直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

零基础学习人工智能路线

回答

以下是为零基础学习人工智能提供的路线:

  1. 了解 AI 基本概念:
    • 建议阅读「从这里启程」部分,熟悉 AI 的术语和基础概念。
    • 了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。
    • 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。
  2. 开始 AI 学习之旅:
    • 在「入门:AI 学习路径」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。
    • 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。
  3. 选择感兴趣的模块深入学习:
    • AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。
    • 完整的学习路径建议参考「通往 AGI 之路」知识库首页的布鲁姆分类法,设计自己的学习路径。

入门工具推荐:Kimi 智能助手

  • ChatGPT 的国产平替,实际上手体验最好,推荐新手用 Kimi 入门学习和体验 AI。
  • 不用梯子、不用付费、支持实时联网。
  • 是国内最早支持 20 万字无损上下文的 AI,也是目前对长文理解做的最好的 AI 产品。
  • 能一次搜索几十个数据来源,无广告,能定向指定搜索源(如小红书、学术搜索)。
  • PC 端点我传送门直接使用
  • 移动端 Android/ios点我去下载
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:新手如何学习 AI?

学习人工智能(AI)是一个既刺激又富有挑战的旅程,它将带领你进入一个充满创新和发现的世界。如果你想开始学习AI,这里有一份详细的学习路径指南,可以帮助你从基础概念到实际应用,逐步建立起你的AI知识体系。1.了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。1.开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。1.选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。

问:新手如何学习 AI?

完整的学习路径建议参考「通往AGI之路」[知识库首页](https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e)的布鲁姆分类法,设计自己的学习路径。类似问题:我是新人,怎么学习AI?新手学习AI学习AI,我应该从哪里开始如何从头开始学习AI?

1.1 入门:AI 学习路径

Kimi智能助手1.Chatgpt的国产平替,实际上手体验最好,推荐新手用Kimi入门学习和体验Ai1.不用梯子、不用付费、支持实时联网2.是国内最早支持20万字无损上下文的AI,也是目前对长文理解做的最好的Ai产品3.能一次搜索几十个数据来源,无广告,能定向指定搜索源(如小红书、学术搜索[PC端点我传送门直接使用](https://kimi.moonshot.cn/?utm_campaign=TR_LgLmkEor&utm_content=&utm_medium=%E7%BD%91%E7%AB%99&utm_source=CH_tpOYmtV1&utm_term=)[移动端Android/ios](https://kimi.volctrack.com/a/E3w3Q1xa)点我去下载

其他人在问
人工智能诈骗成功多个案例
