Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我想写一个图像识别的代码

Answer

以下是关于图像识别的一些知识:

图像识别是计算机视觉领域中的一项重要任务,旨在从图像中识别和理解对象。

对于图像识别,我们可以通过以下方式来实现:

  1. 获得每个数字或对象的一堆示例图像。
  2. 为了判断输入的图像是否对应特定数字或对象,可以使用已有的样本进行逐像素比较。但人类在识别图像时,即使图像是手写的、有各种修改和扭曲,仍能准确识别,这表明人类的识别方式更高级。

图像融合是将两个或多个图像合成为一个新的图像,以获得比原始图像更全面和丰富的信息。它可以通过不同的技术实现,如像素级融合、特征级融合和决策级融合。图像融合在实际应用中有多种用途,包括提高图像质量、增加图像信息量、遥感图像处理以及计算机视觉和机器人技术中的应用。相关算法有:小波变换、基于金字塔变换的多分辨率融合、基于区域的图像融合、基于特征的图像融合等。

目标检测是在图像或视频中准确地识别和定位特定对象。随着多模态数据的广泛应用,将不同模态的信息进行融合可以进一步提高目标检测的性能和鲁棒性。其大致原理是在图像中找到特定的目标并对其进行定位和识别。

希望这些信息对您编写图像识别代码有所帮助。

Content generated by AI large model, please carefully verify (powered by aily)

References

ChatGPT 是在做什么,为什么它有效?

上面给出的例子涉及到制作一个符合数值数据的模型,这些数据基本上来自于简单的物理,几个世纪以来我们已经知道“简单的数学【注:指的是几页纸能写清楚且普遍适用的那种,这种意义下,“麦克斯韦方程组”等是简单的】适用【于建模很多物理现象】”。但对于ChatGPT,我们必须对类似于人脑所产生的人类语言文本进行建模。对于这样的事情,我们还没有任何像“简单的数学”一样的东西。那么它的模型会是什么样子呢?在谈论语言之前,让我们谈论另一项类似于人类的任务:图像识别。作为这个问题的一个简单例子,我们来考虑数字的图像(这也是一个经典的机器学习例子):我们可以做的一件事是获得每个数字的一堆示例图像:然后,为了找出我们输入的图像是否对应于特定数字,我们可以使用我们已经拥有的样本进行显式的逐像素比较。但作为人类,我们肯定做得更好,因为即使它们是手写的,并具有各种修改和扭曲,我们仍然可以识别这些数字:

问:图像融合和目标检测是什么

Q:图像融合和目标检测是什么?大致的原理是什么?有哪些相关的算法?图像融合是将两个或多个图像合成为一个新的图像,以获得比原始图像更全面和丰富的信息。它可以通过不同的技术实现,如像素级融合、特征级融合和决策级融合。图像融合在实际应用中有多种用途,包括提高图像质量、增加图像信息量、遥感图像处理以及计算机视觉和机器人技术中的应用。目标检测是计算机视觉领域中的一个重要任务,其目标是在图像或视频中准确地识别和定位特定对象。随着多模态数据的广泛应用,如图像、文本、语音等,将不同模态的信息进行融合可以进一步提高目标检测的性能和鲁棒性。因此,图像融合和目标检测都是计算机视觉领域中重要的技术,它们在多个领域都有广泛的应用前景和研究价值。图像融合和目标检测的大致原理分别是将多个不同的图像合并成一个新的图像以获得更准确、更全面的信息和在图像中找到特定的目标并对其进行定位和识别。图像融合的相关算法有:小波变换、基于金字塔变换的多分辨率融合、基于区域的图像融合、基于特征的图像融合等。

