Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我想知道大模型厂商内置的提示词一般都有多少个字比较合理?并给出数据来源

Answer

大模型厂商内置的提示词字数并没有一个固定的标准,其合理性取决于多种因素。

一般来说,提示词的字数可能寥寥无几,但更多时候需要提供详尽的上下文和相关细节。例如,在要求 GPT 删除个人信息的官方示例中,提示词包括背景、定义术语、给出模型应如何完成任务的具体细节等多个方面。

在一些经验分享中提到,提示词中的示例 5 - 6 个效果最佳。同时,提示词的整体结构需要调整和优化,除了技能外还应有完整的工作流程设定,角色信息中的人设应特点鲜明,避免同质化。还需注意避免矛盾和重复的提示词内容,可通过调整提示词顺序的方法提高重要指令的权重。

数据来源包括胡凯翔基于阅读 Claude Cookbook 的思考和测试、Agent 共学“谁是人类”活动参赛心得分享等。

Content generated by AI large model, please carefully verify (powered by aily)

References

胡凯翔:构建提示词的方法——基于阅读 Claude Cookbook 的思考和测试

本身用于“提示”的提示词字数寥寥无几,大部分都是基于“上下文”的对招标文件和项目方案的拆解。注意:如果你指望GPT给出的内容不是空口白话,首先需要给它足以发挥的资料,就像领导找你写材料的时候,我们多么希望领导同时给出相关的资料,最好能把相关资料的重点都提炼出来,层级分清楚,打好关键词,一眼明了(做个梦)。提供的上下文越详尽,与需要完成任务的相关性越强,则大语言模型给予的反馈下限越高;提示词的技巧则更多地挖掘大语言模型的潜力,发挥其上限。双向奔赴才是最优选择。讲回CookBook,官方示例中就是遵循以上的条件给出的提示词。接下来我会提供一个官方的示例:一个用户要求GPT删除个人信息,官方的prompt中提供了:1、背景;(例如,我们为什么希望完成任务)2、定义术语:(个人信息=姓名、电话号码、地址)3、给出模型:应该如何完成任务的具体细节(用XXX代替个人信息)更多的细节,有利于Claude更好地完成任务,让我们来看一下官方的好例子:

血与泪的教训!!!千万不要让微信机器人和你的老婆/女朋友聊天--Agent 共学"谁是人类"活动参赛心得分享

提示词的整体结构需要调整和优化,除了技能外还应该有完整的工作流程设定(逻辑链路),提高输出质量角色信息中的人设应该特点鲜明,具备人类的真实性格,避免同质化输出真实想法,其实有些对话大模型输出的已经符合人类的特征了,只是在比赛时一旦同质化就直接GG。所以只要再解决同质化的问题,你的BOT将无往不胜增加情绪变化或者心情的设定,提高回复内容的拟人程度可通过提示词增加Bot的短期记忆提示词中的示例5-6个效果最佳,其它QA可通过知识库补充避免矛盾和重复的提示词内容,如果部分提示词不生效应该检查是否有矛盾的地方,或者是否过于冗长。可通过调整提示词顺序的方法提高重要指令的权重利用大模型反推回复内容是学习大模型输出逻辑的好习惯建议多参加比赛,以赛代练,绝对收获良多,就算比赛失利,经验也宝贵使用的大模型:通义千问Plus,通义千问开源72b温度设置:推荐0.35-0.45之间,如果调太高,大概率会不遵从提示词的字数限制

小七姐:文心一言4.0、智谱清言、KimiChat 小样本测评

目标模型表现回溯一下本轮测试目的:根据提供的范本让大模型总结结构化提示词的特征有点并生成类似提示词“根据用户输入的主题,生成幽默且有病毒传播特点的短视频的脚本”这个需求的难点在于对于“幽默”和“病毒式传播”的理解。从生成结果看来,大语言模型显然对于“病毒式传播”的理解还没有过于深入的提炼,只有MoonShot AI在最后一段给出了“提供短视频制作建议,帮助用户实现病毒式传播”的进一步提示,其他大语言模型都只是提到了这么一个词。值得注意的是,所有大模型对关键信息的提炼都非常准确。智谱清言70文心一言75Moonshot AI 80

