Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我给你分子结构,能设计合成路线吗

Answer

目前利用大型语言模型,如“Coscientist”人工智能系统,可以为给定的分子结构设计合成路线。其工作流程大致为:当被问及能否合成某个分子时,首先会在互联网上搜索相关合成路线,接着根据搜索结果制定实验协议,然后将实验协议写成代码以指导自动化实验设备,最后由机器人执行实验任务。这个过程是可迭代的,能根据实验结果调整协议以改进实验并实现预期目标。

在生物学领域,AI 也能在创造新的蛋白质方面发挥作用。例如,华盛顿大学的研究员克里斯·诺恩先生最近使用 AI 创造了一种类似萤火虫的发光蛋白质,其他研究人员也已在寻找治疟疾疫苗和帕金森病研究中使用了 AI。过去创造新蛋白质需要确定氨基酸序列如何折叠成最终分子结构以确定其实际功能,过程艰难,而现在 AI 极大地提高了效率。

Content generated by AI large model, please carefully verify (powered by aily)

References

化学:使用大型语言模型进行自主化学研究

原创xiaoming乐谷说2023-12-23 23:00文章地址:https://www.nature.com/articles/s41586-023-06792-0nature前几天发来王炸,论文标题《Autonomous chemical research with large language models》,趁着周末读了一下。图里的意思大概可以这么理解。这张图片展示了一个名为“Coscientist”的人工智能系统的工作流程图,该系统用于自动化化学研究。图中描述了从一个简单的人类提示开始,到实验结束的整个过程。具体步骤包括:文献搜索(Literature search):当被问及是否能合成某个分子A时,Coscientist首先会在互联网上搜索相关的合成路线。协议选择(Protocol selection):接着,Coscientist会根据搜索结果制定实验协议。翻译成代码(Translation into code):然后,Coscientist会将实验协议写成代码,以指导自动化实验设备。实验(Experiment):最后,机器人根据代码执行实验任务。这个过程是可迭代的,意味着Coscientist可以根据实验结果调整协议,以改进实验并实现预期目标。这个系统利用大型语言模型来规划和实施化学任务,展示了人工智能在化学研究中的应用潜力。价值在于:

生物学:创造新的蛋白质

人物:克里斯·诺恩(Chris Norn)职业:华盛顿大学的研究员两年前,研究人员破解了使用AI预测蛋白质形状的代码。创造新的蛋白质是一项关键的科学事业:过去,人类已经能够为糖尿病患者制造胰岛素类似物和能够抵抗癌症的免疫细胞。但这很难——创造一个新的蛋白质需要确定氨基酸序列将如何折叠成最终的分子结构,以确定蛋白质实际功能。诺恩先生说:「在此之前,我们必须先绘制出我们想要的新蛋白质的蓝图,然后我们会花费很多时间让计算机生成示例,很少有这些示例能够成功。」现在,AI可以做到这一点。他最近使用它创造了一种类似萤火虫的发光蛋白质,其他研究人员也已经在寻找治疟疾疫苗和帕金森病研究中使用了AI。「我们每天只能测试那么多的假设,我可能有一个想法,也许是一个特定结构的蛋白质,我没有记住所有的蛋白质结构,但算法已经记住了它们,它已经查看了所有结构,并为如何组装新结构制定了一般规则,这真是太神奇了!」他已经从事蛋白质研究有十年了,他说这是他迄今为止效率最高的方法。「这很疯狂,一切都变得更容易了」🤯