Others are asking
图像识别能力能用在哪些方面?
图像识别能力可以应用在以下方面: 1. 自动驾驶:帮助车辆识别道路、交通标志和其他物体。 2. 广告定向投放:根据图像内容精准推送相关广告。 3. 网页搜索结果优化:通过识别图像内容提高搜索结果的准确性。 4. 数字助手:如 Google Now 或 Amazon Alexa 中用于识别图像相关的指令。 5. 安防监控:识别异常行为或人物。 6. 医疗诊断:辅助医生识别医学影像中的病症。 7. 工业检测:检测产品的质量和缺陷。 8. 物流:识别货物的类别和状态。
2024-12-05
AI 图像识别的发展历程
AI 图像识别的发展历程如下: 早期处理印刷体图片的方法是将图片变成黑白、调整为固定尺寸,与数据库对比得出结论,但这种方法存在多种字体、拍摄角度等例外情况,且本质上是通过不断添加规则来解决问题,不可行。 神经网络专门处理未知规则的情况,如手写体识别。其发展得益于生物学研究的支持,并在数学上提供了方向。 CNN(卷积神经网络)的结构基于大脑中两类细胞的级联模型,在计算上更高效、快速,在自然语言处理和图像识别等应用中表现出色。 ImageNet 数据集变得越来越有名,为年度 DL 竞赛提供了基准,在短短七年内使获胜算法对图像中物体分类的准确率从 72%提高到 98%,超过人类平均能力,引领了 DL 革命,并开创了新数据集的先例。 2012 年以来,在 Deep Learning 理论和数据集的支持下,深度神经网络算法大爆发,如卷积神经网络(CNN)、递归神经网络(RNN)和长短期记忆网络(LSTM)等,每种都有不同特性。例如,递归神经网络是较高层神经元直接连接到较低层神经元;福岛邦彦创建的人工神经网络模型基于人脑中视觉的运作方式,架构基于初级视觉皮层中的简单细胞和复杂细胞,简单细胞检测局部特征,复杂细胞汇总信息。
2024-11-14
以图像识别,为小白科普相关知识和交叉领域,并为研究生提供参考选题
图像识别是指利用计算机技术对图像进行处理和分析,以识别和理解图像中的内容。 对于小白来说,图像识别是让计算机像人一样“看懂”图像。它基于深度学习、机器学习等技术,通过对大量图像数据的学习和训练,能够自动提取图像的特征,并进行分类、识别等操作。 图像识别的应用非常广泛,比如在安防领域,用于人脸识别、车牌识别等;在医疗领域,辅助疾病诊断、医学影像分析;在交通领域,实现交通标志识别、车辆检测等。 图像识别与多个领域存在交叉,如计算机视觉,它不仅关注图像的识别,还包括图像的生成、处理等;与人工智能的其他分支如自然语言处理也有结合,实现图文转换等功能;在工业领域,与自动化生产相结合,进行产品质量检测等。 对于研究生来说,以下是一些参考选题: 1. 基于小样本学习的图像识别算法研究。 2. 融合多模态信息的图像识别模型优化。 3. 针对特定场景(如复杂环境、低光照等)的图像识别改进。 4. 图像识别在医疗诊断中的精准度提升策略。 5. 结合深度学习和传统方法的图像识别性能比较。 6. 基于新型神经网络架构的图像识别应用。
2024-10-19
用ai进行图像识别
AI 在图像识别方面的应用较为广泛,以下为您介绍一些相关内容: 在自动驾驶技术中,利用 AI 进行图像识别、传感器数据分析和决策制定,使自动驾驶汽车能够自主导航和驾驶,如特斯拉(Tesla)、Waymo 和 Cruise 等公司都在开发和测试自动驾驶汽车。 BERT 理念被应用于机器视觉领域,通过将图片分割处理,ViT 模型得以实现图像识别。 在深度学习中,图像识别实际是将图片转化为大量的图像单个像素点 RGB 值作为输入,再大量标注输出,形成神经网络。
2024-10-15
ai图像识别
