Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我在寻找一个能够帮我录制教学微视频的AI工具,希望能够帮助我提供一些文字对应的影像,然后也录我的真人,你可以帮我推荐码

Answer

目前在 AI 领域,专门用于录制教学微视频、提供文字对应影像并录制真人的工具相对较少。但您可以考虑使用一些视频编辑软件结合 AI 元素来实现您的需求。例如,Adobe Premiere Pro 具有强大的视频编辑功能,您可以在其中添加一些通过 AI 生成的素材,如特效、动画等。另外,剪映也是一个不错的选择,它操作相对简单,有一些智能的特效和模板可以使用。

如果您希望更直接地利用 AI 生成部分影像内容,一些 AI 绘画工具如 DALL·E2、StableDiffusion 等,可以根据您的文字描述生成图像,然后您再将其整合到视频中。

不过需要注意的是,这些工具可能需要您具备一定的操作技能和创意,才能更好地制作出符合您需求的教学微视频。

Content generated by AI large model, please carefully verify (powered by aily)
Others are asking
法律AI
以下是关于法律 AI 的相关内容: 在法律领域,AI 具有多方面的应用和作用: 法律意见书撰写: AI 能够根据案件背景、证据材料及适用法律法规,自动撰写初步的法律意见书,包含对案件事实的梳理、法律分析和结论部分。例如: 1. 针对商业秘密泄露案件,分析法律责任和赔偿范围,为客户提供应对策略。 2. 为计划上市的公司提供关于公司治理结构的法律意见书,包括股东权益保护和董事会职责,确保符合相关法规要求。 3. 就消费者权益保护案件提供法律意见,分析商家赔偿责任和消费者维权途径,为客户制定应对措施。 4. 为公司股权转让交易起草股权转让协议,规定转让方和受让方的信息、股权转让的份额、价格、支付方式和时间表等。 5. 起草初创公司股权转让协议,明确创始股东向新投资者转让股权的条件等。 6. 为上市公司股份转让交易起草协议,包括股份描述、转让价格、支付安排等。 7. 起草家族企业股权内部转让协议,涵盖股权分配、价格确定方式等。 诉讼策略制定: AI 可基于相关法律条款和案例法,提供诉讼策略,包括对权利的分析、侵权行为评估、证据搜集建议等。例如: 1. 为专利侵权案件制定诉讼策略,分析专利有效性、侵权行为等。 2. 针对劳动合同纠纷案件,分析员工权益和雇主责任,提出诉讼策略。 3. 在知识产权许可诉讼中,分析许可协议条款和双方权利义务,提出诉讼策略。 模拟法庭: AI 能模拟法庭审理过程,分析双方论点、证据和法律依据,预测判决结果,并给出优化法庭陈述和证据呈现的建议。 使用技巧和注意事项: 1. 进行数据分析时,将环节分开处理以优化性能和便于发现修正问题。 2. 针对复杂问题,采用逐步深化和细化的方式提问。 3. 为 AI 系统提供大量数据和示例、高质量的参考材料、详细的流程和知识。 4. 在 Prompt 中使用法律术语引导 AI 回答方向。 5. 对 AI 的回答进行交叉验证,结合自身专业知识筛选判断,确保符合法律伦理、立法目的和实务。
2025-04-07
logo AI创作工具有哪些
以下是一些常见的 logo AI 创作工具: 1. Looka:在线 Logo 设计平台,使用 AI 理解用户品牌信息和设计偏好,生成多个设计方案供选择和定制。 2. Tailor Brands:AI 驱动的品牌创建工具,通过用户回答问题生成 Logo 选项。 3. Designhill:其 Logo 制作器使用 AI 技术创建个性化设计,用户可选择元素和风格。 4. LogoMakr:提供简单易用的 Logo 设计工具,用户可拖放设计,利用 AI 建议的元素和颜色方案。 5. Canva:广受欢迎的在线设计工具,提供 Logo 设计模板和元素,有 AI 辅助设计建议。 6. LogoAI by Tailor Brands:Tailor Brands 推出的 AI Logo 设计工具,根据输入快速生成方案。 7. 标小智:中文 AI Logo 设计工具,利用人工智能技术帮助创建个性化 Logo。 此外,在以下内容中也提到了一些相关工具: 2023 年,让你月赚 5w 的 48 个 AI 工具中涉及 Logo 设计的有:Looka、LogoAI 等。 您还可以访问网站的 AI 生成 Logo 工具版块获取更多好用的工具:https://waytoagi.com/category/20
