.io/vcoder/ ,代码库:https://github.com/SHILabs/VCoder 。 4. M2UGen:多模态音乐理解生成模型,能理解音乐风格、乐器、情感,进行音乐问答,根据文本、图像、视频生成音乐,由腾讯与新加坡国立大学开发。 5. DreamTalk:人物头像动画生成开源,使人物照片头像根据音频说话或唱歌,保持嘴型和表情一致。代码库:https://github.com/alivilab/dreamtalk 。 内容由 AI 大模型生成,请仔细甄别。
2024-11-16
AI学习从哪开始?
对于新手学习 AI ,可以从以下几个方面开始: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于中学生学习 AI ,建议: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-11-16
我如何才能更快的成为AI领域的专家
要更快地成为 AI 领域的专家,您可以参考以下几个方面: 1. 学习基础:像预医学生一样,从相关的基础课程开始,例如数学、统计学、计算机科学等,为深入学习 AI 奠定坚实的基础。 2. 实践经验:通过参与实际项目、实习或研究工作,积累实践经验,从实践中获取那些书本上没有的知识和直觉。 3. 模型训练:采用堆叠模型的训练方式,而非单纯依赖大量数据和生成模型。例如,先训练基础学科的模型,如生物学、化学等,再添加特定领域的数据点。 4. 开发特定领域模型:创建专门针对特定领域的 AI 模型,如医疗保健领域的专家 AI,而不是追求全能的通用 AI。 5. 多样化方法:在编码、数据和测试方面采用多样化的方法,创建多个专家 AI 并在需要时提供不同意见。 6. 现实世界互动:让人类专家配备可穿戴设备,收集现实世界的互动数据供 AI 学习,使 AI 接触到多样化的视角,避免偏见。 总之,成为 AI 领域的专家需要系统的学习、丰富的实践和不断的探索创新。
2024-11-16
有没有用Stata的最小二乘法处理相关的AI
目前在 AI 领域中,较少直接将 Stata 的最小二乘法与 AI 进行特定的结合应用。Stata 的最小二乘法主要用于传统的统计分析,而在 AI 中,更多采用的是基于机器学习和深度学习的算法和模型。但如果您是在处理某些与数据相关的任务,最小二乘法的原理和思路在一定程度上可能对您理解和设计 AI 中的数据处理方法有所帮助。
2024-11-16
有没有自动AI样机的工具 mockup
目前在 AI 领域,暂时没有特别知名的专门用于生成自动 AI 样机的工具 mockup。但随着技术的不断发展,未来可能会出现相关的创新工具。您可以持续关注 AI 技术的最新动态,以获取相关信息。
2024-11-16
利用gpt-4模型的AI工具有哪些
以下是一些利用 GPT4 模型的 AI 工具: 1. Kickresume 的 AI 简历写作器:使用 GPT4 语言模型自动生成简历,能为简历摘要、工作经验和教育等专业部分编写内容,并保持一致语调。 2. Rezi:受到超过 200 万用户信任的领先 AI 简历构建平台,使用先进的 AI 技术自动化创建可雇佣简历的各个方面,包括写作、编辑、格式化和优化。 3. Huntr 的 AI 简历构建器:提供免费的简历模板,以及 AI 生成的总结/技能/成就生成器和 AI 驱动的简历工作匹配。 更多 AI 简历产品,还可以查看这里:https://www.waytoagi.com/category/79 。您可以根据自己的需要选择最适合的工具。 此外,在生成式人工智能领域,GPT4 有以下突破点: 1. 赋予模型使用工具的能力,如 OpenAI 推出的 ChatGPT 插件测试版,允许与多种工具交互。 2. 在计划和解决问题方面具有一定能力,能通过玩游戏或模拟环境快速学习和从经验中学习。 3. 在许多任务上达到人类水平的表现,对人类的理解有所提升。 4. 但也存在一些限制,如架构中的自回归特性导致缺乏规划能力等。
2024-11-12
利用AI自动查阅飞书知识库信息
以下是关于利用 AI 自动查阅飞书知识库信息的相关内容: 关于我: 我是 WaytoAGI 专属问答机器人,基于 Aily 和云雀大模型。「飞书智能伙伴创建平台」(英文名:Aily)是飞书团队旗下的企业级 AI 应用开发平台,提供简单、安全且高效的环境,帮助企业构建和发布 AI 应用。云雀是字节跳动研发的语言模型,能通过自然语言交互高效完成任务。 使用方法: 1. 您可以在 WaytoAGI 飞书知识库首页找到加入飞书群的链接(最新二维码请在获取),然后点击加入,直接@机器人即可。 2. 也可以在 WaytoAGI.com 的网站首页,直接输入问题,即可得到回答。 在飞书群中的使用: 在飞书 5000 人大群里,内置了智能机器人「waytoAGI 知识库智能问答」,它基于飞书 aily 搭建。您只需在飞书群里发起话题时,它会根据 waytoAGI 知识库的内容进行总结和回答。 飞书群智能机器人的功能: 1. 自动问答:自动回答用户关于 AGI 知识库内涉及的问题,可对多文档进行总结、提炼。 2. 知识搜索:在内置的「waytoAGI」知识库中搜索特定信息和数据,快速返回相关内容。 3. 文档引用:提供与用户查询相关的文档部分或引用,帮助用户获取更深入的理解。 