以下是关于 AI 图像识别的相关内容: 判断一张图片是否为 AI 生成的方法: 通过画面风格、物品 bug 等细节进行辨别。但需注意,AI 在不断修正作图 bug,相关方法可能随时失效。 利用专门的网站,如 ILLUMINARTY(https://app.illuminarty.ai/),通过对大量图片数据的抓取和分析来判断,但可能存在误判,如将结构严谨的真实摄影作品识别为 AI 作图。 关于鉴别 AIGC 的讨论: 培养鉴别 AI 生成图片的技能需要训练大脑模型。 AI 自身的逻辑算法不能像人类一样综合考虑各种不符合逻辑的表现。 另外,人工智能在汽车行业有广泛应用: 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定。 车辆安全系统:如自动紧急制动、车道保持辅助和盲点检测等。 个性化用户体验:根据驾驶员偏好和习惯调整车辆设置。 预测性维护:分析车辆实时数据预测潜在故障和维护需求。 生产自动化:用于汽车制造的自动化生产线。 销售和市场分析:分析市场趋势、消费者行为和销售数据。 电动化和能源管理:优化电动汽车电池管理和充电策略。 共享出行服务:优化路线规划、调度车辆和定价策略。 语音助手和车载娱乐:如 Amazon Alexa Auto 和 Google Assistant 等。 车辆远程监控和诊断:远程监控车辆状态并提供实时诊断和支持。
2024-10-15
图像识别能力强的大模型
目前,图像识别领域中一些能力较强的大模型包括: 1. 百度智能云的AI图像识别技术:这项技术利用深度学习算法模拟人脑的神经元网络,对图像进行预处理、特征提取和分类器识别,广泛应用于安全、医疗、交通等领域 。 2. 北京大学张史梁长聘副教授课题组的多模态大模型Pink和LocLLM:这些模型通过为大语言模型添加图像细粒度指代分析能力,实现了对图像中特定物体和人体的细粒度感知,并在多模态任务、指代感知任务以及人体感知任务上展现出优秀的性能和泛化能力 。 3. 百度AI的通用物体和场景识别:这项服务能够识别超过10万类常见物体和场景,支持获取识别结果对应的百科信息,并且可以使用EasyDL定制训练平台进行定制识别 。 4. Vision Transformer :由Google Brain团队推出,将传统的CNN替换为Transformer架构,实现了在图像识别任务中的显著性能提升 。 5. Meta开源的DINOv2视觉大模型:这些模型使用自监督的方式进行训练,无需微调就能用于分类、分割、图像检索、深度估计等多种视觉任务 。 这些大模型展示了AI在图像识别领域的强大能力,能够处理各种复杂的视觉任务,并在不同的应用场景中发挥作用。
2024-07-22
有没有什么AI软件有可视化代码功能
以下是一些具有可视化代码功能的 AI 软件: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,用户可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图创建,可与 Archi 工具配合使用,该工具提供图形化界面创建模型。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 6. draw.io(现称为 diagrams.net):免费的在线图表软件,允许创建各种类型图表,包括软件架构图,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 的转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费的开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。 以下是一些写代码或辅助编程的 AI 产品: 1. GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出的 AI 编程助手,支持多种语言和 IDE,能为程序员快速提供代码建议。 2. 通义灵码:阿里巴巴团队推出的智能编程辅助工具,提供多种能力。 3. CodeWhisperer:亚马逊 AWS 团队推出的 AI 编程软件,由机器学习技术驱动,为开发人员实时提供代码建议。 4. CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,可快速生成代码。 5. Cody:代码搜索平台 Sourcegraph 推出的 AI 代码编写助手,借助强大的代码语义索引和分析能力,了解开发者的整个代码库。 6. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手,基于自研的基础大模型微调的代码大模型。 