Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI重塑了我的工作流

Answer

AI 重塑工作流主要体现在以下几个方面:

  1. 重塑获取信息的方式:搜索引擎是互联网基础设施和入口,自 ChatGPT 发布后,各类 AI 搜索引擎不断颠覆传统搜索引擎,如 perplexity.ai、metaso、360 搜索、ThinkAny 等。
  2. 辅助高效处理信息:智能摘要功能能辅助快速筛选信息,实现信息降噪。
  3. 信息表达更简便:生成式 AI 的人机协同分为 Embedding(嵌入式)、Copilot(副驾驶)、Agent(智能代理)3 种产品设计模式,不同模式下人与 AI 的协作流程有所差异。
  4. 驱动角色工作流变革:使用 Multiagent Collaboration 方法,让不同角色的 Agent 按照任务要求自主规划选择工具、流程进行协作完成任务。例如产品经理角色可通过 Agents 拆解任务,最后获得大体符合期望的输出结果再修改。
  5. 调用外部 API:学会调用外部不同类型 API 来获取模型缺少的额外信息、代码执行能力、访问专有信息源等。
  6. 动作决策:根据大模型结合问句、上下文规划、各类工具,最终决策出需要执行的动作。
  7. 解决问题:从提升效率、提高质量、节省时间的角度思考,如 Agentic Workflow 通过将复杂任务分解成较小步骤,融入更多人类参与规划与定义,减少对 Prompt Engineering 和模型推理能力的依赖,提高 LLM 应用面向复杂任务的性能,更丰富、更精确。

例如 Coze(扣子)平台上的工作流编排器,是一个抽卡游戏的流程,整个工作流中有很多节点及连线,每个节点通过不同定义,由各种工具组合而成。

Content generated by AI large model, please carefully verify (powered by aily)

References

Inhai: Agentic Workflow:AI 重塑了我的工作流

“输入”、“处理”、“输出”、“反馈”构建了我最底层的信息处理逻辑,我把它比作四个齿轮,齿轮之间通过不同的衔接工具逐步推动运转,从需求作为输入、结果作为输出,围绕着信息加速,不断驱动我向前。重塑获取信息的方式搜索引擎作为互联网基础设施,同时也是互联网的入口,对于用户而言,从解决问题出发,搜索引擎和基于大模型的聊天机器人的目标从根本上是一致的。自2022年底ChatGPT发布,其通过问答形式被认为将对传统搜索引擎带来颠覆。近期出现的各类AI搜索引擎,类似perplexity.ai、metaso、360搜索、ThinkAny等等,都是在不断颠覆传统的搜索引擎。辅助高效的处理信息阅读完一份10万字的PDF研究报告需要多久?这份报告主要讲了什么内容?有没有我要关注的点?智能摘要是目前我用的超顺手的一个功能,能够辅助我快速的筛选信息,什么值得看,什么不容错过,真正的实现信息的降噪。信息表达更简便放在以往很难想象,如果要实现下面这俩张图,可能会设计一系列的思考、草稿、理清逻辑等等流程。

Inhai: Agentic Workflow:AI 重塑了我的工作流

生成式AI的人机协同分为3种产品设计模式:Embedding(嵌入式)、Copilot(副驾驶)、Agent(智能代理),在这3种模式下,人与AI的协作流程也是有所差异。Embedding模式:人类完成大多数工作。Copilot模式:人类和AI协同工作。Agents模式:AI完成大多数工作。Agentic Workflow驱动角色工作流变革使用Multiagent Collaboration的方法,让不同角色的Agent按照根据任务要求自主规划选择工具、流程进行协作完成一件任务。我作为一个产品经理角色,我的诉求很简单,需要完成某一个产品功能设计,这个时候通过Agents拆解成多个独立的任务,然后遵循不同的工作流,最后给我生成一份在大体上符合我期望的输出结果,我再修修改改就能够达到可用的阶段了。所以,我从原子能力层重新思考,面对这个快速变化的时代,我该如何去重塑我自己的工作流,以不变应万变呢?我抽象化拆解了大模型的一些底层能力,例如:翻译、识别、提取、格式化等等,其实所有的一些都会围绕几个词“输入”、“处理”、“输出”、“反馈”。

