直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

你是哪家的哪个大模型的哪个版本

回答

以下是一些常见的大模型及其版本:

  • PCI-TransGPT 佳都科技小范围内测 API 版本。
  • Chinese-Alpaca2-13B,由 yiming cui(个人开发者)开发,是个人开源的基于 Llama2 的汉化版中文模型。
  • 360GPT_Pro 是 360 智脑的 API 升级版本 Pro。
  • Llama_2_13B_Chat 是 Meta 官方开源的 2 代 13B 的 Chat 版本。

此外,还有:

  • 百川 2 大模型中的 Baichuan2-7B-Chat 版本。
  • 360 安全大模型目前发展到 3.0 初级版本,只依赖大模型本身的能力,用于攻击事件的检测和发现,在恶意流量分析和恶意邮件检测效果方面全面超越 GPT 4。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

2023年度中文大模型基准测评报告.pdf

[title]VIRTUAL中文大模型基准测评2023年度报告[heading2]测评模型列表[heading3]12.PCI-TransGPT佳都科技小范围内测API版本25.Chinese-Alpaca2-13B yiming cui(个人开发者)个人开源的基于Llama2的汉化版中文模型13.360GPT_Pro 360 360智脑的API升级版本Pro26.Llama_2_13B_Chat Meta官方开源的2代13B的Chat版本本次测评数据选取了SuperCLUE-12月测评结果,模型选取了国内外有代表性的26个大模型在12月份的版本。SuperCLUE模型象限

创作:基于百川大模型向微信群大佬们虚心学习

这里我们选用Baichuan2-7B-Chat的版本(预训练模型也可在文末网盘中下载),使用LLaMA-Efficient-Tuning训练框架,根据自己的cuda版本安装pytorch,安装bitsandbytes做量化服务

周鸿祎免费课AI系列课程第二讲-企业如何拥抱AI

360作为国内唯一又懂大模型又懂安全的双料厂商,我们要解决大模型的安全问题,必须亲自躬身入局。我的想法是以“模法”打败魔法,因为大模型越来越智能,它的安全问题肯定不是用传统安全的路子来解决,所以我们提出了以模制模的理念。我们打造一个专业的聪明的大模型,它没有别的能力,就用来盯着其他大模型,如果发现有不安全的因素输出,或者不轨的行为,对其他大模型的行为进行分析和监控。目前这个大模型是个初级版本,只发展到3.0。我们只依赖大模型本身的能力,就是说不依赖外部工具,不依赖微调,也就是没有作弊。现在有些大模型测试很容易作弊,你提前把考题头天晚上做一遍,第二天去考试怎么也能考个七八十分。我们就在恶意流量分析和恶意邮件检测效果方面,全面超越GPT 4。再跟360积累了很多年的工具做结合,你让这个大模型写诗写不出来,奥数题也回答不了,它只干一件事——攻击事件的检测和发现。