2025-04-07
AI 智能体四大组成部分
AI 智能体由以下四大组成部分构成: 1. 推理:在最基本的层面上,智能体必须能够对非结构化数据进行推理。基础模型如 Anthropic 和 OpenAI 已在这方面取得一定成效,其部分世界模型编码到了 LLM 的预训练权重中,用于一般知识和基本逻辑。 2. 外部记忆:智能体需要外部内存来存储和调用特定于域的知识以及所解决问题的有限上下文,通常通过像 Pinecone 这样的向量数据库来实现。 3. 执行:智能体使用工具来执行增强其解决问题能力的任务。早期的智能体平台提供了预定义在代码中的自定义操作工具箱,如今也出现了一些通用的智能体工具,包括网络浏览、代码解释、身份验证和授权,以及与企业系统的连接以执行用户界面操作。 4. 规划:智能体遵循更人性化的思维过程,将工作分解成更小的子任务和计划,反思进度并根据需要进行调整,而非通过单一顺序的下一个词预测来解决复杂问题。
2025-04-07
AI chatbot、agent、copilot区别
AI chatbot、agent、copilot 主要有以下区别: 1. 定义和角色: Copilot:翻译成副驾驶、助手,在帮助用户解决问题时起辅助作用。 Agent:更像主驾驶、智能体,可根据任务目标自主思考和行动,具有更强的独立性和执行复杂任务的能力。 Chatbot:具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 核心功能: Copilot:更多地依赖于人类的指导和提示来完成任务,功能很大程度上局限于在给定框架内工作。 Agent:具有更高的自主性和决策能力,能够根据目标自主规划整个处理流程,并根据外部反馈进行自我迭代和调整。 3. 流程决策: Copilot:处理流程往往依赖于人类确定的静态流程,参与更多是在局部环节。 Agent:解决问题的流程由 AI 自主确定,是动态的,不仅可以自行规划任务步骤,还能根据执行过程中的反馈动态调整流程。 4. 应用范围: Copilot:主要用于处理简单、特定的任务,更多是作为工具或助手存在,需要人类引导和监督。 Agent:能够处理复杂、大型的任务,并在 LLM 薄弱的阶段使用工具或 API 等进行增强。 5. 开发重点: Copilot:主要依赖于 LLM 的性能,开发重点在于 Prompt Engineering。 Agent:同样依赖于 LLM 的性能,但开发重点在于 Flow Engineering,即在假定 LLM 足够强大的基础上,把外围的流程和框架系统化。 以下是一些 Agent 构建平台: 1. Coze:新一代一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具。 2. Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及部署 Copilot 到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据需求打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 6. 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,在处理高频工作场景方面表现出色。 以上信息由 AI 大模型生成,请仔细甄别。
2025-04-07