Others are asking
我是一名AI小白,有一定编程基础。现在想学习AI知识,让AI成为我的工具。请给出学习路线
以下是为您提供的 AI 学习路线: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 对于有一定编程基础的新手: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 尝试使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向新手的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 学习 AI 基础知识,了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等,学习 AI 在教育、医疗、金融等领域的应用案例。 参与 AI 相关的实践项目,比如参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 关注 AI 发展的前沿动态,关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,新手可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。
2025-02-04
deepseek的技术路线是什么样的
DeepSeek 从一开始就选择了与国内诸多大模型新秀不同的技术路线。它走的是全球开源社区路线,分享最直接的模型、研究方法和成果,吸引反馈,再迭代优化,自我进益。开源十分彻底,从模型权重、数据集到预训练方法都悉数公开,高质量的论文也是开源的一部分。 DeepSeek 先后发布了多款开源模型: 1. 2023 年 11 月,发布 DeepSeek Coder 和 DeepSeek LLM,但在计算的效率和可扩展性上遇到挑战。 2. 2024 年 5 月,发布 V2,以混合专家模型(MoE)和多头潜在注意力机制(MLA)技术的结合,大幅降低了模型训练特别是推理的成本,开始引发广泛讨论和推荐。 3. 2024 年 12 月,发布 V3,以 OpenAI、Anthropic 和 Google 百分之一的成本,实现了模型性能超越同类开源模型 Llama 3.1 和 Qwen 2.5,媲美闭源模型 GPT4o 和 Claude 3.5 Sonnet 的成绩,引发轰动,成为世界大语言模型发展的里程碑。 DeepSeek 与 OpenAI 在实现里程碑式跃迁的进程中有以下区别: 1. OpenAI 致力于实现计算资源规模与成本的无限扩张,而 DeepSeek 一直致力用尽可能低成本的计算资源实现更高的效率。 2. OpenAI 花了两年时间达到 GPT3 时刻,而 DeepSeek 用了一年摘得了 V3 的圣杯。 3. OpenAI 在 GPT 路线上一直聚焦在预训练的进步,而 DeepSeek 则是训练与推理并重。 DeepSeek 从隐秘低调到备受关注,以及它从 Coder 到 V3 模型的三次迭代,与 OpenAI 从 GPT1 到 GPT3 的升级节奏和引发的反响非常接近。
2025-01-29
小学生科创AI自学路线及网址、详细教程
以下是为小学生提供的科创 AI 自学路线及相关资源: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 目前暂时没有专门针对小学生科创 AI 自学的网址和详细教程,但您可以在 B 站找丰富的 AI 软件入门课程自学,也可从包图网下载工程文件学习。
2025-01-06
RAG技术路线知识库搭建流程
RAG 技术路线知识库搭建流程主要包括以下步骤: 1. 文档加载:从多种不同来源加载文档,如 PDF 在内的非结构化数据、SQL 在内的结构化数据以及 Python、Java 之类的代码等。LangChain 提供了 100 多种不同的文档加载器。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块,称为“文档块”或者“文档片”。 3. 存储: 将切分好的文档块进行嵌入转换成向量的形式。 将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。 在构建知识库的过程中,还涉及到文档解析环节,即将各种类型的资料(包括但不限于 Word、PDF、Excel 和图片等)转换成文字,为后续流程奠定基础。针对图片一般使用 OCR 图像识别技术,针对文档一般将其转换成 Markdown 格式。文档解析完成之后,要进行预处理。 基于 Coze 的知识库问答是典型的 RAG 方案,其重要一环是文档切片(Segment),但 RAG 方案存在一些缺点,如跨分片总结和推理能力弱、文档有序性被打破、表格解析失败等。
2025-01-06
学习AI路线
新手学习 AI 可以参考以下路线: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-03
帮我规划从0开始的AI学习路线