其他人在问
如果想创建一个指导高中孩子学习的老师的智能体,我有几个问题:1. 是弄一个全科的智能体还是每门科单独弄一个智能体? 2. 国产哪家的AI产品弄这种智能体比较适合?也就是说回答100%能够正确,不会瞎说; 3.你有什么建议?
对于创建指导高中孩子学习的老师的智能体,以下是一些建议: 1. 关于是创建全科智能体还是每门科单独创建智能体,这取决于您的具体需求和使用场景。如果您希望能够全面、综合地指导学生的学习,全科智能体可能更合适;但如果您想要针对每门学科进行更深入、专业的指导,那么每门科单独创建智能体可能效果更好。 2. 目前国产的 AI 产品中,很难说哪一家 100%能够保证回答正确且不会瞎说。不同的产品在不同的领域和场景中可能表现各异。您可以考虑一些在教育领域有一定口碑和应用案例的产品,并进行充分的测试和评估。 3. 以下是一些创建智能体的建议: 明确智能体的职责和功能,例如是主要进行课程规划、生成测验还是提供学习指导等。 为智能体提供详细准确的提示词,清晰地描述其任务和目标。 像导演一样,将复杂的任务拆分成科学合理的步骤,并确保每个步骤的结果能为后续步骤提供基础。 对于生成的内容,要进行检查和优化,不断调整和改进智能体的表现。 此外,您还可以参考一些相关的提示词库,例如沃顿商学院给教师和学生的提示词库,其中包含了结构化题型设计师和测验生成器等方面的内容。同时,很多 AI 网站都支持创建智能体,您可以为其配置提示词、知识库和能力等。
2024-11-21
如果想创建一个指导高中孩子学习的老师的智能体,我有几个问题:1. 是弄一个全科的智能体还是每门科单独弄一个智能体? 2. 哪家的AI产品弄这种智能体比较适合?也就是说回答100%能够正确,不会瞎说; 3.你有什么建议?
对于创建指导高中孩子学习的老师的智能体,以下是一些建议: 1. 关于是创建全科智能体还是每门科单独创建智能体,这取决于您的具体需求和使用场景。如果您希望能够全面、综合地指导学生的学习,全科智能体可能更合适;但如果您想要针对每门学科进行更深入、专业的指导,那么每门科单独创建智能体可能效果更好。 2. 目前在创建这种智能体方面,一些常见的 AI 产品如 GPT4、Gemini 等都可以考虑。然而,要确保回答 100%正确且不会瞎说是具有一定难度的,因为 AI 的回答仍然受到数据和算法的限制。 3. 以下是一些额外的建议: 参考沃顿商学院给教师和学生的提示词库,例如其中的结构化题型设计师和测验生成器的相关提示。 像导演一样,将创建智能体的任务拆解成科学合理的步骤,明确每个步骤的目标和结果。 注意提示语的逻辑,将复杂任务拆分成多个相互关联的步骤,使前一步的结果成为后一步的基础。 很多 AI 网站都支持创建智能体,您可以根据配置信息、知识库和能力配置等来自行定制。
2024-11-21
目前市面上能力最强的AI模型是哪家的
目前市面上能力较强的 AI 模型来自多家公司和机构。 OpenAI 的 GPT4 是一个表现出色的大型多模态模型,在各种专业和学术基准测试中表现出与人类相当的水平。此外,OpenAI 还带来了其他优秀的模型,如 DALL·E 3 等。 Meta 开发的 Llama 3.1 是迄今为止最大版本,其在推理、数学、多语言和长上下文任务中能够与 GPT4 相抗衡,标志着首次开放模型缩小与专有前沿的差距。 谷歌 DeepMind 与纽约大学团队开发的 AlphaGeometry 在奥林匹克级几何问题基准测试中表现优异。 中国的 DeepSeek、零一万物、知谱 AI 和阿里巴巴等开发的模型在 LMSYS 排行榜上取得了优异的成绩,尤其在数学和编程方面表现出色,且在某些子任务上挑战了 SOTA。 Mistral 7B 是一个具有 73 亿参数的模型,在所有基准测试上超越了 Llama 2 13B,在许多基准测试上超越了 Llama 1 34B,在代码任务上接近 CodeLlama 7B 的性能,同时在英语任务上表现良好。 需要注意的是,AI 模型的能力评估会因不同的任务和应用场景而有所差异,且技术在不断发展和进步,新的更强的模型可能会不断涌现。
2024-11-18
你的知识库更新到什么时候,用的是哪家的大模型