AI 自动安排批量设置工作任务的个人效率 app 推荐
目前在市场上,有一些可以实现 AI 自动安排批量设置工作任务以提升个人效率的应用程序,以下为您推荐几款: 1. Todoist:它具有强大的任务管理功能,支持设置优先级、提醒和分类,能帮助您合理规划工作任务。 2. Microsoft To Do:与微软生态系统紧密集成,方便您在不同设备上同步任务,并进行批量设置。 3. Trello:以看板的形式展示任务,直观清晰,便于批量安排和跟踪工作进度。 您可以根据自己的需求和使用习惯选择适合您的应用程序。
2025-04-07
AI 自动安排批量设置工作任务的效率工具。
以下是关于 AI 自动安排批量设置工作任务的效率工具的相关内容: 对于中小企业利用人工智能(AI)进行转型,在任务自动化方面: 首先要评估和识别日常重复性高的任务,通过分析工作流程、观察和记录员工工作,确定耗时且重复性高的活动,明确通过观察和记录要达成的具体目标,如提高效率、减少错误率等,计划和安排对员工日常工作的观察,与员工交谈了解其看法,分析收集的数据以确定可优化的任务,并制定引入新工具等具体行动计划。 最后引入自动化工具,如 RPA 技术,根据企业需求和预算选择合适工具,在 IT 系统中部署并配置,进行测试和调整优化。 适合工作流化的业务一般具备以下特点: 重复性工作多,业务中的任务或流程高度重复。 业务流程固定,步骤相对固定,且具有标准化的操作流程。 以自媒体工作者为例,常见工作流步骤包括内容策划、创作、编辑、审核、发布、互动和效果分析优化等,通过 AI 标准化这些步骤并利用工具自动执行,可提高效率,让工作者有更多时间和精力专注核心业务。 一般来说,Workflow 是一系列相互连接的步骤,旨在完成特定任务或目标。最简单的工作流是确定性的,遵循预定义步骤序列。有些工作流会利用大模型等 AI 技术,被称为 AI Workflows,可分为 Agentic 和非 Agentic 。Agentic Workflow 是由单个或几个 AI Agents 动态执行的一系列连接步骤,以实现特定任务或目标,AI Agents 被授予权限,利用其核心组件将传统工作流转变为响应式、自适应和自我进化的过程。
2025-04-07
关于论文书写,ai能够做些什么
在论文书写方面,AI 能够提供多方面的帮助: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,可进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 利用 AI 写课题的步骤和建议如下: 1. 确定课题主题:明确研究兴趣和目标,选有价值和创新性的主题。 2. 收集背景资料:用学术搜索引擎和文献管理软件等 AI 工具搜集相关文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:借助 AI 工具确保内容准确完整。 6. 构建方法论:根据需求,利用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据收集和分析,用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:用 AI 写作工具写各部分,并检查语法和风格。 9. 生成参考文献:用 AI 文献管理工具生成正确格式。 10. 审阅和修改:用 AI 审阅工具检查逻辑性和一致性,根据反馈修改。 11. 提交前的检查:用 AI 抄袭检测工具确保原创性,做最后的格式调整。 常见的文章润色 AI 工具包括: 1. Wordvice AI:集校对、改写转述和翻译等功能于一体,基于大型语言模型提供全面的英文论文润色服务。 2. ChatGPT:由 OpenAI 开发的大型语言模型,可用于多方面写作辅助。 3. Quillbot:人工智能文本摘要和改写工具,可快速筛选和改写文献资料。 4. HyperWrite:基于 AI 的写作助手和大纲生成器,帮助写作前的头脑风暴和大纲规划。 5. Wordtune:AI 驱动的文本改写和润色工具,优化文章语言表达。 6. Smodin:提供 AI 驱动的论文撰写功能,可生成符合要求的学术论文。 需注意,AI 工具是辅助,不能完全替代研究者的专业判断和创造性思维,使用时应保持批判性思维,确保研究质量和学术诚信。
