AI 重塑工作流主要体现在以下几个方面:
例如 Coze(扣子)平台上的工作流编排器,是一个抽卡游戏的流程,整个工作流中有很多节点及连线,每个节点通过不同定义,由各种工具组合而成。
“输入”、“处理”、“输出”、“反馈”构建了我最底层的信息处理逻辑,我把它比作四个齿轮,齿轮之间通过不同的衔接工具逐步推动运转,从需求作为输入、结果作为输出,围绕着信息加速,不断驱动我向前。重塑获取信息的方式搜索引擎作为互联网基础设施,同时也是互联网的入口,对于用户而言,从解决问题出发,搜索引擎和基于大模型的聊天机器人的目标从根本上是一致的。自2022年底ChatGPT发布,其通过问答形式被认为将对传统搜索引擎带来颠覆。近期出现的各类AI搜索引擎,类似perplexity.ai、metaso、360搜索、ThinkAny等等,都是在不断颠覆传统的搜索引擎。辅助高效的处理信息阅读完一份10万字的PDF研究报告需要多久?这份报告主要讲了什么内容?有没有我要关注的点?智能摘要是目前我用的超顺手的一个功能,能够辅助我快速的筛选信息,什么值得看,什么不容错过,真正的实现信息的降噪。信息表达更简便放在以往很难想象,如果要实现下面这俩张图,可能会设计一系列的思考、草稿、理清逻辑等等流程。
生成式AI的人机协同分为3种产品设计模式:Embedding(嵌入式)、Copilot(副驾驶)、Agent(智能代理),在这3种模式下,人与AI的协作流程也是有所差异。Embedding模式:人类完成大多数工作。Copilot模式:人类和AI协同工作。Agents模式:AI完成大多数工作。Agentic Workflow驱动角色工作流变革使用Multiagent Collaboration的方法,让不同角色的Agent按照根据任务要求自主规划选择工具、流程进行协作完成一件任务。我作为一个产品经理角色,我的诉求很简单,需要完成某一个产品功能设计,这个时候通过Agents拆解成多个独立的任务,然后遵循不同的工作流,最后给我生成一份在大体上符合我期望的输出结果,我再修修改改就能够达到可用的阶段了。所以,我从原子能力层重新思考,面对这个快速变化的时代,我该如何去重塑我自己的工作流,以不变应万变呢?我抽象化拆解了大模型的一些底层能力,例如:翻译、识别、提取、格式化等等,其实所有的一些都会围绕几个词“输入”、“处理”、“输出”、“反馈”。
通过学会调用外部不同类型API来获取模型(通常在预训练后很难修改)中缺少的额外信息,代码执行能力,访问专有信息源等(例如获取此时此刻的天气、联网网搜索等)Action(动作)根据上述大模型结合问句(Query)、上下文的规划(Context)、各类工具,最终大模型才能决策出最终需要执行的动作是什么。Agentic Workflow解决什么问题?我认为是可以从从提升效率、提高质量、节省时间的角度上进行思考。好比一台“印钞机”,按照指定好的流程重复着机械性的活动,但是它在源源不断的产生价值。Productivity(效率)=产生价值的速率Agentic Workflow通过将一个复杂的任务分解成较小的步骤,在整个过程中中融入了更多人类参与到流程中的规划与定义。它减少了对Prompt Engineering和模型推理能力的依赖,提高了LLM应用面向复杂任务的性能,更丰富、更精确。下面是Coze(扣子)平台上的工作流编排器的示例,这个话其实是一个抽卡游戏的流程,你可以看到在整个工作流中间会有很多节点前后之间有节点以及连线,然后每个节点之间它是通过不同的定义,比如说图片处理工具,或者说是通过多模态模型进行图片理解工具等等其他各种各样的工具组合而成。