7. Codeium:由 AI 驱动的编程助手工具,通过提供代码建议、重构提示和代码解释帮助软件开发人员提高效率和准确性。 更多辅助编程 AI 产品,还可以查看:https://www.waytoagi.com/category/65 。每个工具的功能和适用场景可能不同,您可以根据需求选择最适合的工具。 此外,还有一些相关的工具和资源: 1. Screenshot to Code:利用 GPT4 Vision 视觉能力将屏幕截图转换为代码,支持 HTML/Tailwind CSS、React 等,集成 DALLE 3。 2. 交互创意体验网址:http://reboot.studio ,提供丰富的交互创意体验,鼓励加入更多 AI 元素。 3. 沃顿商学院发布的教学提示词库:https://www.moreusefulthings.com/prompts ,包含多用途学习和教育提示词,适合学生、教师和家长收藏。
2025-01-20
找一个可以设计复杂代码的AI
以下是一些可以设计复杂代码的 AI 工具及相关信息: 1. 在独立游戏开发中,如果让 AI 写小功能,可把不方便配表而又需要撰写的简单、模板化、多是调用 API 且只牵涉小部分特殊逻辑的代码交给 AI。以 Buff 系统为例,用 Cursor 让它仿照代码写一些 Buff,生成结果有时可以直接用,但目前 Cursor 生成复杂代码还需要复杂的前期调教,用多了之后 ChatGPT 会更方便。教 AI 时要像哄小孩,有正确的需要及时肯定,指出错误时要克制。 2. OpenAI o1:推理能力强,适合作为架构师或算法顾问,用于复杂算法与架构设计。 3. Claude 3.5/Cursor:Claude 擅长长上下文任务,Cursor 适合上下文控制较好的 IDE 开发,可快速生成代码与网页设计。 4. v0.dev:是网页设计的利器,支持设计稿生成网页。 5. Gemini:长上下文支持(2M Tokens),适合代码反编译与混淆代码分析。 同时需要注意,AI 目前在完成复杂项目方面存在一些限制,如上下文窗口限制、自然语言描述不精确、无法感知环境和直接执行、幻觉问题等。复杂项目需要全局理解,AI 难以设计架构和模块化,项目需求常需反复讨论才能明确,AI 难以完全掌握,编译、部署、调试等复杂任务 AI 难以独立完成,且 AI 可能编造不存在的 API 或错误代码,需人工严格审查。
2025-01-20
可开源的AI工具是什么意思,我可以看到她的代码吗
可开源的 AI 工具是指其源代码可以被公开获取和使用的人工智能工具。这意味着您有机会查看和研究其代码的实现方式。 以下为您列举一些常见的可开源的 AI 工具: 1. CodeGeeX:由智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,能快速生成代码,提升开发效率。 2. :一个带 Web 界面简单易用的声音克隆工具。可使用任何人类音色,将一段文字合成为使用该音色说话的声音,或者将一个声音使用该音色转换为另一个声音。 3. :一个开源的音频、音乐和语音生成整合工具包。 4. :一键部署私人 GPT/LLM 的聊天机器人。支持语音合成、多模态和可扩展的插件系统,可以联网、画图、爬虫等。 5. :能够利用爬虫,自动抓取与整合指定 URL 地址中的各种信息,并生成一个 output.json 的数据文件。将其喂给 ChatGPT,便可快速定制您的专属 GPT,打造个人知识库或者智能助理。 6. :给 AI 看一眼截屏,便能直接生成代码。该项目可借助 GPT4 Vision 的能力,直接给您将屏幕截图转换为 HTML/Tailwind CSS,并利用 DALLE 3 的图像生成能力,生成外观相似的图像。 7. :可在命令行终端,直接调用与展示各种大模型能力。实现了视频和照片编辑、系统配置更改、自动生成并运行 Demo 源码,AI 一对一聊天问答等功能。 需要注意的是,不同的开源 AI 工具在功能和适用场景上可能会有所不同,您可以根据自己的需求选择最适合您的工具。
2025-01-20
怎么在coze的智能体总加入一个使用MARKDOWN编写的代码的prompt?
