Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

相似性度量的例子

Answer

以下是一些相似性度量的例子:

  • 在商业化问答场景中,使用余弦相似性来计算问题向量和各个文档向量之间的相似度,以找出与问题内容最为接近的文档。
  • 在评估 GPT-4 生成答案的真实性时,使用包括 ROUGE、BLEU 和 BLEURT 等标准相似度度量标准,将生成的回答与提供的参考(「gold」)答案进行比较,若得分高于预先确定的阈值,则认为生成的回答是真实的。
Content generated by AI large model, please carefully verify (powered by aily)

References

【AI+知识库】商业化问答场景,让AI回复更准确,一篇专为所有“小白”讲透RAG的实例教程(上篇)

1.相似性计算:2.使用一种相似性度量方法(如余弦相似性)来计算问题向量和各个文档向量之间的相似度。这一步是为了找出与问题内容最为接近的文档。3.排序与选择:4.根据相似性得分,所有文档会被排序。系统通常会选择得分最高的几个文档,认为这些文档与问题最相关。5.信息抽取:6.从选定的高相关性文档中抽取具体的信息片段或答案。这可能涉及到进一步的文本处理技术,如命名实体识别、关键短语提取等。③、信息整合阶段:1、信息融合:这里将接收到上一步中检索到的全部信息。然后把这些信息连带用户问题和系统预设,被整合成一个全新的上下文环境,为生成回答提供基础。具体进行了什么操作呢?

张梦飞 :AI商用级问答场景,怎么让AI+知识库回答的更准确?一篇专门为小白讲透RAG而作的教程(上篇)

相似性计算:使用一种相似性度量方法(如余弦相似性)来计算问题向量和各个文档向量之间的相似度。这一步是为了找出与问题内容最为接近的文档。排序与选择:根据相似性得分,所有文档会被排序。系统通常会选择得分最高的几个文档,认为这些文档与问题最相关。信息抽取:从选定的高相关性文档中抽取具体的信息片段或答案。这可能涉及到进一步的文本处理技术,如命名实体识别、关键短语提取等。1.信息整合阶段:信息融合:在这里接收到上一步中检索到的全部信息。然后把这些信息连带用户问题和系统预设,被整合成一个全新的上下文环境,为生成回答提供基础。具体进行了什么操作呢?(了解即可)?

报告:GPT-4 通用人工智能的火花

我们强调,除了创建用于测量陈述相似性的数据外,这样的实验还允许我们了解模型所创建的补全的真实性,这是一个独立有趣的问题。后一个问题在OpenAI对GPT-4的技术报告[Ope23]中直接研究,他们报告他们的最后微调阶段显著提高了真实性(我们再次强调,本文中的所有实验都是在GPT-4的早期版本上进行的,尚未进行最终微调阶段)。7.2.1为什么当前的度量标准不足?为了检查生成的答案是否真实,每个回答都会与提供的参考(「gold」)答案进行比较。这种比较使用用于评估文本生成和摘要的标准相似度度量标准进行,包括ROUGE[Lin04]、BLEU[PRWZ02]和BLEURT[SDP20]。如果得分(来自任何这些度量标准)高于预先确定的阈值,则认为机器生成的完成与参考语句匹配的完成是真实的完成。我们在所有问题上重复这种方法,并计算真实答案的百分比。结果显示在下图中。观察到,根据上述度量标准,GPT-4生成的回答比GPT-3更接近于gold标准答案。