以下是为您整合的相关内容: 拜登签署的 AI 行政命令要求最强大的 AI 系统开发者与美国政府分享安全测试结果等关键信息。依照《国防生产法》,开发对国家安全、经济安全、公共卫生和安全构成严重风险的基础模型的公司,在训练模型时必须通知联邦政府,并分享所有红队安全测试的结果。国家标准与技术研究所将制定严格的标准进行广泛的红队测试,国土安全部将把这些标准应用于关键基础设施部门并建立 AI 安全与保障委员会,能源部和国土安全部也将处理 AI 系统对关键基础设施以及化学、生物、放射性、核和网络安全风险的威胁。同时,商务部将制定内容认证和水印的指导,以明确标记 AI 生成的内容,联邦机构将使用这些工具让美国人容易知道从政府收到的通信是真实的,并为私营部门和世界各地的政府树立榜样。 关于 AI 带来的风险,包括:AI 生成和传播的虚假信息可能破坏获取可靠信息的途径以及对民主机构和进程的信任;AI 工具可能被用于自动化、加速和放大高度针对性的网络攻击,增加恶意行为者的威胁严重性。 大型语言模型等技术进步带来了变革性发展,在经济和社会领域有诸多应用,例如能自动化写代码、用于交通应用、支持基因医学等,但也存在隐私风险等问题。
2024-11-20
人工智能诈骗
以下是关于人工智能诈骗的相关信息: 拜登签署的 AI 行政命令中提到,要保护美国人免受人工智能带来的诈骗和欺骗,商务部将为内容认证和水印制定指导方针,以清晰标注人工智能生成的内容。联邦机构将使用这些工具,让美国人容易知晓从政府收到的通信是真实的,并为全球的私营部门和政府树立榜样。 欧洲议会和欧盟理事会规定,特定旨在与自然人互动或生成内容的人工智能系统,无论是否符合高风险条件,都可能带来假冒或欺骗的具体风险。在特定情况下,这些系统的使用应遵守具体的透明度义务,自然人应被告知正在与人工智能系统互动,除非从自然人角度看这一点显而易见。若系统通过处理生物数据能识别或推断自然人的情绪、意图或归类,也应通知自然人。对于因年龄或残疾属于弱势群体的个人,应考虑其特点,相关信息和通知应以无障碍格式提供给残疾人。
2024-11-20
人工智能诈骗
以下是关于人工智能诈骗的相关信息: 拜登签署的 AI 行政命令中提到,要保护美国人免受人工智能带来的诈骗和欺骗,商务部将制定内容认证和水印的指导方针,以清晰标注人工智能生成的内容。联邦机构将使用这些工具,让美国人容易知晓从政府收到的通信是真实的,并为全球的私营部门和政府树立榜样。 欧洲议会和欧盟理事会规定,特定旨在与自然人互动或生成内容的人工智能系统,无论是否符合高风险条件,都可能带来假冒或欺骗的具体风险。在特定情况下,这些系统的使用应遵守具体的透明度义务,自然人应被告知正在与人工智能系统互动,除非从自然人角度看这一点显而易见。若系统通过处理生物数据能识别或推断自然人的情绪、意图或归类,也应通知自然人。对于因年龄或残疾属于弱势群体的个人,应考虑其特点,相关信息和通知应以无障碍格式提供给残疾人。
2024-11-20
人工智能诈骗技术
以下是关于人工智能诈骗技术的相关内容: 欧洲议会和欧盟理事会规定,某些人工智能系统采用潜意识成分或其他操纵欺骗技术,以人们无法意识到的方式颠覆或损害人的自主、决策或自由选择,可能造成重大伤害,特别是对身体、心理健康或经济利益产生不利影响,此类系统应被禁止。例如脑机界面或虚拟现实可能促进这种情况发生。同时,若人工智能系统利用个人或特定群体的特殊状况实质性扭曲个人行为并造成重大危害也应被禁止。若扭曲行为由系统之外且不在提供者或部署者控制范围内的因素造成,则可能无法推定有扭曲行为的意图。 拜登签署的 AI 行政命令要求最强大的人工智能系统开发者与美国政府分享安全测试结果等关键信息。依照《国防生产法》,开发对国家安全、经济安全或公共卫生和安全构成严重风险的基础模型的公司,在训练模型时必须通知联邦政府,并分享所有红队安全测试的结果。商务部将为内容认证和水印制定指导方针,以明确标记人工智能生成的内容,联邦机构将使用这些工具让美国人容易知晓从政府收到的通信是真实的,并为私营部门和世界各国政府树立榜样。 关于人工智能相关危害的可争议性或补救途径的评估中,提到了一系列高水平风险,如人工智能生成和传播的虚假信息可能破坏获取可靠信息的途径以及对民主机构和进程的信任。人工智能工具可被用于自动化、加速和放大有针对性的网络攻击,增加恶意行为者的威胁严重性。
2024-11-20
教培舞蹈机构如何利用人工智能ai获客引流?