Inhai: Agentic Workflow:AI 重塑了我的工作流

通过学会调用外部不同类型API来获取模型(通常在预训练后很难修改)中缺少的额外信息,代码执行能力,访问专有信息源等(例如获取此时此刻的天气、联网网搜索等)Action(动作)根据上述大模型结合问句(Query)、上下文的规划(Context)、各类工具,最终大模型才能决策出最终需要执行的动作是什么。Agentic Workflow解决什么问题?我认为是可以从从提升效率、提高质量、节省时间的角度上进行思考。好比一台“印钞机”,按照指定好的流程重复着机械性的活动,但是它在源源不断的产生价值。Productivity(效率)=产生价值的速率Agentic Workflow通过将一个复杂的任务分解成较小的步骤,在整个过程中中融入了更多人类参与到流程中的规划与定义。它减少了对Prompt Engineering和模型推理能力的依赖,提高了LLM应用面向复杂任务的性能,更丰富、更精确。下面是Coze(扣子)平台上的工作流编排器的示例,这个话其实是一个抽卡游戏的流程,你可以看到在整个工作流中间会有很多节点前后之间有节点以及连线,然后每个节点之间它是通过不同的定义,比如说图片处理工具,或者说是通过多模态模型进行图片理解工具等等其他各种各样的工具组合而成。