以下是关于大模型的相关知识: 大模型与小模型的区别:小模型在特定任务上表现出色,但只能用于特定任务;大模型像多功能基础平台,能处理多种任务,应用范围广泛且拥有更多通识知识。 大模型的知识范围:大模型并不拥有无限知识,其知识来源于训练过程中接触的数据,这些数据有限,且训练后知识库不会自动更新,在某些特定或专业领域的知识可能不够全面。 大模型的运作机制:主要通过大量数据训练学习语言结构和模式,根据输入生成相应文本,类似于词语接龙游戏。 常见的大模型:包括 OpenAI 的 3.5 和 4 版本,微软 Bing 使用 4 和 3.5 的混合,谷歌的 Bard 由 PaLM 2 等基础模型驱动,Anthropic 的 Claude 2 具有非常大的上下文窗口,且不太可能恶意行事。 关于知识库的更新时间和使用的具体大模型,上述内容未明确提及。
2024-11-07
文生视频哪家强
目前在文生视频领域,以下是一些表现较为出色的产品: 1. Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 2. Pika:是一款出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。其新模型在文生视频质量上有大幅提升,例如生成皮克斯风格的镜头效果出色,稳定性高,语义理解强,动作幅度大,在 3D 和 2D 动画效果方面表现优秀。 3. SVD:如果熟悉 Stable Diffusion,可以安装这款最新的插件,在图片基础上直接生成视频,由 Stability AI 开源。 4. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但需要收费。 5. Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 更多的文生视频的网站可以查看:https://www.waytoagi.com/category/38 。 以下是 Sora 和其他模型能力的对比表格: |能力分类|能力|SORA|其他| ||||| |底层技术|架构|Transformer|UNet 为主| |底层技术|驱动方式|数据|图片| |对于真实世界的理解/模拟能力|世界理解能力|可理解世界知识|弱| |对于真实世界的理解/模拟能力|数字世界模拟|支持|不支持| |对于真实世界的理解/模拟能力|世界互动能力|支持|不支持| |对于真实世界的理解/模拟能力|3D 运动连贯性|强|弱| |对于真实世界的理解/模拟能力|物体一致性|强|弱| |对于真实世界的理解/模拟能力|物体持久性/连续性|强|弱| |对于真实世界的理解/模拟能力|文本理解|强|一般| |对于真实世界的理解/模拟能力|运动控制|其他|提示词提示词+运动控制工具| |基于模拟的视频编辑能力|无缝连接能力|强|弱| |基于模拟的视频编辑能力|视频到视频编辑|支持|部分| |基于模拟的视频编辑能力|扩展生成视频|前/后|后| |外显视频基础属性|视频时长|60 秒|2~4 秒| |外显视频基础属性|原生纵横比|支持|不支持| |外显视频基础属性|清晰度|1080P|最高 4K| 不同工具适合于不同的使用场景和需求,您可以根据自己的具体情况进行选择。
2024-10-15
国内ai哪家强大
在国内,以下是一些在 AI 领域表现较为突出的公司和产品: 腾讯:腾讯元宝是相对较晚推出的 AI 应用,其最大亮点在于强大的 AI 搜索功能,能够访问大量微信生态系统内的私域资源,还依托于腾讯“混元”大语言模型生成高质量内容。 Soul:旗下的异世界回响在情感陪伴方面有一定特色。 海鸟科技:推出了 AI 变脸产品。 MiniMax:推出了 MoE 架构的新模型,以及“星野”这个目前国内较成功的 AI 陪聊 APP。 杭州超节点:有无界 AI 产品,在图片生成方面表现不错。 兴利和:美趣 AI 是其在图片生成领域的产品。 智谱:一年间推出了 4 代 GLM,一直是国内能力较好的模型之一。 需要注意的是,在 2023 年官宣 AI 大模型的公司众多,其中不乏蹭流量的。从产品层面看,2C 端真正出圈的是“妙鸭相机”,但只是昙花一现。在硬件层,国内目前仍缺乏能胜任大模型训练的芯片,华为昇腾在单卡指标上距离不远,但因稳定性和生态问题仍需打磨。
2024-10-08
如何确认torch的版本