以下是为您规划的从 0 开始的 AI 学习路线: 一、了解 AI 基本概念 建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。建议一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键。尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 六、完整的学习路径 建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。 七、技术研究方向 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 八、应用方向 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。
2024-12-30
图片合成
以下是关于图片合成的相关介绍: ComfyUI BrushNet: 这个过程类似于小时候的连点成图游戏,现在由电脑在图片上操作。 1. 掩码:像有洞的纸覆盖在图片上,电脑程序通过洞了解需修复部分。 2. 编码器:是电脑的大脑,把需修复图片转换成能理解和处理的信息。 3. 噪声潜在空间:加入随机性让修复部分更自然。 4. BrushNet 和冻结的 UNet:像画家的画笔和调色板,帮助完成修复工作。 5. 去噪和生成图像:去除噪声,创建真实图片部分。 6. 模糊掩码和合成:用特殊技巧将新生成图片和原始图片融合。 Blend叠加: /blend 命令允许快速上传 2 5 张图片,通过对每张图片的概念和美学分析,将它们合并成新图。 与 /imagine 结合多个 。 在输入 /blend 命令后,会提示上传两张照片,可从硬盘拖放或在移动设备从照片库添加。要添加更多图像,选择 optional/options 字段并选 image3、image4 或 image5。 图像叠加默认 1:1 宽高比,可使用可选的 dimensions 字段选择方形(1:1)、肖像(2:3)或横向(3:2)的长宽比。 与其他 /imagine 命令一样,/blend 指令末尾可添加 ,指定在 /blend 命令中的宽高比会覆盖自定义后缀中的宽高比。为获得最佳处理效果,上传与期望结果相同的图像宽高比。
2025-02-10
仿制药合成相关的ai有哪些?
以下是一些与仿制药合成相关的 AI 应用和系统: 1. ChatGPT 引发的范式转移涉及医疗领域,在蛋白质结构预测和合成方面有大量突破。 2. AlphaFold 是由 DeepMind 开发的在蛋白质结构预测方面表现出色的 AI 系统,其预测准确度超过其他系统,为科学家和药物开发提供了巨大帮助。 3. Meta 的蛋白质结构预测 AI 模型 ESMFold,截至目前已经进行了 7 亿次预测。 4. 多伦多大学研究人员开发了一种新的 AI 系统,利用类似 Stable Diffusion、Midjourney 的生成扩散技术创造出自然界中不存在的蛋白质。 5. 华盛顿大学的 David Baker 教授的团队开发了基于 DALLE 的人工智能系统 RF Diffusion,用于根据科学家的需求生成合适的蛋白质结构。 6. 洛桑联邦理工学院的科学家们开发了一种基于神经网络的新工具 PeSTo,可以预测蛋白质如何与其他物质相互作用,速度快、且通用性强。 7. 在 Surrey 大学开发了一种人工智能系统,用于识别个体细胞中的蛋白质模式,这一进展可以用于理解肿瘤的差异并开发药物。 8. 肯特大学的研究团队使用名为 talin 的蛋白质制成凝胶,该凝胶具有吸收冲击的能力,他们的目标是将 talin 蛋白质制成防弹材料。 文献参考: https://www.sciencedaily.com/releases/2023/05/230504121014.htm https://www.wevolver.com/article/pestoanewaitoolforpredictingproteininteractions https://www.sciencedirect.com/science/article/pii/S0958166923000514
2025-02-03
怎么把视频或图片中的人脸进行替换,生产新的合成图片或视频
要把视频或图片中的人脸进行替换,生成新的合成图片或视频,可以参考以下方法: 1. 利用 TecCreative 创意工具箱: 图片换脸:仅需上传原始图片和换脸图片,即可一键实现素材换脸。操作指引为上传原始图片——上传换脸图片——点击开始生成。注意图片大小上限 5M,支持 JPG、PNG 格式。 视频换脸:自动识别视频中的人脸,并将其替换为选择的脸部。操作指引为上传原始视频——上传换脸图片——点击生成。 2. 实战方法: 点击快捷工具中顶部的 JupyterLab,打开这个工具。通过终端输入命令启动 facefusion: 点击顶部的 + 号选项卡,新打开一个终端窗口。 点击终端区域,启动一个终端的选项卡。 在打开的终端窗口中,输入 3 条命令做 3 件事情: 查看文件列表。输入 ls 并按回车,显示当前位置所在目录下的文件列表。 进入 facefusion 目录,输入 cd facefusion 并按回车,进入程序目录。 启动 facefusion。输入:python./run.py executionproviders cuda cpu 启动程序。注意后面的参数 executionproviders cuda cpu 非常重要,如果不加 cuda,则默认不使用 GPU 能力,推理将非常慢。 当出现提示信息时,说明启动成功。 打开 facefusion 软件,需要返回实例列表,点击自定义服务按钮,会打开一个新的浏览器窗口。 在 facefusion 软件界面上,上传准备好的图片、视频后,在右侧可以看到预览效果。点击下方的开始按钮,执行换脸处理。执行完成后,在输出的位置,会出现处理后的视频,输出窗口的右上角有一个下载按钮,点击它可以导出变量后的视频到本地。