对于教培舞蹈机构利用人工智能 AI 获客引流,以下是一些建议: 1. 利用 AI 驱动的客户关系管理(CRM)系统:通过分析潜在客户的行为数据和偏好,实现精准营销和个性化的服务推荐。 2. 借助 AI 聊天机器人:在网站或社交媒体平台上提供即时的咨询服务,解答潜在客户关于课程、师资、价格等常见问题,提高客户满意度和参与度。 3. 运用 AI 进行市场分析:了解市场趋势、竞争对手动态以及潜在客户的需求,从而优化课程设置和营销策略。 4. 利用 AI 生成个性化的营销内容:例如宣传文案、海报设计等,吸引潜在客户的注意力。 5. 基于 AI 的社交媒体管理工具:帮助机构更有效地发布内容、选择发布时间,并监测社交媒体上的用户反馈,及时调整营销策略。
2024-11-20
人工智能在人力资源管理的应用
以下是关于人工智能在人力资源管理应用的相关内容: 在就业、工人管理和自雇职业中使用的人工智能系统,特别是用于招聘和选拔人员、做出影响工作合同关系晋升和终止的决定、分配任务、监测或评估人员等方面,应当列为高风险,因为这些系统可能对人的未来职业前景、生计和工人权利产生重大影响,还可能延续历史上的歧视模式,损害个人的数据保护和隐私权利。 相关报告: 《用友:AI 在企业招聘中的应用现状调研报告》预测,随着技术进步,AI 将进一步推动个性化人力资源管理,创造无人值守的 HR 平台,推动企业持续发展。 《量子位:AI 视频生成研究报告》 《量子位:中国具身智能创投报告》具身智能正成为人工智能的新浪潮,广泛应用于物理实体,其发展得益于大模型和生成式 AI 的进步。 人工智能在招聘中的潜在风险与应对策略: 应对策略:更新人力资源程序以限制潜在不同影响;对人力资源技术提供商进行尽职调查;修改当前的人力资源隐私声明以符合法规;对 AI 的训练数据进行审查确保质量和无偏差;告知申请人有关数据收集和 AI 筛选流程的细节保障信息透明度;提供合理便利措施确保少数群体不被排除;定期评估 AI 筛选结果及时优化。 建议:企业采用 AI 辅助招聘工具时,必须考虑法律风险和道德责任,确保公平、无偏见的招聘环境,同时遵守相关法律法规。通过综合策略和审慎方法,有效利用 AI 优势并规避潜在风险。
2024-11-19
学习AGI最好的路线是啥?我想有规划的来进行学习
以下是为您规划的学习 AGI 的一些建议: 首先,对 AI 有一个初步的认识,了解其基本概念和常见工具,例如通过注册尝试各种 AI 工具,但要注意可能会走弯路。 可以参考目录索引推荐,找到适合自己的学习主线和支线,就像游戏通关一样逐步深入。 明确自己的兴趣点,因为兴趣是最好的老师,能让您更有动力坚持学习。 掌握一些方法,如万能公式法,问 AI 【一个(xxx 职业)需要具备哪些知识?】,获取知识框架并深入探究每个小点。 寻找优质的信息源,像即刻 App 的“”等免费圈子,以及 Twitter 和相关官网。 在学习过程中,要注意做减法,例如只掌握最好的产品,解决具体问题,关注核心能力,理清需求和逻辑,先提升认知和洞察。 学以致用,通过学习、分享和实践不断填补知识的缝隙,成长进步。 需要注意的是,每个人的学习情况不同,找到适合自己的学习路径最为重要。
2024-10-15
我是一个程序员,我想快速且有一点深度的重头梳理AGI的原理与自定义AGI应用的开发流程与方法, 请帮我梳理一下AGI学习的路线
以下是为您梳理的 AGI 学习路线: 1. 应用方面: 深入了解 Prompt,选择适合自己的 AI 对话、绘画和语音产品,每天使用并用于解决实际问题或提升效率。 2. 分析方面: 大量阅读各类文章、视频以及行业报告,理解各知识之间的关系。 3. 学习路径方面: 关键词:少就是多、先有个初识、目录索引推荐、兴趣最重要、先动手。 学习路径如同主线+支线的游戏通关。 学以致用,通过学习分享不断填补知识的缝隙来成长。 4. 分类学习方面: 对 AI 学习路径进行了重构,分为了初学者、面向开发应用者、面向使用模型者三个部分。 将课程目录从文章中单独独立出来,并按照初学者、进阶者进行分类。 同时,还可以参考以下个人心得: YoYo 作为文科生,在学习前不理解 AI 和提示词工程,通过不断尝试各种 AI 工具,走了不少弯路。学习后能够搓多 Agent 的智能体,进行营销文案 demo、SQL 代码进阶学习应用,创建多个智能体,并在公司中实践智能客服从创建到应用的过程。 希望以上内容对您有所帮助。