Others are asking
请罗列一些内置大模型的手机产品
以下是一些内置大模型的手机产品: 华为、荣耀、小米、OPPO、VIVO、三星等品牌都已宣布会在手机端侧搭载大模型。 三星 S24 搭载了 Google Gemini Nano。 Vivo 推出了五个大型自研模型,宣称在中文能力方面达到行业第一。 目前这些手机搭载大模型还存在一些问题,如只能用最新的骁龙 8Gen3 旗舰处理器,且耗能散热都是问题。短期内的端上智能仍有诸多限制。
2024-11-29
国内做视觉理解的大模型厂商有哪些
国内做视觉理解的大模型厂商有以下这些: 北京: 百度(文心一言):https://wenxin.baidu.com 抖音(云雀大模型):https://www.doubao.com 智谱 AI(GLM 大模型):https://chatglm.cn 中科院(紫东太初大模型):https://xihe.mindspore.cn 百川智能(百川大模型):https://www.baichuanai.com 上海: 商汤(日日新大模型):https://www.sensetime.com MiniMax(ABAB 大模型):https://api.minimax.chat 上海人工智能实验室(书生通用大模型):https://internai.org.cn 此外,在 0 基础手搓 AI 拍立得的模型供应商选择中,还有以下视觉类大模型厂商: 智谱 GLM4V:通用视觉类大模型,拍立得最早使用的模型,接口响应速度快,指令灵活性差一些,一个接口支持图片/视频/文本,视频和图片类型不能同时输入,调用成本为 0.05 元/千 tokens, 阿里云百炼 qwenvlplus:通用视觉类大模型,拍立得目前使用的模型,指令灵活性比较丰富,接口调用入门流程长一些,密钥安全性更高,调用成本为¥0.008/千 tokens,训练成本为¥0.03/千 tokens, 阶跃星辰:通用视觉类大模型,响应速度快,支持视频理解,输入成本为¥0.005~0.015/千 tokens,输出成本为¥0.02~0.07/千 tokens, 百度 PaddlePaddle:OCR,垂直小模型,文本识别能力补齐增强,私有化部署服务费,API 调用在¥0.05~0.1/次,
2024-12-19
WayToAGI是什么?是哪家厂商做的?
WaytoAGI 直译就是通往 AGI 之路,它是一个自组织的AI社区,发起人是 AJ 和轻侯。AGI 指通用人工智能。
2024-09-29
国内大模型厂商对比
以下是国内大模型厂商的相关情况: 8 月正式上线的国内大模型: 北京的五家企业机构: 百度(文心一言):https://wenxin.baidu.com 抖音(云雀大模型):https://www.doubao.com 智谱 AI(GLM 大模型):https://chatglm.cn 中科院(紫东太初大模型):https://xihe.mindspore.cn 百川智能(百川大模型):https://www.baichuanai.com/ 上海的三家企业机构: 商汤(日日新大模型):https://www.sensetime.com/ MiniMax(ABAB 大模型):https://api.minimax.chat 上海人工智能实验室(书生通用大模型):https://internai.org.cn 聊天状态下能生成 Markdown 格式的:智谱清言、商量 Sensechat。 目前不能进行自然语言交流的:昇思(可以对文本进行是否由 AI 生成的检测,类似论文查重,准确度不错)。 受限制使用的:MiniMax(无法对生成的文本进行复制输出,且只有 15 元的预充值额度进行体验,完成企业认证后可以进行充值)。 特色功能:昇思——生图,MiniMax——语音合成。 中文大模型基准测评 2023 年度报告中的情况: 从大厂和创业公司的平均成绩来看,大厂与创业公司差值约 6.33 分,较 11 月份差距在增大,说明大厂在大模型竞争中长期资源投入方面有一定优势。 过去八个月国内模型在 SuperCLUE 基准上的前三名: 12 月:文心一言 4.0 11 月:文心一言 4.0 10 月:BlueLM 9 月:SenseChat3.0 通过 SuperCLUE 测评结果发现,国内大模型的第一梯队有了更多新的模型加入。头部模型如文心一言 4.0、通义千问 2.0 引领国内大模型的研发进度,部分高质量大模型紧追不舍,分别在闭源应用和开源生态中形成自己独特的优势。 从国内 TOP19 大模型的数量来看,创业公司和大厂的占比几乎持平。