Others are asking
深度学习跟机器学习有啥区别呀?能不能举个通俗易懂的例子
深度学习和机器学习的区别主要体现在以下几个方面: 1. 学习方式:机器学习通常需要人工选择和设计特征,而深度学习能够自动从数据中学习特征。 2. 模型结构:机器学习模型相对简单,深度学习则使用多层的神经网络,结构更复杂。 3. 数据处理能力:深度学习能够处理更大量和更复杂的数据模式。 例如,在图像识别任务中,如果使用机器学习,可能需要人工提取图像的颜色、形状等特征,然后基于这些特征进行分类。但在深度学习中,神经网络可以自动从大量的图像数据中学习到有效的特征表示,从而实现更准确的分类。 机器学习是人工智能的一个子领域,让计算机通过数据学习来提高性能,不是直接编程告诉计算机如何完成任务,而是提供数据让机器找出隐藏模式或规律,然后用这些规律预测新的未知数据。 深度学习是机器学习的一个子领域,模拟人脑工作方式,创建人工神经网络处理数据,包含多个处理层,能学习和表示大量复杂模式,在图像识别、语音识别和自然语言处理等任务中非常有效。 大语言模型是深度学习在自然语言处理领域的应用之一,目标是理解和生成人类语言,需要在大量文本数据上训练,如 ChatGPT、文心一言。同时,大语言模型具有生成式 AI 的特点,不仅能理解和分析数据,还能创造新的独特输出。
2025-01-21
国内coze调用api的例子
以下是国内 Coze 调用 API 的一些例子: 1. 通过已有服务 API 创建插件: 进入 Coze 个人空间,选择插件,新建一个插件并命名,如 api_1。 在插件的 URL 部分,填入 Ngrok 随机生成的 https 链接地址。 按照 Coze 的指引配置输出参数,测试后发布插件。 2. 手捏简单的 Bot 并接入创建的插件:创建测试 API 的 Bot,将创建的 api_1 插件接入,在 prompt 里让其调用插件。 3. 测试 AI Bot 时可能遇到的情况:Coze 国内版刚发布不久,有些官方和第三方插件的 API 调用和返回结果不太稳定,可能出现回答不完整的情况,但相信官方会尽快解决。 4. 获取 Coze 的 accessToken 和 botid: 获取 accessToken:在 Coze 界面右侧扣子 API 授权,或者打开链接 https://www.coze.cn/open/oauth/pats,添加令牌,设置名称、过期时间和权限,完成后点击确定按钮并复制下拉令牌。 获取 botid:通过工作空间获取,从“工作空间”打开一个 bot,点击商店按钮查看地址栏中的数字即为 botid。 发布为 bot api:注意在前端使用 bot 必须发布成为 API,点击发布并选择 API,等待审核通过后可按上述方法拿到 botid。 获取空间 id:进入 Coze 后,左边打开工作空间,找到 url 中的 id 并复制。
2025-01-12
谈谈医疗人工智能的风险及其法律防范,举一个具体例子,如影响肿瘤外科内科
医疗人工智能在带来诸多益处的同时,也存在新的风险。以下为您举例说明其风险及法律防范: 以自动化医疗分诊系统为例,其具有适应性和自主性。适应性方面,它能基于对医疗数据集、患者记录和实时健康数据的分析来预测患者病情;自主性方面,它能为医疗专业人员或直接为患者生成有关症状可能原因的信息,并推荐潜在的干预和治疗措施。 然而,这也带来了一些风险和监管问题。比如,若该系统提供了错误的医疗建议,导致患者出现负面健康结果,责任归属不明确,影响患者获得赔偿。 在法律防范方面,需要明确此类系统的责任界定,制定相关法律法规,确保患者在因错误建议受到损害时能够获得有效的救济。同时,应加强对医疗人工智能系统的监管和评估,确保其准确性和可靠性。
2025-01-02
帮我想想三年内有争议有公众性时效性的新闻评议选题,关于无人驾驶的,贴近生活,有新意。 例子:《强制加班不应该成为企业文化》《不敢看体检报告,是我们这一代人的命吗》《理发师因听得懂话爆火,这份作业值得抄》《“网红探墓”别“自挖坟墓”》《大学生挂科8门后离奇失踪,学校有责任吗》《不招疫情班应届生,一种赤裸裸的求职歧视》
以下是为您提供的一些关于无人驾驶三年内有争议、有公众性时效性且贴近生活、有新意的新闻评议选题: 1. 《无人驾驶汽车事故频发,谁来负责?》 2. 《无人驾驶能否解决城市交通拥堵难题?》 3. 《无人驾驶普及,传统司机将何去何从?》 4. 《无人驾驶技术,是便利还是安全隐患?》 5. 《无人驾驶车辆的隐私保护,你放心吗?》 6. 《无人驾驶时代,驾照是否会成为历史?》 7. 《无人驾驶汽车的保险政策,公平吗?》 8. 《无人驾驶上路,行人安全如何保障?》 9. 《无人驾驶出租车,你敢坐吗?》 10. 《无人驾驶公交,能否改变城市出行方式?》
2024-12-05
如何用国内版coze的api,能举两个例子吗?
以下是两个关于国内版 Coze 的 API 使用示例: 1. 创建自己的插件: 进入 Coze 的个人空间,选择插件,新建一个插件并命名,例如 api_1。 在插件的 URL 部分,填入通过 Ngrok 随机生成的 https 链接地址。 按照 Coze 的指引配置输出参数,测试后发布插件。 基于创建好的插件,创建一个测试 api 的 bot,并将创建的插件接进来,在 prompt 里设置调用插件。 2. 打造微信图片助手: 确保已掌握通过 COW 接入微信机器人的方式,并在 chatgptonwechat 中的 config.json 中配置好自己的 Coze API Key 和 Coze Bot ID。 利用 Coze 新发布的 API 更新中的多模态对话和知识库修改能力,为接入微信的 Bot 增加图片相关功能,如总结图片内容、重绘图片风格等。
2024-12-03
怎么样写prompt?有哪些技巧?你能举个例子吗
写 prompt(提示)是一个关键步骤,决定了 AI 模型如何理解并生成文本。以下是一些编写 prompt 的技巧和建议: 1. 明确任务:清晰定义任务,如写故事时包含背景、角色和主要情节。 2. 提供上下文:若任务需特定背景知识,提供足够信息。 3. 使用清晰语言:用简单、清晰的语言描述,避免模糊或歧义词汇。 4. 给出具体要求:明确格式、风格等特定要求。 5. 使用示例:提供期望结果的示例,帮助模型理解需求。 6. 保持简洁:避免过多信息导致模型困惑。 7. 使用关键词和标签:有助于模型理解任务主题和类型。 8. 测试和调整:生成文本后检查结果,根据需要调整 prompt。 此外,还有“Fewshots”的技巧,即在写 Prompt 时,通过提供 1 3 个输入 输出示例,让 GPT 学到样本共性,提升输出结果质量。比如: 初始 Prompt: 你是一个优秀的翻译人员,你会把我说的汉字翻译成英文和日语,日语同时展示日语汉字和假名。不要有任何额外的解释说明。 输入:邻居 输出:Neighbor 输入:自行车 输出:Bicycle 结构化的 prompt 方法论中,结构化是对信息进行组织,使其遵循特定模式和规则,方便有效理解。常用模块包括: Role:<name>:指定角色让 GPT 聚焦对应领域输出。 Profile author/version/description:Credit 和迭代版本记录。 Goals:一句话描述 Prompt 目标,让 GPT 聚焦。 Constrains:描述限制条件,帮 GPT 剪枝。 Skills:描述技能项,强化对应领域信息权重。 Workflow:重点,希望 Prompt 按特定方式对话和输出。 Initialization:冷启动时的对白,强调重点。
2024-10-22