2025-04-01
我是一个没有技术背景且对AI感兴趣的互联网产品经理,目标是希望理解AI的实现原理并且能够跟开发算法工程师沟通交流,请给我举出AI模型或者机器学习的分类吧。
以下是 AI 模型和机器学习的分类: 1. AI(人工智能):是一个广泛的概念,旨在使计算机系统能够模拟人类智能。 2. 机器学习:是人工智能的一个子领域,让计算机通过数据学习来提高性能。包括以下几种类型: 监督学习:使用有标签的训练数据,算法学习输入和输出之间的映射关系,包括分类和回归任务。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 3. 深度学习:是机器学习的一个子领域,模拟人脑创建人工神经网络处理数据,包含多个处理层,在图像识别、语音识别和自然语言处理等任务中表现出色。 4. 大语言模型:是深度学习在自然语言处理领域的应用,目标是理解和生成人类语言,如 ChatGPT、文心一言等。同时具有生成式 AI 的特点,能够生成文本、图像、音频和视频等内容。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。生成式 AI 生成的内容称为 AIGC。
2025-03-26
作为一名高中语文教师,该学习哪些知识,能够更好地在工作中运用AI
作为一名高中语文教师,为了在工作中更好地运用 AI,您可以学习以下知识: 1. 提示词设计:掌握有效的提示词设计公式,例如 RTFC,以便更精准地向 AI 提出需求。 2. 利用 AI 工具:如用 Metaso 建立案例库,随时询问随时学习。 3. 了解 AI 在教学中的应用技巧:包括用 AI 配字幕、翻译、思维导图等快速总结和学习讲座内容。 4. 掌握 AI 赋能教学设计:以高中语文课程标准为导向,结合学生主体和核心素养,设计教学流程。例如在《再别康桥》的教学设计中,通过创设情境、品鉴特色、融思迁移等环节,融入地理、美术、音乐等多学科知识,借助人工智能协助修改诗歌创作。 5. 学习智能作文批改指导:利用相关工具提升作文批改的效率和质量。 6. 参加相关工作坊:如 AI 进阶工作坊,了解最新 AI 技术与实践案例分享,掌握全球 AI 技术在教育界的新发展和新应用。 同时,建议您参加适合有初步 AI 使用经验、期待了解最新技术进展、渴望分享交流的老师的课程和活动,不断提升自己在 AI 应用方面的能力。
2025-03-24
为什么ai能够“思考”
AI 能够“思考”主要基于以下几个方面: 1. 以 AlphaGo 为例,它在对战围棋传奇李世石时展示了超越简单模式模仿、真正“思考”的能力。在预训练时,它不仅模仿人类专家决策,还会在作答前“停下来思考”,通过模拟多个未来可能的棋局,评估得分并选择最优应对方式。随着推理时间增加,表现逐步提升并超过人类。但将此概念移植到大规模语言模型(LLM)上存在构建价值函数的难点,如在评估文章初稿、制定旅行计划等较为开放领域的打分问题。 2. 人类的思维过程分为快速、直觉的“系统 1”和缓慢、深思熟虑的“系统 2”。研究人员认为,如果有足够大、接近人脑的人工神经网络,就可能实现人脑的“思考”工作。 3. 像 HiDeepSeek 这样的工具,旨在让 AI 像人类交流时那样展示思考过程,通过特别的规则要求 AI 在思考时自然地提出疑问、修正错误等,使 AI 的回答不再是冰冷的结论,而是可跟踪、可理解的思考过程。虽然这种“思维”是模拟的,但有助于更好地理解和使用 AI 。
2025-03-23
我怎么才能让deepseek去给我写一个硕士论文的前言,让我能够顺利通过