2024-10-08
AIGC开发学习路线
以下为为您整理的 AIGC 开发学习路线相关内容: YoYo 的学习心得: 学习前状态:不理解 AI 和提示词工程,文科生,不懂代码且英语差,注册尝试各种 AI 工具走了弯路,对 ChatGPT 认识限于日常问答和 SQL 学习交互以支持工作数据提取。 学习后现状:能搓多 Agent 智能体但需进修 Python 搓更多,有营销文案 demo 和 SQL 代码进阶学习应用,创建了 3 个图像流智能体和 2 个 Agent 智能体玩具,在公司实践智能客服从创建到应用,实现企业微信机器人问答基本功能,进行了 Dr.kown 和图像流的尝试以及企业智能体实践。 学习路径:关键词为“少就是多”“先有个初识”“目录索引推荐”“兴趣最重要”“先动手”,学习路径如同游戏通关,主线加支线,个人感受学不完,找到适合自己的就好,学以致用,通过学习分享填补知识缝隙成长。 另外,有人分享了最近对 AIGC 的感悟: 参加了 3 场 AI 线下活动,在 AI 社群中活跃,感觉像回到 2014 年移动互联网时代。 感悟包括 AI 领域新名词等众多,AI 知识付费领域鱼龙混杂,AI 发展迅速导致学习 AI 知识很重要。 总结了“AIGC 学习三步法”,但文中未具体提及三步法的内容。
2024-10-04
我给你设计一个有机化学结构式,你能找出合成路线吗
目前的技术可以帮助您找出化学结构式的合成路线。例如,像“Coscientist”这样的人工智能系统,当被问及能否合成某个分子时,它会首先在互联网上搜索相关的合成路线,然后根据搜索结果制定实验协议,接着将实验协议写成代码以指导自动化实验设备,最后由机器人执行实验任务。这个过程是可迭代的,能够根据实验结果调整协议以改进实验并实现预期目标。 另外,在一些研究中也提到,解决诸如寻找化学合成途径等问题遵循一定的模式,虽然在实际情况中相关的可能性图可能非常庞大,但可以通过一些常见的方法来应对挑战,比如为不同的可能状态或结果分配分数,只追求得分较高的路径;在自动定理证明中,也有从初始命题向下和从最终定理向上工作,试图找到中间的交汇路径等方法。同时,如果已经确定了从 X 到 Y 存在路径的“引理”,可以将 X → Y 作为新规则添加到规则集合中。
2024-08-30
我给你分子结构,能设计合成路线吗
目前利用大型语言模型,如“Coscientist”人工智能系统,可以为给定的分子结构设计合成路线。其工作流程大致为:当被问及能否合成某个分子时,首先会在互联网上搜索相关合成路线,接着根据搜索结果制定实验协议,然后将实验协议写成代码以指导自动化实验设备,最后由机器人执行实验任务。这个过程是可迭代的,能根据实验结果调整协议以改进实验并实现预期目标。 在生物学领域,AI 也能在创造新的蛋白质方面发挥作用。例如,华盛顿大学的研究员克里斯·诺恩先生最近使用 AI 创造了一种类似萤火虫的发光蛋白质,其他研究人员也已在寻找治疟疾疫苗和帕金森病研究中使用了 AI。过去创造新蛋白质需要确定氨基酸序列如何折叠成最终分子结构以确定其实际功能,过程艰难,而现在 AI 极大地提高了效率。
2024-08-30
小模型场景落地路线图
实施小模型(如轻量级机器学习模型或嵌入式AI模型)的场景落地需要精细的规划和执行。以下是一个详细的路线图,涵盖从概念到部署的各个阶段。 路线图 1. 需求分析 目标定义: 明确项目的目标和期望结果,确定需要解决的问题和应用场景。 可行性研究: 评估技术可行性、市场需求和成本效益。 需求收集: 收集和分析来自利益相关者的需求,明确模型功能和性能指标。 2. 数据准备 数据收集: 收集相关数据,这可以来自数据库、传感器、API等。 数据清洗: 处理缺失值、异常值和重复数据。 数据标注: 对数据进行分类和标注,以便用于监督学习模型。 数据分割: 将数据分为训练集、验证集和测试集。 3. 模型选择 模型探索: 调研和选择适合项目需求的小模型,如TinyML模型、MobileNet、SqueezeNet等。 预训练模型: 考虑使用预训练模型进行微调,以节省时间和计算资源。 4. 模型训练 训练环境搭建: 配置所需的硬件和软件环境(如TensorFlow Lite、PyTorch Mobile)。 模型训练: 在训练集上训练模型,并使用验证集进行调优。 