要确认 torch 的版本,可以通过以下几种常见方法: 1. 在 Python 脚本或交互式环境中,导入 torch 库后,使用 `torch.__version__` 来获取版本信息。 2. 如果您是在命令行中操作,可以打开终端或命令提示符,进入 Python 环境,然后执行上述获取版本的代码。 另外,在一些相关的配置和安装说明中也可能会提及 torch 的版本要求,例如: 在某些项目的文档中,可能会明确指定所需的 torch 版本。 像“延伸阅读”中提到的,对于一些特定的应用场景,可能会有关于 torch 版本的要求,如要求 pytorch 1.13.1 及以上版本。 同时,在处理与 CUDA 相关的配置时,要确保 pytorch 版本与 CUDA 版本相匹配,例如 cuda12.1 实测可以匹配 cuda 12.4 对应的 Pytorch 版本。
2024-12-02
ChatGPT最新的版本是什么
目前 ChatGPT 官网主要有以下版本: 1. GPT3.5:免费版本,拥有 GPT 账号即可使用,但智能程度相对较低,无法使用 DALL.E3(AI 画图功能)、GPTs 商店和高级数据分析等插件,知识更新到 2022 年 1 月。 2. GPT4:智能程度较高,知识更新到 2023 年 12 月。想要使用更多功能需要升级到 PLUS 套餐,收费标准为 20 美金一个月,还有团队版和企业版,费用更贵,一般推荐使用 PLUS 套餐。 3. ChatGPT 4o:5.13 发布,可免费体验,但免费体验次数有限,知识更新到 2023 年 10 月。想要更多功能也需要升级到 PLUS 套餐。
2024-11-09
开源大模型ChatGLM 系列有哪些版本
ChatGLM 系列的开源版本包括: ChatGLM36B:第三代 ChatGLM 对话模型,采用全新设计的 Prompt 格式,原生支持工具调用、代码执行和 Agent 任务等复杂场景。 ChatGLM36Bbase:第三代 ChatGLM 基座模型,采用更多样的训练数据、更充分的训练步数和更合理的训练策略,在 10B 以下的基础模型中性能较强。 ChatGLM36B32k:第三代 ChatGLM 长上下文对话模型,在 ChatGLM36B 的基础上进一步强化了对长文本的理解能力,能处理最多 32K 长度的上下文。
2024-11-04
目前最新版本的chatgpt是哪个版本
目前 ChatGPT 官网有两个版本,分别是 GPT3.5 和 GPT4。GPT3.5 是免费版本,拥有 ChatGPT 账号即可使用,但智能程度不如 GPT4 高,且无法使用 DALL.E3(AI 画图功能)、GPTs 商店和高级数据分析等插件。若想使用更多功能更智能的 GPT4,需要升级到 PLUS 套餐,收费标准是 20 美金一个月。此外,GPT4 还有团队版和企业版,功能更多、限制更少,但费用也更贵,一般推荐使用 PLUS 套餐。
2024-10-19
chatgpt版本更新时间
ChatGPT 不同版本的知识更新时间如下: ChatGPT 3.5 的知识更新到 2022 年 1 月。 ChatGPT 4o 的知识更新到 2023 年 10 月。 ChatGPT 4 更新到 2023 年 12 月。
2024-10-14
AI 指令精调版本是什么意思
AI 指令精调版本指的是:对于在通用数据集上预训练的模型,进行复制后,以这些学习到的权重为起点,在新的特定领域数据集上重新训练模型。这种技术在很多不同的用例中都非常有效。 指令调整可以使模型更好地遵循指令。例如在生成式人工智能项目中,对于一个预训练过的模型,可以通过微调来获得更好的回答。在大型语言模型中,通过在格式化为指令的任务混合物上对模型进行微调,可以获得并增强遵循提示的能力。经过指令调整的模型能够更准确地遵循指令,在未见任务上的表现显著优于未调整的模型,将大型语言模型转变为通用任务解决器,是 AI 发展历史上的一个范式转变。 但当对大型语言模型(LLM)进行微调时,会遇到一些挑战。因为 LLM 规模较大,更新每个权重可能需要很长时间的训练工作,同时还涉及到为这个巨大模型提供服务的麻烦和成本等问题,所以微调大型语言模型可能不是最佳选择。
2024-09-19
推荐一个AI工具,帮助我每天自动执行以下步骤:从本地上传文件给大模型,该文件内含有新闻网页链接,大模型读取链接并汇总内容