在 Coze 的智能体中加入使用 Markdown 编写的代码的 prompt 可以参考以下方法: 首先,了解相关的任务和目标,比如像实现输入任意文章链接后,AI 自动生成适合微信分享的文章推荐卡片。为达到这一效果,大模型对话产品通常需要完成网页爬取、内容总结、二维码生成、卡片样式生成等关键步骤。 在编写 prompt 时,可以发现新的词生卡 Prompt 组织方法,把设计要求拆分为“设计规范”和“内容结构”,再细分为“布局与尺寸”“字体规范”“颜色规范”的独立模块,并结合“内容结构”进行要求提示。这种提示词组织方式具有模型通用性、提示简易性和生成稳定性等显著优势。 对于刚入门的朋友,首推 LangGPT 结构化提示词,直观易懂,可以快速上手。对于想要进阶的用户,一方面可以继续选择 LangGPT,另一方面如有额外精力和好奇心,不妨尝试刚哥推崇的 Lisp 伪代码格式,有助于精炼提示词和提升对措辞理解、概念认知的能力。但需要注意的是,真正重要的不是提示词的外在形式,而是内容是否与 AI 的“理解机制”相契合。同时,在实际应用中,还需要经过多次调试,并根据测试 bug 微调提示词,直至稳定运行。
2025-01-19
现在国内国外与cursor和windsurf自动补全代码的ai比肩的产品有哪些,而且可以免费使用
以下是一些与 Cursor 和 Windsurf 自动补全代码功能比肩的产品,且部分可以免费使用: 1. Deepseek:网址为 https://www.deepseek.com/zh ,国内能访问,网页登录方便,目前完全免费。 2. 通义灵码:在 Pytharm 中通过“文件”“设置”“插件”搜索安装(目前免费)。 3. JetBrains 自身的助手插件:在 Pytharm 中通过“文件”“设置”“插件”搜索安装(收费,目前有 7 天免费试用)。 4. Wing Python IDE Pro:https://wingware.com/ ,是一款专为 Python 编程设计的开发环境,年度许可证起价 179 美元/月。 5. Smol Developer:https://github.com/smolai/de ,是一个开源的 AI 开发助手,遵循 MIT 许可证。 6. Cody:https://about.sourcegraph ,个人使用免费。
2025-01-16
可以读取excel数据并且编写小波分析代码的ai
以下是为您整合的相关内容: 应用开发方面: 自制微博指数爬虫工具:通过分析微博话题页面,找到真实数据地址,明确规则后让 AI 帮忙写代码,可在 colab 上运行,爬取数据后存储到 excel 并自动下载到本地。 Markdown 分页策略: LangChain 提供多种文本分页策略,包括按 Headers 或“章”划分、合并相邻较小部分、对大的“章”按“节”继续拆分、对大的“节”按“段”“句”“词”逐步拆分,直到满足长度要求。 处理结构化数组对象数据: 让 AI 更好地处理结构化数组对象数据的建议包括提供数据结构描述、用必要的示例数据、明确说明分析需求、让 AI 编写代码完成分析。Claude 和 ChatGPT 支持直接运行代码,处理结构化数据更高效。 金融服务业与生成式 AI: 生成式 AI 可帮助金融服务团队改进内部流程,简化日常工作流程。 预测方面:帮助编写 Excel、SQL 和 BI 工具中的公式和查询,发现模式,为预测建议输入并适应模型。 报告方面:自动创建文本、图表、图形等内容,并根据不同示例调整报告。 会计和税务方面:帮助综合、总结税法和潜在扣除项。 采购和应付账款方面:帮助自动生成和调整合同、采购订单和发票以及提醒。
2025-01-16
请推荐一个好的优化简历的工具
以下为您推荐几个优化简历的工具: 1. ResumeMatcher:这是一个 AI 驱动的开源简历优化工具。它能提供智能关键词匹配和深入的分析见解,有助于提升简历通过 ATS 筛选的几率。采用 FastEmbed 计算简历与职位匹配度,并结合 textacy 提取核心术语,精准优化简历内容。相关链接: 2. Napkin:这是一个生成多样风格图表的 AI 工具。可将选中文本转换为 mermaid 格式图表,支持 SVG 渲染,交互流畅且模板丰富。后台可能使用轻量模型(如 GPT4 mini),自动选择图标,生成多套模板供选择。当前免费,适合需要快速生成图表的用户。相关链接: 3. 作者开发的使用 GPT4 技术的实时转录工具 Ecoute:可在文本框中为求职者的麦克风输入提供实时转录,还使用 OpenAI 的 GPT3.5 生成建议的响应。开源地址:https://github.com/SevaSk/ecoute