超参数调优: 通过网格搜索或贝叶斯优化等方法优化模型超参数。 5. 模型优化 模型压缩: 采用剪枝、量化等技术减少模型大小和计算量。 模型精简: 删除不必要的特征和层,进一步简化模型结构。 模型加速: 使用硬件加速(如TPU、GPU)优化模型推理速度。 6. 部署准备 平台选择: 确定模型的部署平台(如移动设备、嵌入式系统、边缘设备)。 代码整合: 将模型集成到应用程序或设备固件中。 性能测试: 在目标环境中测试模型的性能,包括速度、内存占用和功耗等。 7. 模型部署 部署环境搭建: 搭建生产环境,确保与开发环境一致。 持续集成: 设置CI/CD管道,确保模型的持续集成和部署。 安全措施: 实施必要的安全措施,保护模型和数据的隐私与安全。 8. 监控与维护 监控系统: 部署监控系统,实时跟踪模型的性能和使用情况。 模型更新: 定期更新和重新训练模型,以应对数据分布变化和新需求。 用户反馈: 收集用户反馈,优化模型和应用程序。 9. 文档与培训 文档编写: 编写详细的技术文档和用户手册。 培训支持: 为使用和维护模型的人员提供培训和支持。 工具和技术 数据处理: Pandas, NumPy, OpenCV 模型训练: TensorFlow, PyTorch, scikitlearn 模型优化: TensorFlow Lite, ONNX, TensorRT 部署平台: Docker, Kubernetes, AWS Lambda, GCP Functions 监控工具: Prometheus, Grafana, ELK Stack 实例项目 智能家居设备中的语音识别 需求分析: 在智能家居设备中实现语音命令识别。 数据准备: 收集和标注家居环境中的语音命令数据。 模型选择: 使用MobileNet模型进行语音识别。 模型训练: 在收集的语音数据上训练模型,并进行超参数调优。 模型优化: 使用量化技术将模型大小减小到适合嵌入式设备。 部署准备: 将模型集成到智能家居设备的固件中。 模型部署: 在生产环境中部署,并进行性能测试和优化。 监控与维护: 实时监控语音识别的性能,收集用户反馈进行改进。 通过上述路线图,开发团队可以系统地实现小模型在不同场景下的落地,从而确保模型的高效性和实用性。
2024-06-17
学习AI
以下是为新手和中学生提供的学习 AI 的建议: 新手学习 AI: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 中学生学习 AI: 1. 从编程语言入手学习: 从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-11-21
我想从0开始学习AI
以下是为您提供的从 0 开始学习 AI 的建议: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-11-21
如何学习AI
以下是关于新手学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 6. 对于中学生学习 AI 的建议: 从编程语言入手学习,如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识。 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等,探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 学习 AI 基础知识,包括基本概念、发展历程、主要技术如机器学习、深度学习等,以及在教育、医疗、金融等领域的应用案例。 参与 AI 相关的实践项目,参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题。 关注 AI 发展的前沿动态,关注权威媒体和学者,思考 AI 技术对未来社会的影响。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-11-21
如果想创建一个指导高中孩子学习的老师的智能体,我有几个问题:1. 是弄一个全科的智能体还是每门科单独弄一个智能体? 2. 国产哪家的AI产品弄这种智能体比较适合?也就是说回答100%能够正确,不会瞎说; 3.你有什么建议?