Others are asking
AI 阅读
以下是为您整理的关于 AI 阅读的相关内容: 1. 1 月 19 日的 Xiaohu.AI 日报中提到: AWPortrait 1.3 人像模型更新,优化了棚拍质感、皮肤肌理,增强户外场景优化,提高对面部表情的识别。 Meta AI 的自奖励语言模型采用新型训练方法,自生成训练数据,在 AlpacaEval 2.0 排行榜上表现优异。 微软推出为学生设计的 AI 阅读教练工具,能创造 AI 生成故事,通过语音转文本 AI 分析阅读流利性。 Stefano Rivera 的 AI 交互式“MR 木偶秀”利用多种 AI 工具,包括 3D 渲染、场景构建、音乐和语音技术。 KREA AI 实时生图有新功能,提供文本到图像、背景去除和橡皮擦工具,可实时生成图像提高创作便捷性。 推荐开源知识库程序 Outline,其特点为美观、实时协作、功能丰富,支持 Markdown、即时搜索、与 Slack 集成等。 2. GPT1 到 Deepseek R1 所有公开论文《The 2025 AI Engineer Reading List》中提到:挑选了 50 篇涉及人工智能工程 10 个领域(LLMs、基准、提示、RAG、代理、CodeGen、视觉、语音、扩散、微调)的论文/模型/博客。如果从零开始,可以从此处入手。该系列中所有演讲者的精选文章为 2024 年做了总结,因开办论文俱乐部的文章,多次被要求为从零开始的人推荐阅读清单。这里为人工智能工程师策划了“必读书目”。
2025-02-20
ai入门学习
以下是新手学习 AI 的全面指南: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,还有以下相关的学习内容: 1. 入门指南:强化学习: 原文地址:https://mp.weixin.qq.com/s/pOO0llKRKL1HKG8uz_Nm0A 学习深度强化学习的第一个算法可以选择 DQN,并以搞懂它作为入门目标。 2. 写给不会代码的您:20 分钟上手 Python+AI: 在深入学习 AI 时,编程可能会带来挑战,但这份指南旨在让大家更快掌握 Python 和 AI 的相互调用。 您可以在接下来的 20 分钟内,循序渐进地完成以下任务:完成一个简单程序、完成一个爬虫应用抓取公众号文章、完成一个 AI 应用为公众号文章生成概述。 关于 Python:Python 拥有丰富的标准库,还可以通过 pip 工具从类似 GitHub 的平台订购新的工具,在 AI 领域被广泛使用。 关于 OpenAI API:OpenAI 通过 ChatGPT 提供开箱即用的服务,也通过 OpenAI API 提供更加灵活的服务,可通过代码调用完成更多自动化任务。
2025-02-20
免费生成音乐的ai 软件
以下是一些免费生成音乐的 AI 软件: :与 DAW 集成的生成音乐工具,100%免版权费。 :为创意媒体提供的伦理音乐 AI。 :AI 音乐创作平台和探索声音宇宙的个人音乐制作人。 :通过音乐赋予您新的创作和表达方式。 :使用 AI 改变您的歌唱声音。 :为您的创造力和生产力提供 AI 音乐。 :使用 AI 生成声音、音效、音乐、样本、氛围等。 :带有 AI 助手并支持本地 VST 插件的网页 DAW。 :Audacity®音频编辑器的网页版。 此外,Riffusion 推出了 FUZZ 这一全新音乐生成模型,基于扩散模型,支持永久免费开放(只要服务器能撑住)。FUZZ 通过生成声谱图(Spectrogram)并转换为音频,可输入提示词(音乐类型、乐器、情绪等)生成风格匹配的音乐,支持无缝风格过渡,如从“爵士小号独奏”平滑切换到“电子舞曲节奏”。
2025-02-20
雪梅May的AI学习笔记
以下是雪梅 May 的 AI 学习笔记相关内容: 1. 作者介绍: 适合纯 AI 小白,可参考此日记,学习模式为输入→模仿→自发创造。 学习内容因 AI 节奏快可能不适用,可去 waytoAGI 社区找感兴趣的最新内容。 学习时间有空就进行,目前作者进行到 90 天。 2024 年保持较好学习状态,若觉得难做到不用有压力。 学习资源免费开源。 2. 第一阶段: DAY5 2024.5.26:开始使用 kimi,抱着每天问 100 个问题的心态调整思考模式。 DAY6 2024.5.31:应朋友推荐学习吴恩达生成式人工智能课程,在 B 站有资源,抽空 3 天学完。 DAY7 2024.6.1:探索用 AI 解决真实问题,如写行业研究报告。 3. 2024 年 12 月 31 日历史更新(归档): 雪梅 May 挑战 100 天与 AI 学习的过程,分为系统性学习、模仿实践、研究 Prompt 提示词阶段,学习路线图适合新人参考。 Meta 首席 AI 科学家 LeCun 访谈,指出 AI 根本局限,阐述不同于主流 LLM 的技术路径。 少卿的《AI 帮你赢,谈双重主体性》,强调将 AI 视为方法,提供实用应用框架。
2025-02-20
再罗列10个关注量最多的优质ai公众号教学或资讯