2025-02-01
视频合成
视频合成是一个具有一定难度的任务,原因包括: 1. 视频合成需要不同帧之间保持时间一致性,这要求将更多世界知识编码到模型之中。 2. 收集大量高质量、高维度的视频数据,以及配对的文本视频数据更为困难。 如果想用 AI 把小说做成视频,可参考以下制作流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2025-02-01
可以将自己原创清唱配乐合成一首完整作品吗
目前的 AI 技术可以帮助您将自己原创清唱配乐合成一首完整作品。有多种相关的软件和工具可供使用,例如一些专业的音频编辑软件,它们具备音频合成、混音等功能,可以将您的清唱和配乐进行整合和优化。但具体的效果可能会受到您的清唱质量、配乐选择以及操作技巧等因素的影响。
2025-01-26
有两张图,一张是手,一张是戒指,如何将戒指套入手上合成一张图
目前没有相关的知识库内容为您提供将手和戒指合成一张图的具体方法。但一般来说,您可以使用专业的图像编辑软件,如 Adobe Photoshop 等。以下是大致的步骤: 1. 打开软件并导入手和戒指的图片。 2. 选择戒指图片,使用抠图工具将戒指抠出。 3. 将抠出的戒指移动到手的图片上,并调整大小、位置和角度,使其看起来像是套在手上。 4. 对合成后的图片进行细节调整,如颜色、光影等,以使合成效果更加自然。 希望这些信息对您有所帮助。
2025-01-17
你是一名电商专家,有没有哪个AI大模型或者智能体可以完成以下功能:输入材质图片,得到经过设计后的成品衣服
目前尚未有成熟的 AI 大模型或智能体能够直接实现输入材质图片就得到经过设计后的成品衣服的功能。但在 AI 领域的不断发展中,可能会有相关的技术和模型在未来出现。
2025-02-16
你是一名电商专家,有没有哪个AI大模型或者智能体可以完成以下功能:输入衣服材质图片,得到经过设计后的材质成品衣服
目前尚未有专门的 AI 大模型或智能体能够直接实现您所描述的输入衣服材质图片就得到经过设计后的材质成品衣服的功能。但随着 AI 技术的不断发展,未来可能会出现相关的应用。
2025-02-16
室内设计在agi的软件和用法
以下是关于室内设计在 AGI 方面的软件和用法的相关信息: 软件及用法: 1. Stable Diffusion: 选用原因:DallE 缺乏室内设计能力,MidJourney 出图效果好但无法基于现实环境重绘,Stable Diffusion 出图成功率较低,但可调用 controlnet 的 MLSD 插件捕捉现实环境线条特征做二次设计。 安装:安装 Stable Diffusion WEB UI。 配置:修改 webuiuser.bat 文件加上 listen 和 API 参数,让 Stable Diffusion 处于网络服务状态。 具备室内设计能力:下载室内设计模型(checkpoint 类型)放到 stable diffusion 目录/models/stablediffusion 下面,安装 controlnet 插件,使用 MLSD 插件实现空间学习。通过 API 方式让前端连接到 Stable Diffusion 后台。 2. HDAidMaster:云端工具,在建筑设计、室内设计和景观设计领域表现惊艳,搭载自主训练的建筑大模型 ArchiMaster,软件 UI 和设计成果颜值在线。 3. Maket.ai:主要面向住宅行业,在户型设计和室内软装设计方面有探索,输入房间面积需求和土地约束可自动生成户型图。 4. ARCHITEChTURES:AI 驱动的三维建筑设计软件,在住宅设计早期阶段可引入标准和规范约束生成的设计结果。 5. Fast AI 人工智能审图平台:形成全自动智能审图流程,将建筑全寿命周期内的信息集成,实现数据汇总与管理。 使用 AI 进行室外设计的最佳实践: 1. 充分利用 AI 的创意生成能力,输入关键词生成多种创意方案,获取新颖灵感。 2. 结合 AI 的模拟和可视化功能,利用 AR/VR 技术模拟和评估设计方案。 3. 运用 AI 的分析和优化能力,对采光、动线、材料等进行优化。 4. 借助 AI 的自动化设计功能,生成符合规范的平面图、立面图等。 5. 融合 AI 与人工设计的协作模式,发挥各自优势,提升设计效率和质量。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-15
有没有包装设计的AI工具