对于创建指导高中孩子学习的老师的智能体,以下是一些建议: 1. 关于是创建全科智能体还是每门科单独创建智能体,这取决于您的具体需求和使用场景。如果您希望能够全面、综合地指导学生的学习,全科智能体可能更合适;但如果您想要针对每门学科进行更深入、专业的指导,那么每门科单独创建智能体可能效果更好。 2. 目前国产的 AI 产品中,很难说哪一家 100%能够保证回答正确且不会瞎说。不同的产品在不同的领域和场景中可能表现各异。您可以考虑一些在教育领域有一定口碑和应用案例的产品,并进行充分的测试和评估。 3. 以下是一些创建智能体的建议: 明确智能体的职责和功能,例如是主要进行课程规划、生成测验还是提供学习指导等。 为智能体提供详细准确的提示词,清晰地描述其任务和目标。 像导演一样,将复杂的任务拆分成科学合理的步骤,并确保每个步骤的结果能为后续步骤提供基础。 对于生成的内容,要进行检查和优化,不断调整和改进智能体的表现。 此外,您还可以参考一些相关的提示词库,例如沃顿商学院给教师和学生的提示词库,其中包含了结构化题型设计师和测验生成器等方面的内容。同时,很多 AI 网站都支持创建智能体,您可以为其配置提示词、知识库和能力等。
2024-11-21
如果想创建一个指导高中孩子学习的老师的智能体,我有几个问题:1. 是弄一个全科的智能体还是每门科单独弄一个智能体? 2. 哪家的AI产品弄这种智能体比较适合?也就是说回答100%能够正确,不会瞎说; 3.你有什么建议?
对于创建指导高中孩子学习的老师的智能体,以下是一些建议: 1. 关于是创建全科智能体还是每门科单独创建智能体,这取决于您的具体需求和使用场景。如果您希望能够全面、综合地指导学生的学习,全科智能体可能更合适;但如果您想要针对每门学科进行更深入、专业的指导,那么每门科单独创建智能体可能效果更好。 2. 目前在创建这种智能体方面,一些常见的 AI 产品如 GPT4、Gemini 等都可以考虑。然而,要确保回答 100%正确且不会瞎说是具有一定难度的,因为 AI 的回答仍然受到数据和算法的限制。 3. 以下是一些额外的建议: 参考沃顿商学院给教师和学生的提示词库,例如其中的结构化题型设计师和测验生成器的相关提示。 像导演一样,将创建智能体的任务拆解成科学合理的步骤,明确每个步骤的目标和结果。 注意提示语的逻辑,将复杂任务拆分成多个相互关联的步骤,使前一步的结果成为后一步的基础。 很多 AI 网站都支持创建智能体,您可以根据配置信息、知识库和能力配置等来自行定制。
2024-11-21
怎么学习atable difusion
以下是关于学习 Stable Diffusion 的相关内容: 安装方面: 对于 Windows 系统,需查看专用 GPU 内存。4GB 电脑勉强可跑动 SD,出图时间较长;6GB 出一张图需 20 50 秒,大部分功能可用;8GB 5 20 秒可出一张图,所有功能开放。 对于 Mac 系统,可参考相关视频一键安装。 软件介绍: Stable Diffusion 是一个 AI 自动生成图片的软件,通过输入文字生成图片,无需像传统方式那样画图或拍照。大多数人只需熟练使用,无需深入研究其原理。 学习提示词方面: 学习 Stable Diffusion 的提示词是系统性过程,需理论与实践结合,步骤如下: 1. 学习基本概念:了解工作原理和模型架构,理解提示词对生成结果的影响,掌握其组成部分。 2. 研究官方文档和教程:通读官方文档,研究开发团队和专家的教程与技巧分享。 3. 学习常见术语和范例:熟悉相关领域术语和概念,研究优秀图像标题和描述作为范例。 4. 掌握关键技巧:学会组合词条精确描述效果,掌握使用特定符号控制生成权重,处理抽象概念和情感等无形事物的描述。 5. 实践和反馈:用不同提示词生成各种风格和主题的图像,对比结果分析原因,总结经验,在社区分享请教获取反馈建议。 6. 创建提示词库:按主题、风格等维度建立,记录成功案例方便参考复用。 7. 持续跟进前沿:关注最新更新和社区分享,掌握提示词新技术、新范式、新趋势。
2024-11-21
如何学习AI的基础到高深的用法