使用 DeepSeek 等工具来撰写硕士论文的前言以试图顺利通过是不符合学术规范和道德准则的。硕士论文应当是您独立思考、研究和创作的成果,依靠外部工具生成整篇前言是不被允许的,这可能导致严重的学术不端行为,对您的学业和未来发展造成负面影响。建议您通过自己的阅读、研究和思考来撰写前言,以确保论文的质量和学术诚信。
2025-03-21
使用ai绘图能够将带货产品批量换背景,使用在小红书社区
以下是一些能够为带货产品批量换背景并应用于小红书社区的人员信息: 卡飞猫:15692004031,擅长摄影写真、banner 生成、替换产品。 韩君奇:13060035786,能够批量出图,做小红书种草。 阿鱼:18102592057,擅长各种类型的 AI 画图,以及 AI 视频提效。 吴燕波:15766104311,可进行日常出图,视频等。
2025-03-18
我想要一个以自己为蓝本,包括人物和声音的数字人,用来录制课程
以下是制作以自己为蓝本,包括人物和声音的数字人用来录制课程的方法: 1. 生成数字人: 在剪映右侧窗口顶部打开“数字人”选项,选取免费且适合的数字人形象,如“婉婉青春”。选择数字人形象时会播放其声音,可判断是否需要,然后点击右下角“添加数字人”将其添加到当前视频中,软件会生成对应音视频并添加到视频轨道中,左下角会提示渲染完成时间,完成后可点击预览按钮查看效果。 2. 增加背景图片: 可删除先前导入的文本内容,为视频增加背景图片。点击左上角“媒体”菜单并点击“导入”按钮选择本地图片上传,如一张书架图片,点击图片右下角加号将其添加到视频轨道上(会覆盖数字人)。为让图片在整个视频播放时都显示,点击轨道最右侧竖线向右拖拽至与视频对齐。 3. 增加字幕: 点击文本智能字幕识别字幕,点击开始识别,软件会自动将文字智能分段并形成字幕。 4. 换脸: 若希望数字人换成自己的面孔,需要用另一个工具进行换脸。 第一步:打开谷歌浏览器,点击链接 https://github.com/facefusion/facefusioncolab 并点击 open colab 进到程序主要运行界面,在右上角点击“代码执行程序”选择“全部运行”,无需安装和付费,点击红框对应的 URL 打开操作界面。 第二步:点击“source”上传自己的照片和“target”上传之前的剪映数字人视频,保持默认参数,点击“START”生成。 第三步:等待专属数字人视频出炉。 有关数字人使用上的问题,欢迎在底部评论区留言交流。同时如果对数字人课程感兴趣,欢迎查看通往 AGI 之路 X AI 沃茨的《克隆你自己》课程: 课程内容: 在线观看第一节:https://www.bilibili.com/video/BV1yw411E7Rt/?spm_id_from=333.999.0.0
2025-03-11
我有很多录制好的视频素材, 有哪些工具是可以帮助审视视频材料, 总结输出内容的?
以下是一些可以帮助审视视频材料并总结输出内容的工具和流程: 工具方面: ChatGPT:可用于分析视频内容,提取关键信息。 Stable Diffusion 或 Midjourney:用于生成与视频相关的视觉描述。 Adobe Firefly:能将文本转换为语音,添加音频效果。 Clipfly 或 VEED.IO:用于视频编辑与合成。 流程方面: 1. 剧本敲定:确保剧本内容完整,包括对话、场景、角色等都已确定。 2. 制作分镜头脚本:根据剧本,制作详细的分镜头脚本,涵盖每个场景的视角、动作、表情等细节。 3. 分镜出图:为每个镜头绘制或制作相应的分镜图,每个镜头可准备多张图以备用或展示不同视角。 4. 素材管理: 图片管理:按场景或部分将图片保存在不同文件夹中,命名为“场景 1”“场景 2”等,单个图片命名为“x 场 x 镜”。 视频管理:跑视频时按不同部分用不同文件夹管理,单个视频命名也为“x 场 x 镜”。 5. 素材审核:制作过程中定期审核素材,确保符合分镜头脚本要求和质量标准。 6. 备份与存档:定期备份素材,项目完成后存档,方便后续使用。 请注意,具体的操作步骤和所需工具可能因项目需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能随时间变化,建议直接访问工具网址获取最新信息和使用指南。