4. 互动教学:通过互动式的问答,帮助群成员学习和理解 AI 相关的复杂概念。 5. 最新动态更新:分享有关 AGI 领域的最新研究成果、新闻和趋势。 6. 社区互动:促进群内讨论,提问和回答,增强社区的互动性和参与度。 7. 资源共享:提供访问和下载 AI 相关研究论文、书籍、课程和其他资源的链接。 8. 多语言支持:支持多语言问答,满足不同背景用户的需求。 搭建问答机器人: 2024 年 2 月 22 日的会议首先介绍了 WaytoAGI 社区的成立愿景和目标,以及其在飞书平台上的知识库和社区的情况。接着讨论了利用 AI 技术帮助用户检索知识库内容,引入 RAG 技术,通过机器人来帮助用户快速检索。然后介绍了基于飞书的知识库智能问答技术的应用场景和实现方法,可快速给大模型补充新鲜知识,提供大量新内容。之后讨论了如何使用飞书的智能伙伴功能来搭建 FAQ 机器人,以及智能助理的原理和使用方法。最后介绍了企业级 agent 方面的实践。
2024-11-09
利用ai工具对视频进行解说,需要什么工具
利用 AI 工具对视频进行解说,您可以考虑以下工具和流程: 1. 分析视频内容:使用 AI 工具(如 ChatGPT)对视频内容进行分析,提取关键信息。 2. 生成角色与场景描述:借助工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将解说文本转换为语音,并添加背景音乐和音效。 4. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将生成的音频与视频进行合成。 5. 拆解视频:可以使用 Gemini 1.5 Pro 对视频进行分析和拆解。 6. 制作 AI 短片:如使用 Pika、Pixverse、Runway、SVD 等工具来生成视频内容。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2024-11-02
如何利用AI操作分销话术模板
以下是利用 AI 操作分销话术模板的一些方法: 1. 草拟初稿:向 AI 提供相关提示,让其为您生成分销话术的初稿。例如,描述分销的产品特点、目标受众、销售场景等。 2. 改进内容:将初步生成的话术粘贴给 AI,要求它进行改进,使其更符合特定受众的需求,或者使其表达更生动、更具吸引力。 3. 提供多样风格:让 AI 以不同的风格创建多个草稿,从中选择最适合的。 4. 帮助完成任务:像使用实习生一样,让 AI 协助您创建销售模板,节省时间和精力。 您还可以参考以下案例: 1. 客服:定制客服话术,涵盖产品知识、使用方法、售后服务等多个方面的关键词库。 2. 销售:定制销售解决方案,包括企业产品和服务内容、客户需求和参数等。 希望这些信息对您有所帮助。
2024-10-30
利用 AI 生成培训框架
以下是为您生成的培训框架相关内容: 一、AI 在教育培训中的应用 1. 数字教师 借助大型语言模型,人工智能生成的角色可以作为数字教师,如让牛顿亲自授课《牛顿运动定律》,让白居易为您讲述《长恨歌》背后的故事。 数字教师可以实现一对一辅导,不受情绪左右,提高学生参与感。 能够根据学生的学习情况、兴趣和偏好提供定制化的学习计划和资源,实现因材施教,提高学习效率和成果,缓解教育资源不平等问题。 2. 数字陪伴 人工智能生成的虚拟角色可以作为孩子的玩伴,来自他人的赞美等社会奖励,促进儿童成长,提高学习成绩。 二、AI 相关技术原理与概念 1. 概念 生成式 AI 生成的内容称为 AIGC。 2. 相关技术名词 AI:人工智能。 机器学习:电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习:有标签的训练数据,算法学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习:参照人脑有神经网络和神经元,因有很多层所以叫深度,神经网络可用于多种学习方式。 生成式 AI:可以生成文本、图片、音频、视频等内容形式。 LLM:大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 3. 技术里程碑 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制处理序列数据,比 RNN 更适合处理文本的长距离依赖性。
2024-10-29
利用AI变现的最佳途径
以下是一些利用 AI 变现的途径: 1. 电商方面:通过在抖音、快手、视频号、小红书等平台上批量发布四维彩超生成 AI 宝宝照片的视频或图文,将客户引流到私域接单变现。后续还可针对宝妈开展如头像定制、绘画收徒、宝宝起名字、售胎毛纪念品、母乳纪念品等多种变现方式,并做好私域的精细化运营。 2. 知识自测:对于 AI 从业者,变现方式包括做产品、卖课程等。 3. 深圳 AI 变现沙龙中的项目: 借助抖音平台对实体商家的流量扶持,开发 AI 抖音发广告软件,让实体商家购买。 开发 AI 私域做客户培育/用户旅程的软件。 制作 AI 绘本,为 2 4 岁儿童提供睡前故事。 针对大学生社群,对接商家进行广告推广。 开展海外跨境电商和外贸。 开发法律咨询的 Bot,建立数据库回复。 进行体检报告解读。
2024-10-28