以下是从基础到高深学习 AI 用法的建议: 基础阶段: 1. 了解 AI 基本概念:阅读「」,熟悉 AI 术语和基础概念,包括主要分支(如机器学习、深度学习、自然语言处理等)及它们的联系。同时,浏览入门文章,了解 AI 的历史、应用和发展趋势。 2. 开始 AI 学习之旅:在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。还可通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获取证书。 深入阶段: 1. 选择感兴趣的模块深入学习:AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块。掌握提示词技巧,因其上手容易且实用。 2. 实践和尝试:理论学习后,实践是巩固知识的关键。尝试使用各种产品创作作品,知识库中有相关作品和文章分享,欢迎实践后分享。 3. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获取实际应用中的第一手体验。 精进阶段(针对不会代码但希望深入的情况): 1. Python 基础: 基本语法:了解 Python 的基本语法规则,如变量命名、缩进等。 数据类型:熟悉字符串、整数、浮点数、列表、元组、字典等基本数据类型。 控制流:学习使用条件语句(if)、循环语句(for 和 while)控制程序执行流程。 函数:包括定义和调用函数,理解参数和返回值,以及作用域和命名空间。 模块和包:学会导入模块,使用包扩展程序功能。 面向对象编程(OOP):了解类和对象的定义与实例化,以及属性和方法,还有继承和多态。 异常处理:理解异常及其工作原理,学会使用 try 和 except 语句处理错误。 文件操作:掌握文件读写,处理文件与路径。
2024-11-13
零基础学习AI,需要报名学习,还是先免费网站开始
对于零基础学习 AI,您可以先从以下几个方面入手: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能是什么,其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,您可以按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 建议您一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 至于是否需要报名学习还是先从免费网站开始,这取决于您的个人情况和学习习惯。如果您希望有系统的指导和监督,并且经济条件允许,报名学习可能更适合您。但如果您想先初步了解和尝试,从免费网站开始也是一个不错的选择。
2024-11-13
0基础学习AI
以下是为 0 基础学习 AI 提供的建议: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库有很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 对于中学生学习 AI 的建议: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,无论是新手还是中学生,都可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。
2024-11-13
0基础怎么快速学会做AI
对于 0 基础学习 AI,您可以参考以下步骤: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,您还可以参考以下具体的学习活动: 1. 参加“AI 编程共学”活动,例如: 10 月 28 日 20:00 开始的“0 基础做小游戏分享:通往 AGI 之路增量小游戏、转生之我是野菩萨”,回放链接:。 10 月 29 日 20:00 开始的“0 编程基础入门 Cursor 极简使用指南”,回放链接:。 10 月 30 日 20:00 开始的“0 基础学做 AI 拍立得:Coze 工作流实现手把手教学、AI 拍立得开源代码开箱即用”,回放链接:。 10 月 31 日 20:00 开始的“0 基础做小游戏分享:猪猪🐷撞南墙”,回放链接:。 2. 对于技术纯小白,您可以: 从一个最最基础的小任务开始,让 AI 先帮您按照 best practice 写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,学会必备的调试技能。 通过和 AI 的对话,逐步明确项目需求,让 AI 帮助您梳理出产品需求文档。