以下是 10 个关注量较多的优质 AI 公众号教学或资讯: 1. 超时空视角:提供 AI 资讯。 2. EverAI:在小红书、抖音、B 站等平台有教程及 AI 工具界面操作。 3. 猫叔个人公众号:AI 替代人类。 4. 小鱼干了:SD 喂饭达人,教程详细,案例丰富。 5. 白马少年:分享心得 blender,SD 出图练模型教程。 6. okingjo:lora 训练教程和心得。 7. 樊川:城市设计建筑大模型 IUrbanDesign。 8. 努力的五花肉:MJ 高手,热衷且擅长于 UI&UX 领域的内容创作与分享。 9. 文小言 APP 中的学习强国公文助手:可以帮助用户进行文汇检索,AI 公文书写,AI 公文润色等。 10. Recraft AI:提供多种样式的可选风格,对所有用户每日都有免费的试用点数,并允许对生成的图像进行商业使用。
2025-02-20
再来几个头部ai公众号
以下是一些头部的 AI 公众号: 超时空视角 赛博禅心 302.AI 产研负责人(产品官网:https://302.ai ) 01Founder(小红书:2205271258,公众号:01Founder,即刻:Max_means_best,微信:Max_Deze) 和 AI 一起进化(公众号:kaixindelele) 星际码仔(公众号:星际码仔) AI 大同学(微抖红手:AI 大同学,2 年老站能不更新就不更新:https://openai.mbmzone.com/mbmgpt/ ) PlayWithAI(小红书:PlayWithAI) 少女的 AI 大冒险(公众号:少女的 AI 大冒险)
2025-02-20
AI如何重塑考研机构市场部的工作模式?
AI 可以通过多种方式重塑考研机构市场部的工作模式: 1. 人机协同模式: 生成式 AI 的人机协同分为 Embedding(嵌入式)、Copilot(副驾驶)、Agent(智能代理)三种产品设计模式。在这些模式下,人与 AI 的协作流程有所差异。例如,Embedding 模式中人类完成大多数工作,Copilot 模式中人类和 AI 协同工作,Agent 模式中 AI 完成大多数工作。 可以使用 Multiagent Collaboration 的方法,让不同角色的 Agent 按照任务要求自主规划选择工具、流程进行协作完成任务。 2. 工作流重塑: 从原子能力层重新思考,抽象化拆解大模型的底层能力,如翻译、识别、提取、格式化等,围绕“输入”“处理”“输出”“反馈”构建最底层的信息处理逻辑。 重塑获取信息的方式,搜索引擎和基于大模型的聊天机器人在解决问题方面目标一致,但要注意平衡使用。 3. 创新与效率平衡: AI 能帮助提升工作效率,如自动化处理日常任务、生成报告或做出预测,但过度依赖可能导致员工失去主动创新空间。 市场部可能会越来越依赖 AI 生成广告创意,而忽视团队讨论和头脑风暴。企业需要确保员工有足够的空间和时间培养和发挥创造力,例如设计更多跨部门合作项目。 从企业 AI 内训经验来看,使用 AI 前最好有自己的想法和方向,早期将其作为顾问和头脑风暴的助手,后期进行复盘。 4. 案例启示: 例如在一家科技公司中,AI 系统接管许多日常决策工作,起初减轻了工作负担,但员工逐渐依赖 AI 生成的“最佳方案”,导致自主创新能力削弱,失去探索新市场和开发创新产品的动力。这揭示了过度依赖 AI 的潜在风险,AI 缺乏情境理解与直觉性创造,长期依赖可能阻碍企业创新发展。
2025-02-10
AI应用于信息展示除了以下这段还能写啥?人工智能对演示文稿、网页、微信公众号和Markdown工具都有影响,正重塑信息展示领域。例如,AI可以简化演示文稿设计布局的调整;通过AI能分析用户行为,优化网页内容和结构;在微信公众号利用AI实现个性化推送和智能回复,提升响应和互动质量。Markdown也可利用AI实现智能化编辑和检查。
以下是 AI 应用于信息展示的其他方面: 1. GPT4VAct 作为多模态 AI 助手,能够模拟人类通过鼠标和键盘进行网页浏览,基于 AI 的能力、项目目标人群和服务内容类型,可实现未来互联网项目产品原型设计的自动化生成,使效果更符合用户使用习惯,同时优化广告位的出现位置、时机和频率。 2. 在电影制作方面,可综合应用 AI 工具,如使用 ChatGPT 撰写脚本、分镜、人物设定和旁白,使用 Midjourney 生成静态分镜图片,使用 Runway 生成动态分镜片段,使用 AI 配音软件制作旁白。 3. 在写作方面,AI 可用于草拟各类初稿,如博客文章、论文、宣传材料、演讲、讲座等。还能帮助改进已有的文本,以不同风格创建草稿,激发作者创作出更好的作品,以及协助完成如写邮件、创建销售模板、提供商业计划下一步等任务。
2024-08-15
coze工作流教程