2024-08-30
智谱跟其他厂商的差异和优势是什么
智谱与其他厂商的差异和优势主要体现在以下几个方面: 1. 模型研发:一年间推出了 4 代 GLM,一直是国内能力最好的模型之一。22 年就和清华一起自研了 GLM130B。 2. 技术来源:由清华大学计算机系技术成果转化而来,背后有清华大学研发团队的科研成果支持。 3. 产品设计:以 ChatGPT 为对标,努力打造类似的用户体验。 4. 智能体应用:是国内首批开放智能体应用的 AI 公司之一,在智能体开发和模型优化方面积累了丰富经验和技术。 5. 性能表现:在逻辑推理和处理复杂提示词方面表现出明显优势,在处理需要深度思考和分析的任务时表现出色。 6. 产品体系:合作研发了双语千亿级超大规模预训练模型 GLM130B,并构建了高精度通用知识图谱,形成数据与知识双轮驱动的认知引擎。基于此模型打造了 ChatGLM,还推出了认知大模型平台 Bigmodel.ai,包括 CodeGeeX 和 CogView 等产品,提供智能 API 服务。
2024-08-30
ai模型chatglm,百川大模型,通义千问,yi系列的模型厂商和团队背景,ai产品调用api的成本
以下是关于您提到的 AI 模型的厂商和团队背景以及 AI 产品调用 API 成本的相关信息: 厂商和团队背景: 通义千问:由阿里开发,接口可在 https://dashscope.console.aliyun.com/ 创建 API key。 智谱 AI(ChatGLM):由智谱 AI 开发,相关网址为 https://chatglm.cn 。 百川大模型:由百川智能开发,网址为 https://www.baichuanai.com/ 。 关于 AI 产品调用 API 的成本: 目前国内的大模型大多限制一定免费额度的 Token,各平台 API 调用计费是按计算 token 费率定价,具体收费标准不同,需自行留意对应官网。例如 GPT3.5、GPT4、文心一言、讯飞星火、通义千问、mimimax 等,收费标准不一,不做统一赘述。
2024-08-20
ai模型chatglm,百川大模型,通义千问,yi系列的模型厂商和团队背景,ai产品调用api的成本
以下是关于您提到的 AI 模型的厂商和团队背景以及 AI 产品调用 API 成本的相关信息: 厂商和团队背景: 通义千问:由阿里开发,接口可在 https://dashscope.console.aliyun.com/ 创建 API key。 智谱 AI(ChatGLM):由智谱 AI 开发,相关网址为 https://chatglm.cn 。 百川大模型:由百川智能开发,网址为 https://www.baichuanai.com/ 。 关于 AI 产品调用 API 的成本: 目前国内的大模型大多限制一定免费额度的 Token,各平台 API 调用计费是按计算 token 费率定价,具体收费标准不同,需自行留意对应官网。例如 GPT3.5、GPT4、文心一言、讯飞星火、通义千问、mimimax 等,收费标准不一,不做统一赘述。
2024-08-20
如何用一个摄像头记录卷子,通过AI来识别做作业过程中的知识点理解偏差,给出改正措施并记录到错题本
目前暂时没有关于如何用一个摄像头记录卷子,并通过 AI 来识别做作业过程中的知识点理解偏差、给出改正措施并记录到错题本的相关内容。但从理论上讲,要实现这个目标,大致需要以下步骤: 首先,需要通过摄像头获取清晰的卷子图像。这可能需要合适的摄像头位置和光线条件,以确保图像质量。 其次,利用图像识别技术对卷子内容进行识别和分析。这需要训练有素的 AI 模型,能够准确识别题目、答案和书写内容。 然后,通过与预设的知识点和正确答案进行对比,判断知识点的理解偏差。 最后,根据偏差情况,利用相关的教育算法和知识储备,给出改正措施,并将相关内容记录到错题本中。 但要实现这一整套流程,还面临着许多技术挑战和实际操作的困难,例如图像识别的准确性、知识点的精准分析等。