2024-11-12
我想要了解AI在高校基础医学教学中的应用案例
以下是一些 AI 在高校基础医学教学中的应用案例: 教学:帮助学生做好组会准备,使用了 Claude + Gamma.app,Claude 能节省绝大部分时间。 医疗:蛋白质结构预测和蛋白质合成,用于生成漂亮图片的 AI 可帮助科学家研究并设计新的蛋白质。 做调研:用特定 prompt ,2 小时帮同学干完 3 篇调研报告。 做调研:用 ChatGPT 做调研。 医疗:健康生物制药的研究,AI 在抗癌、抗衰老、早期疾病防治等研究应用中起重要作用。 此外,为了在医疗保健中产生真正的改变,AI 应像人类一样学习,例如成为顶尖医疗人才需要多年密集信息输入、正规学校教育和学徒实践,AI 也应通过合理的模型训练方式而非仅依靠大量数据来提升。 对于中学生学习 AI ,有以下建议: 从编程语言如 Python 、JavaScript 入手,学习编程语法、数据结构、算法等基础知识。 尝试使用 ChatGPT 、Midjourney 等 AI 生成工具,探索百度的“文心智能体平台”、Coze 智能体平台等教育平台。 学习 AI 基础知识,包括基本概念、发展历程、主要技术及在各领域的应用案例。 参与学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试解决实际问题。 关注 AI 发展的前沿动态,思考其对未来社会的影响。
2024-11-07
AI基础
以下是关于 AI 基础的相关内容: 一、AI 背景知识 1. 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 2. 历史发展:简要回顾 AI 的发展历程和重要里程碑。 二、数学基础 1. 统计学基础:熟悉均值、中位数、方差等统计概念。 2. 线性代数:了解向量、矩阵等线性代数基本概念。 3. 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 三、算法和模型 1. 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 2. 无监督学习:熟悉聚类、降维等算法。 3. 强化学习:简介强化学习的基本概念。 四、评估和调优 1. 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 2. 模型调优:学习如何使用网格搜索等技术优化模型参数。 五、神经网络基础 1. 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 2. 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 六、书籍推荐 1. 《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga; Richard B.Lvry; George R.Mangun):世界权威的认知神经科学教材,认知神经科学之父经典力作,系统了解认知神经科学的发展历史、细胞机制与认知、神经解剖与发展、研究方法、感觉知觉、物体识别、运动控制、学习与记忆、情绪、语言、大脑半球特异化、注意与意识、认知控制、社会认知和进化的观点等。 2. 《神经科学原理》(作者:Eric R.Kandel; James H.Schwartz):让您系统神经元的细胞和分子生物学、突触传递、认知的神经基础、感觉、运动、神经信息的加工、发育及行为的出现、语言、思想、感动与学习。 3. 《神经生物学:从神经元到脑》(作者:John G.Nicholls 等著):神经生物学领域内的一本世界级名著,涵盖了神经科学的方方面面,系统介绍了神经生物徐的基本概念、神经系统的功能及细胞和分子机制。 七、新手学习 AI 的方法 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。
2024-10-31