以下是一些常见的包装设计、建筑设计审核规划平面图以及制作网站的 AI 工具: 包装设计: 1. Canva(可画):https://www.canva.cn/ 是一个受欢迎的在线设计工具,提供大量模板和设计元素,用户可通过简单拖放操作创建海报,其 AI 功能可协助选择颜色搭配和字体样式。 2. 稿定设计:https://www.gaoding.com/ 稿定智能设计工具采用先进人工智能技术,自动分析和生成设计方案,稍作调整即可完成完美设计。 3. VistaCreate:https://create.vista.com/ 提供大量设计模板和元素,用户可使用 AI 工具创建个性化海报,智能建议功能可帮助用户快速找到合适设计元素。 4. Microsoft Designer:https://designer.microsoft.com/ 具有简单拖放界面,可快速创建演示文稿、社交媒体帖子等视觉内容,集成丰富模板库和自动图像编辑功能。 建筑设计审核规划平面图: 1. HDAidMaster:云端工具,建筑师可在平台上使用主流 AIGC 功能进行方案创作,在建筑、室内和景观设计领域表现出色,搭载自主训练的建筑大模型 ArchiMaster。 2. Maket.ai:主要面向住宅行业,在户型和室内软装设计方面有 AI 技术探索,输入房间面积需求和土地约束可自动生成户型图。 3. ARCHITEChTURES:AI 驱动的三维建筑设计软件,在住宅设计早期可引入标准和规范约束设计结果。 4. Fast AI 人工智能审图平台:形成全自动智能审图流程,将建筑全寿命周期内信息集成,实现数据汇总与管理。 制作网站: 1. Wix ADI:https://www.wix.com/ 基于用户提供信息自动生成定制化网站,提供多个设计选项和布局,集成 SEO 工具和分析功能。 2. Bookmark:https://www.bookmark.com/ 通过询问用户问题快速生成网站,提供直观拖放编辑器和多种行业模板及自动化营销工具。 3. Firedrop:https://firedrop.ai/ Sacha 作为 AI 设计助手可根据指示创建和修改网站设计,提供实时编辑和预览功能,包含多种现代设计风格和自定义选项。 4. The Grid:https://thegrid.io/ Molly 作为 AI 设计助手可自动调整网站设计和布局,基于内容和用户互动优化,支持多种内容类型。 请注意,以上内容由 AI 大模型生成,请仔细甄别。每个工具都有其特定应用场景和功能,建议根据具体需求选择合适的工具。
2025-02-15
AI设计
以下是关于 AI 设计的相关内容: 大淘宝设计部 2023 年度 AI 设计实践: 主要使用的工具:Midjourney、Stabel Diffusion,辅助工具包括 RUNWAY 和 PS beta 等。 应用效果: 在营销设计中,整体项目设计时间减少约 18%,创意阶段丰富性提升约 150%,时间节省约 60%。 创意多样,不同创意概念的提出数量增加约 150%。 执行加速,设计师在创意生成阶段的时间缩短平均 60%。 整体提效,从创意发散到落地执行品效都有显著提升。 使用 AI 进行室外设计的最佳实践: 充分利用 AI 的创意生成能力,输入关键词生成多种创意设计方案,获取新颖独特的设计灵感。 结合 AI 的模拟和可视化功能,利用 AR/VR 等技术在实际环境中模拟和可视化设计方案。 运用 AI 的分析和优化能力,对采光、动线、材料等方面进行优化,确保符合使用者需求和体验。 借助 AI 的自动化设计功能,自动生成符合设计规范的平面图、立面图等,提高设计效率。 融合 AI 与人工设计的协作模式,形成良性互补,发挥各自优势。 大淘宝设计部 2023 年度 AI 设计实践的心得: AI 工具带来降本增效,快速产生创意效果,有效达成设计方案。 增效不仅体现在效率,还包括设计效果,极大丰富了设计自由度,能实现任何创意,设计概念更多是完整的用户产品。 新的技术能力使设计工作流程需要重新组合再造,拓展了设计师的思维边界。 设计的技能门槛大大降低,自然语言的运用打破了传统步调,设计素养和专业审美成为不可替代的差异化能力。 原文地址:https://mp.weixin.qq.com/s/I4zEWNNTfFmV3fHA61ycbg 。大淘宝设计部会持续探索 AI 设计的能力,从单纯提升生产力转变到增强用户对设计的感受,继而转变为解决用户的实际问题。
2025-02-15
如何设计市场洞察、战略研究、战略规划的提示词
以下是关于设计市场洞察、战略研究、战略规划提示词的相关内容: 在人工智能迅速发展的当下,提示词工程成为企业领导者需掌握的关键技能。提示词工程是设计和优化输入到 AI 系统指令的艺术与科学。但简单提示词存在局限性,无法满足复杂商业需求,因此出现了如思维链、思维树、思维图等高级技巧,能引导 AI 进行更深入分析、探索多种可能性及处理复杂推理任务。 在设计与市场洞察、战略研究、战略规划相关的提示词时,需考虑以下关键要素和框架: 对于市场洞察: 1. 目标市场:定义产品的目标用户群体和市场定位。 2. 用户需求:列出用户的核心需求和痛点。 3. 竞争分析:分析竞争对手的优势和劣势,确定差异化策略。 对于战略研究: 1. 产品定位:明确产品在市场中的独特卖点。 2. 功能性需求:描述产品必须实现的具体功能。 3. 非功能性需求:包括性能、安全性、可用性等要求。 对于战略规划: 1. 市场趋势:考虑当前市场趋势和未来发展。 2. 商业目标:与业务目标和战略保持一致。 3. 资源分配:规划实现产品所需的资源。 4. 风险评估:识别可能的风险和应对策略。 此外,以 Claude 的 5 层 Prompt 体系为例,可将任务细分,为每个子任务设计专门的 Prompt 并整合结果。同时,Prompt 工程是快速发展的领域,需不断学习和实验,包括关注行业动态、参与社区讨论、建立个人实验日志、跨领域学习以及建立评估体系,如定义成功标准、实施 A/B 测试、收集反馈等,以不断优化 Prompt 设计技巧。
2025-02-14