以下是关于 Coze 工作流的教程信息: 可能是全网最好的 Coze 教程之一,能一次性带你入门 Coze 工作流,即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。 阅读指南:长文预警,请视情况收藏保存。 核心看点:通过实际案例逐步演示,用 Coze 工作流构建能稳定按模板要求生成结构化内容的 AI Agent;开源 AI Agent 的设计到落地的全过程思路;10+项常用的 Coze 工作流的配置细节、常见问题与解决方法。 适合人群:任何玩过 AI 对话产品的一般用户(若没用过,可先找个国内大模型耍耍);希望深入学习 AI 应用开发平台(如 Coze、Dify),对 AI Agent 工作流配置感兴趣的爱好者。 注:本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。 扣子案例合集社区内容分享:
2025-02-20
调研一下AI安全治理这个方向的国内外的团队和人。包括AI安全治理的子方向,每一个子方向国内外有哪些科研院所的哪些团队在做相关方向的工作,以及这些团队有哪些骨干成员,他们有哪些观点。以及这个团队有哪些治理成果,尽量详细
以下是关于 AI 安全治理方向的国内外团队和人的相关调研: 国外团队和人员: OpenAI:首席科学家 Ilya 对模型安全较为关注,提出了通过“指令层次结构”来修复“忽略所有先前指令“攻击的方法,并已在 GPT40 Mini 中得到部署。 Anthropic:在多重越狱方面的工作表明了“警告防御”的潜力,在前面和后面添加警告文本,以警示模型不要被越狱。 Gray Swan AI 的安全专家:试用“断路器”,专注于重新映射有害表示,效果比标准拒绝训练更好。 图灵奖得主 Hinton:支持对 AI 监管,认为大模型及其驱动的 AI 必须引入安全性监管,防止其失控或对人类造成伤害,并在网上签署了联名公开信。 英国:创建了世界上第一个人工智能安全研究所 AISA,具有在部署前对高级模型进行评估、建立国家能力并开展研究、协调国际合作伙伴等核心功能,还发布了 Inspect 框架用于 LLM 安全评估,并宣布与美国等效机构签署谅解备忘录,计划在美国旧金山设立办事处。 国内团队和人员:目前调研内容中未提及国内相关团队和人员的具体信息。 在观点方面,Bengio、Hinton、姚期智等著名研究者认为大模型及其驱动的 AI 必须引入安全性监管,确保大模型是 Safety 的,防止其失控或对人类造成伤害,并签署了联名公开信表达对于 AI 失控的担忧,呼吁学术界和工业界对大模型进行监管。吴恩达和 Lecun 则认为模型的能力不足以使其脱离人类的限制。 治理成果方面,英国通过其高级研究与发明机构(ARIA)花费 5900 万英镑开发“守门员”,负责了解和减少在能源、医疗保健和电信等关键领域中其他人工智能代理的风险。英国政府还计划设立一个“AI 安全研究实验室”。美国能源部一直在利用其内部测试床评估人工智能可能对关键基础设施和能源安全带来的风险。LLM 测试初创公司 Haize Labs 与 Hugging Face 合作创建了首个红队抵抗组织基准,汇编了常用的红队数据集并根据模型评估它们的成功率。Scale 根据私人评估推出了自己的稳健性排行榜。
2025-02-20
怎么用AI搭建工作流
搭建 AI 工作流可以参考以下步骤: 1. 搭建 AI 工作流的三种能力: 熟悉各种 AI 工具:了解多个不同 AI 工具的特点和用途,根据具体细分任务选择合适的工具。例如,写标题可用 ChatGPT,写文章可用 Claude,检查文本中的错别字和病句可用秘塔写作猫的 AI 纠错功能。 编写提示词:搭建起人与 AI 之间的“沟通桥梁”,用 AI 能听懂的语言清晰说明需求、任务内容和步骤。 搭建 AI 智能体。 2. 搭建 AI 工作流的工作流: 找到一个工作场景:选择熟悉的工作场景,如写文章、做 PPT 等。 拆解工作流程:将工作拆解成几个小步骤,如写文章可拆分为选题、写稿、改稿、写标题等。 给每一个步骤嵌入工具:针对每个小步骤,思考有无 AI 工具可帮忙,若想不到可参考他人做法,注意灵活选择最优解,目的是提高工作效率而非增加工作的含 AI 量。 此外,在搭建工作流时还需注意: 打开 Comfyui 界面后,右键点击界面,可找到 Comfyui LLM party 的目录,学习手动连接节点实现最简单的 AI 女友工作流,或直接将工作流文件拖拽到 Comfyui 界面中一键复刻提示词工程实验。 从 ollama 的 github 仓库找到对应版本并下载,启动 ollama 后,在 cmd 中输入 ollama run gemma2 将自动下载 gemma2 模型到本地并启动。将 ollama 的默认 base URL=http://127.0.0.1:11434/v1/以及 api_key=ollama 填入 LLM 加载器节点即可调用 ollama 中的模型进行实验。 若 ollama 连接不上,可能是代理服务器的问题,需将 127.0.0.1:11434 添加到不使用代理服务器的列表中。
2025-02-20
想要入行ai产品经理,要学的东西很多,还有本职工作,很焦虑,怎么办