2025-02-15
能够录制屏幕,并且转为脚本的应用是什么
目前市面上有多种能够录制屏幕并转为脚本的应用,常见的有 Camtasia、OBS Studio 等。Camtasia 功能丰富,操作相对简单,适合大多数用户使用;OBS Studio 则是一款免费开源的软件,具有较强的自定义性。您可以根据自己的需求选择适合的应用。
2024-12-25
如何利用自动对齐技术,确保16位不同地点的人员录制的同一句口号音频同步且整齐,请推荐具有此功能的音频编辑工具、网站或AI工具,以便将这16段音频精确叠加并融合成一个协调一致的整体
以下是关于利用自动对齐技术确保 16 位不同地点人员录制的同一句口号音频同步且整齐的相关信息及工具推荐: 在音频编辑中,常见的步骤如下: 1. 选择合适的数字音频工作站(DAW),如 Studio One。上传 FLAC 无损格式的音频,只对融合部分进行 Inpaint 处理,保持其他音频信息不变,以避免音质问题。 2. 在 DAW 中对接音轨后,播放试听,并缩放波形图,检查波形是否正确对齐。若出现波形未对齐或播放时有咔哒声等问题,可能是在导出和处理过程中对音频施加了额外的效果器处理,如混响、限制器、压缩等,导致音频前后不一致,影响对接效果。因此,需要确保在不同的导出和处理步骤中,音频不受到额外的处理,或者在每次处理时保持相同的效果设置。 具有此功能的音频编辑工具和网站包括: 1. Studio One:可用于对齐拼接音轨,并进行后续的叠加额外音轨、调整音量和平衡等操作,以丰富音频的层次,注意叠加后各音轨的电平,避免过载或失衡。 2. Udio:具有混音功能,可对现有剪辑进行微妙或明显的变化。在提示框中有新的区域,通过滑块控制混音效果的强度。 此外,阿里的相关研究全面概述了大语言模型自动对齐的主要技术路径,将现有的自动对齐方法分为四大类:利用模型固有偏好实现对齐、通过模仿其他模型行为实现对齐、利用其他模型反馈实现对齐、通过环境交互获得对齐信号,并探讨了自动对齐背后的机理以及实现有效自动对齐的关键因素。但此研究主要针对大语言模型,对于音频对齐的直接应用可能有限。
2024-10-17
医疗影像使用AI的模型有那些?
以下是一些在医疗影像中使用的 AI 模型: 智谱·AI 开源的模型,如 WebGLM10B,它利用百亿参数通用语言模型(GLM)提供高效、经济的网络增强型问题解答系统,旨在通过将网络搜索和检索功能集成到预训练的语言模型中,改进现实世界的应用部署。代码链接: WebGLM2B,同样利用百亿参数通用语言模型(GLM)提供高效、经济的网络增强型问题解答系统。代码链接: MathGLM2B,在训练数据充足的情况下,20 亿参数的 MathGLM 模型能够准确地执行多位算术运算,准确率几乎可以达到 100%,其结果显著超越最强大语言模型 GPT4 在相同测试数据上 18.84%的准确率。代码链接: MathGLMLarge,采用 GLM 的不同变体作为骨干来训练 MathGLM,包括具有 335M 参数的 GLMlarge 和 GLM10B。此外,还使用 ChatGLM6B 和 ChatGLM26B 作为基座模型来训练 MathGLM。这些骨干模型赋予 MathGLM 基本的语言理解能力,使其能够有效理解数学应用题中包含的语言信息。代码链接: MathGLM10B,采用 GLM 的不同变体作为骨干来训练 MathGLM,包括具有 335M 参数的 GLMlarge 和 GLM10B。此外,还使用 ChatGLM6B 和 ChatGLM26B 作为基座模型来训练 MathGLM。这些骨干模型赋予 MathGLM 基本的语言理解能力,使其能够有效理解数学应用题中包含的语言信息。代码链接: MathGLMChatGLM6B,采用 GLM 的不同变体作为骨干来训练 MathGLM,包括具有 335M 参数的 GLMlarge 和 GLM10B。
2024-09-10