2025-01-20
WaytoAGI 是一个什么网站?
WaytoAGI 网站是一个在 AI 领域为用户提供多种功能的平台,包括: 1. 和 AI 知识库对话,用户可以在此询问任何关于 AI 的问题。 2. 集合了精选的 AI 网站,方便用户按需求找到适合的工具。 3. 提供精选的 AI 提示词,用户可以复制到 AI 对话网站使用。 4. 呈现每天知识库的精华内容。 WaytoAGI 网站和 WaytoAGI 知识库相互关联又各自独立,旨在成为用户学习 AI 路上的好助手。它不仅是一个知识库,还是连接学习者、实践者和创新者的社区,让大家在这里碰撞思想,相互鼓舞,一同成长。此外,它还通过公众号、B 站、小红书、X(Twitter)等渠道传递 AI 消息和普及 AI 知识。
2025-01-20
我是一个初学者,要怎么学习ai
对于初学者学习 AI,建议您采取以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 持续学习和跟进: AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-20
如何生成一个c4d风格的抽象模型
以下是生成一个 C4D 风格抽象模型的步骤: 1. 字体设计: 在 Adobe Illustrator 中,先用钢笔工具勾出字体形状,然后加粗扩展外观,删掉多余的线或者直接填充白色摆放好正确的图层样式。 2. 到 SD 里做效果: 模型:revanimatedv122 Control Weight:0.85 1,低一点的话形状会稍微随意点。 Control 预处理器:lineart_standard,模型:control_v11p_sd15_lineart Lora: Wool felt v1.0 https://civitai.com/models/113321 felt_v1.0 羊毛毡质感 https://www.liblibai.com/modelinfo/5d37951d90684318b4c596eb4a2ecacf 关键词:felt style, cute, wool material, made yarn, Light and clean background, C4D style, 3D rendering, <lora:symaozhan:0.4>, rich color palette Negative prompt: lowres, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, blurry, black (可以替换另一个 lora 和颜色得到不一样的结果)
2025-01-20
怎么做一个ai软件?
要制作一个 AI 软件,通常需要关注以下几个方面: 1. 架构方面: 前端页面:用于用户进行文字输入或图片上传等操作。 数据处理端:处理前端页面用户输入或上传的数据,可能是工作流或插件。 数据处理完成后的路径:将处理结果展示在前端页面供用户查看,或保存在数据库/知识库中供额外查询。 2. 构建时的关键问题: 前端页面的构建,包括布局、组件构成及它们之间的关系。 前端页面如何将数据传递给工作流或插件。 工作流/插件处理完成后的数据如何返回前端页面展示。 3. 案例学习: 如 AI 翻译应用,掌握前端的基本结构、组件上的事件(如表单数据提交)、表单向工作流传递数据以及工作流数据返回前端组件展示等。 以证件照应用为例,先梳理业务背景与逻辑,再按照步骤创建 AI 应用。 在与 AI 共舞时,了解 AI 编程的边界和限制,遵循能不编尽量不编的准则,优先寻找线上工具、插件、本地应用、开源工具、付费服务等现成方案,最后才考虑自己编程,并以终为始,聚焦目标。
2025-01-19