金融中介融入 AI 进行展业可以从以下几个方面考虑:
- 个性化的消费者体验:大语言模型(LLMs)能够更好地理解和导航消费者的金融决策,回答诸如“为什么我的投资组合中有一部分在市政债券中?”“我应该如何看待期限风险与收益率?”“你能建立一个足够灵活的计划,在将来的某个时候帮助我经济支持年迈的父母吗?”等问题,评估权衡并将人类背景纳入决策中,从而将消费金融科技从高价值但狭隘的应用集合转变为能帮助消费者优化整个金融生活的应用集合。
- 具有成本效益的运营:质量保证方面,银行和金融科技公司的大部分质量保证工作涉及确保完全符合众多监管机构的要求,生成式 AI 可以大大加速这个过程。例如,Vesta 可以整合一个经过 Fannie Mae 销售指南训练的生成式 AI 模型,以便立即提醒抵押贷款员合规问题。虽然许多监管指南是公开的,但真正的价值仍归属于拥有工作流引擎的公司。
在现有企业与初创公司之间的竞争中,现有企业由于拥有对专有金融数据的访问权限,在使用 AI 推出新产品和改进运营时将拥有初始优势,但会受到对准确性和隐私的高标准的限制。而新进入者最初可能需要使用公开的金融数据来训练模型,但会迅速开始生成自己的数据,并逐渐使用 AI 作为新产品分销的突破口。