以下为您推荐的 AI 工具可能有助于您实现每天自动执行从本地上传文件给大模型,并让大模型读取文件内新闻网页链接并汇总内容的需求: 1. AI 拍立得(Pailido): 特点:即拍即得,简化流程,操作直观高效。 体验方式:微信小程序搜索“Pailido”。 交互逻辑:用户选择拍摄场景类型并拍照,AI 自动识别和分析照片内容信息,依据预设场景规则迅速生成符合情境的反馈。 实现场景: 图片转成文本:用户上传图片后,大模型根据选择的场景生成相关文字描述或解说文本,可用于生成美食点评、朋友圈发布文案、闲鱼上架示例模版等。 图片转绘图片:用户上传图片后,大模型按照指定风格快速生成图像的转绘版本,适应不同风格和场景需求,如图片粘土风、图片积木风、图片像素风等。 2. 内容仿写 AI 工具: 秘塔写作猫:https://xiezuocat.com/ ,是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,实时同步翻译,支持全文改写、一键修改、实时纠错并给出修改建议,智能分析文章属性并打分。 笔灵 AI 写作:https://ibiling.cn/ ,是智能写作助手,支持多种文体写作,如心得体会、公文写作、演讲稿、小说、论文等,支持一键改写/续写/扩写,智能锤炼打磨文字。 腾讯 Effidit 写作:https://effidit.qq.com/ ,由腾讯 AI Lab 开发的智能创作助手,能提升写作者的写作效率和创作体验。 更多 AI 写作类工具可以查看:https://www.waytoagi.com/sites/category/2 。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-21
如何利用AGI创建3D打印的模型
利用 AGI 创建 3D 打印模型的方法如下: 1. 将孩子的画转换为 3D 模型: 使用 AutoDL 部署 Wonder3D:https://qa3dhma45mc.feishu.cn/wiki/Pzwvwibcpiki2YkXepaco8Tinzg (较难) 使用 AutoDL 部署 TripoSR:https://qa3dhma45mc.feishu.cn/wiki/Ax1IwzWG6iDNMEkkaW3cAFzInWe (小白一学就会) 具体实物(如鸟/玩偶/汽车)的 3D 转换效果最佳,wonder3D 能智能去除背景(若效果不佳,需手动扣除背景) 对于一些非现实类玩偶类作品,wonder3D 识别效果不佳时,可先使用 StableDiffusion 将平面图转换为伪 3D 效果图再生成模型。以 usagi 为例,先通过 SD 生成 3D 的 usagi,再将 usagi 输入 wonder3D。 2. 生成特定模型,如创建一个乐高 logo 的 STL 文件: 设计乐高 logo:使用矢量图形编辑软件(如 Adobe Illustrator 或 Inkscape)创建或获取矢量格式的乐高 logo,确保符合标准。 导入 3D 建模软件:将矢量 logo 导入到 3D 建模软件(如 Blender、Fusion 360 或 Tinkercad)中。 创建 3D 模型:在 3D 建模软件中根据矢量图形创建 3D 模型,调整尺寸和厚度以适合打印。 导出 STL 文件:将完成的 3D 模型导出为 STL 文件格式。 以下是在 Blender 中使用 Python 脚本创建简单 3D 文本作为乐高 logo 并导出为 STL 文件的步骤: 打开 Blender,切换到“脚本编辑器”界面。 输入脚本,点击“运行脚本”按钮,Blender 将创建 3D 文本对象并导出为 STL 文件。 检查生成的 STL 文件,可根据需要调整脚本中的参数(如字体、位置、挤压深度等)以获得满意的乐高 logo 3D 模型。 此外,还有一些其他动态: 阿里妈妈发布了:https://huggingface.co/alimamacreative/FLUX.1TurboAlpha ,演示图片质量损失小,比 FLUX schell 本身好很多。 拓竹旗下 3D 打印社区 Make World 发布 AI:https://bambulab.com/zh/signin ,3D 生成模型找到落地和变现路径。 