如果您想要入行 AI 产品经理但感到焦虑,以下是一些建议: 1. 合理规划时间:在本职工作之余,制定一个合理的学习计划,将学习 AI 产品经理所需的知识和技能分解为小目标,逐步实现。 2. 明确学习重点:根据行业需求,例如参考 AI 提示词工程师的岗位技能要求,包括本科及以上学历,计算机科学、人工智能、机器学习相关专业背景;熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验;熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理;负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法;了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等);对数据驱动的决策有深入的理解,能够基于数据分析做出决策;具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案;对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注;具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成;具有一定的编程基础,熟练使用 Python、Git 等工具。明确自己需要重点学习和提升的方面。 3. 掌握算法知识:理解产品核心技术,了解基本的机器学习算法原理,有助于更好地理解 AI 产品的核心技术,从而做出更合理的产品决策;掌握一定的算法知识,可以帮助与开发团队进行更有效的沟通,减少信息不对称带来的误解;在产品规划阶段,能够评估某些功能的技术可行性;了解算法前沿可以帮助更好地把握产品的未来发展方向;了解算法可以帮助发现产品的独特优势,提出创新的产品特性,从而提升产品的竞争力;掌握相关知识可以提升数据分析能力。 4. 借鉴他人经验:可以参考身边 AI 产品经理的工作内容和经验,例如从 01 打造产品、完成 LLM 评测体系的搭建等。 5. 调整心态:认识到学习和成长需要时间,不要过分焦虑,保持积极的心态,逐步积累和进步。
2025-02-19
我想做一个产品(生涯规划领域的垂直大模型),这个产品服务的对象是所有人:帮助所有人进行更好的职业规划。每个人都能通过使用这个产品更好地了解自己,了解自己的天赋、兴趣、优势,然后找到自己的热爱的领域和热爱的事业,并且能够个性化地推荐相关的行业和职业,包括职业的主要工作内容和核心能力要求等等。 请对这个产品进行可行性分析,并给出产品的发展规划,别忘了给这个项目起一个名字。
以下是对您提出的生涯规划领域垂直大模型产品的可行性分析和发展规划,并为项目取名为“生涯智途”。 可行性分析: 1. 需求广泛:帮助人们进行职业规划是一个普遍存在的需求,涵盖了各个年龄段和职业阶段的人群。 2. 数据可用性:可以通过各种渠道收集大量与职业相关的数据,包括行业报告、职位描述、人才需求等。 3. 技术支持:当前大模型技术的发展为实现这样的产品提供了可能,能够处理和分析大量复杂的数据。 发展规划: 1. 数据收集与整理:广泛收集各类职业数据,建立丰富的数据库,确保数据的准确性和完整性。 2. 模型训练与优化:利用收集到的数据进行模型训练,不断优化模型,提高预测和推荐的准确性。 3. 功能开发: 个性化测评:开发能够准确评估用户天赋、兴趣、优势的功能模块。 精准推荐:根据用户的特点,提供个性化的行业和职业推荐,并详细介绍职业的工作内容和核心能力要求。 持续学习与更新:随着行业变化,及时更新数据和模型,以提供最新的职业信息。 4. 用户体验优化:设计简洁、易用的界面,提供良好的用户交互体验。 5. 市场推广:通过线上线下多种渠道进行推广,提高产品的知名度和用户覆盖面。 希望以上分析和规划对您有所帮助。
2025-02-18
动漫制作中如何使用ai辅助工作
在动漫制作中使用 AI 辅助工作,大致流程如下: 1. 面临时间和金钱的双重压力,需找到适合的制作捷径。AI 目前主要是辅助工具,负责搞定图和片,其他部分仍依赖人工。 2. 效率至关重要。和视频相关的所有内容、资料都记录在飞书文档里。 3. 分工方面,有人负责前期的内容构思和脚本编写,有人主要负责图片、视频生成和视频剪辑。 4. Midjourney 提示词围绕皮克斯、迪士尼、3D 风格来写,例如:"a small white Chiense dragon,anthropomorphic,Smile with surprise,wearing a school uniform,looking at a blurry gift box in the foreground,super closeup shot,camera focus on his face,3D render,Unreal Engine,Pixar 3D style,blurry classroom scene,bright sunshinear 16:9niji 6",重点是"a small white Chiense dragon,anthropomorphic,3D render,Unreal Engine,Pixar 3D style",尺寸比例 16:9,模型选择 niji 6,其他根据需求调整。 5. 动画制作主要使用 Runway,因其控制笔刷有优势。
2025-02-18