上海国投公司搞了一个:https://www.ithome.com/0/801/764.htm ,基金规模 100 亿元,首期 30 亿元,并与稀宇科技(MiniMax)、阶跃星辰签署战略合作协议。 智谱的:https://kimi.moonshot.cn/ 都推出基于深度思考 COT 的 AI 搜索。 字节跳动发布:https://mp.weixin.qq.com/s/GwhoQ2JCMQwtLN6rsrJQw ,支持随时唤起豆包交流和辅助。 :https://x.com/krea_ai/status/1844369566237184198 ,集成了海螺、Luma、Runway 和可灵四家最好的视频生成模型。 :https://klingai.kuaishou.com/ ,现在可以直接输入文本指定对应声音朗读,然后再对口型。
2024-12-20
如何通过提示词提高模型数据对比和筛选能力
以下是一些通过提示词提高模型数据对比和筛选能力的方法: 1. 选择自定义提示词或预定义话题,在网站上使用如 Llama3.1 8B Instruct 模型时,输入对话内容等待内容生成,若右边分析未刷新可在相关按钮间切换。由于归因聚类使用大模型,需稍作等待,最终结果可能因模型使用的温度等因素而不同。 2. 在写提示词时不能依赖直觉和偷懒,要实话实说,补充详细信息以避免模型在边缘情况上犯错,这样也能提高数据质量。 3. 在分类问题中,提示中的每个输入应分类到预定义类别之一。在提示末尾使用分隔符如“\n\n\n\n”,选择映射到单个 token 的类,推理时指定 max_tokens=1,确保提示加完成不超过 2048 个 token,每班至少有 100 个例子,可指定 logprobs=5 获得类日志概率,用于微调的数据集应在结构和任务类型上与模型使用的数据集相似。例如在确保网站广告文字正确的案例中,可微调分类器,使用合适的分隔符和模型。
2024-12-20
通过提示词可以提高模型的数学计算能力吗
通过提示词可以在一定程度上提高模型的数学计算能力。例如 PoT 技术,它是思维链技术的衍生,适用于数值推理任务,会引导模型生成一系列代码,再通过代码解释器工具进行运算,这种方式能显著提升模型在数学问题求解上的表现。PoT 作为 CoT 的衍生技术,遵循零样本和少样本的学习范式,零样本 PoT 与 CoT 方法相似,不需要大量样本即可进行有效推理,少样本 PoT 也通过较少样本优化模型表现。但需要注意的是,大模型在解决数学问题时可能存在不够可靠的情况。
2024-12-20
哪一个开源大语言模型对中文支持比较好?
以下是一些对中文支持较好的开源大语言模型: 1. OpenChineseLLaMA: 地址: 简介:基于 LLaMA7B 经过中文数据集增量预训练产生的中文大语言模型基座,对比原版 LLaMA,该模型在中文理解能力和生成能力方面均获得较大提升,在众多下游任务中均取得了突出的成绩。 2. BELLE: 地址: 简介:开源了基于 BLOOMZ 和 LLaMA 优化后的一系列模型,同时包括训练数据、相关模型、训练代码、应用场景等,也会持续评估不同训练数据、训练算法等对模型表现的影响。 3. Panda: 地址: 简介:开源了基于 LLaMA7B,13B,33B,65B 进行中文领域上的持续预训练的语言模型,使用了接近 15M 条数据进行二次预训练。 4. Llama2Chinese13bChat: 地址: 5. Gemma7bit: 地址: 此外,AndesGPT 在语言理解与抽取、角色扮演能力上排名国内前一,在代码、生成与创作、上下文对话能力上排名国内前三,各项能力较为均衡,聚焦在移动设备端的应用。Baichuan213BChat 是百川智能自主训练的开源大语言模型,是中文开源模型的主导力量。
2024-12-20
说明jetson orin nano可以使用什么模型?Grok-1模型可以吗?
目前没有关于 Jetson Orin Nano 是否可以使用 Grok1 模型的明确信息。但一般来说,Jetson Orin Nano 可以支持多种常见的深度学习模型,如基于 TensorFlow、PyTorch 框架开发的模型等。具体能够使用哪些模型,还需要考虑模型的计算需求、内存占用以及 Jetson Orin Nano 的硬件配置和性能限制等因素。
2024-12-20