2025-01-16
针对智能体开发,能否给出具体的流程
智能体开发的具体流程通常包括以下步骤: 1. 定义目标:明确智能体需要实现的目标或任务。 2. 感知系统:设计传感器系统,采集环境数据。 3. 决策机制:定义智能体的决策算法,根据感知数据和目标做出决策。 4. 行动系统:设计执行器或输出设备,执行智能体的决策。 5. 学习与优化:如果是学习型智能体,设计学习算法,使智能体能够从经验中改进。 在实际的智能体开发中,还包含以下关键流程: 1. 信息聚合与数据挖掘:初步通过高度集成的数据采集机制,全面收集产品的各项关键信息。 2. 卖点提炼与优化:运用先进的大模型,对收集到的信息进行分析,从中提炼出具有市场竞争力和独特性的卖点。 3. 买点转化与策略应用:将提炼的卖点转化为消费者视角的买点,通过行为心理学和市场营销策略,增强产品的吸引力。 4. 视觉化信息呈现:设计直观且具有冲击力的卡片展示,确保信息传达的有效性和视觉吸引力。 5. 文案与脚本调整:根据目标受众的偏好和媒体渠道,动态调整文案或脚本,实现内容的最佳适配。 6. 流程结果存储与分析:最后,将所有处理结果系统化地存储到飞书,以供未来策略优化和决策支持。 此外,基于大模型的智能体具有强大的学习能力、灵活性和泛化能力。在开发过程中,提示词的设计直接影响智能体的表现和输出结果。您可以基于一些公开的大模型应用产品(如 Chat GLM、Chat GPT、Kimi 等),按照以下步骤尝试开发属于自己的智能体: 1. 点击“浏览 GPTs”按钮。 2. 点击“Create”按钮创建自己的智能体。 3. 使用自然语言对话进行具体设置。 4. 使用手工设置。 5. 开始调试您的智能体并发布。
2025-01-09
给出数据,自动生成图或表的ai工具有哪些?
以下是一些可以根据数据自动生成图或表的 AI 工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图等,具有拖放界面,方便易用,支持团队协作和实时编辑,有丰富的模板库和自动布局功能。官网:https://www.lucidchart.com/ 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,包括逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图的创建,可与 Archi 工具配合使用,该工具提供图形化界面创建模型。 4. Enterprise Architect:强大的建模、设计和生成代码的工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等,集成 Office 365,方便与其他 Office 应用程序协同工作,支持自动化和数据驱动的图表更新。官网:https://www.microsoft.com/enus/microsoft365/visio/flowchartsoftware 6. draw.io(现在称为 diagrams.net):免费的在线图表软件,允许创建各种类型的图表,包括软件架构图,支持本地和云存储,多种图形和模板,易于创建和分享图表,可与多种第三方工具集成。官网:https://www.diagrams.net/ 7. PlantUML:文本到 UML 的转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费的开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图的创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。 此外,在绘制 CAD 图方面,以下是一些 AI 工具和插件: 1. CADtools 12:Adobe Illustrator 插件,为 AI 添加 92 个绘图和编辑工具,包括图形绘制、编辑、标注、尺寸标注、转换、创建和实用工具。 2. Autodesk Fusion 360:集成了 AI 功能的云端 3D CAD/CAM 软件,能创建复杂几何形状和优化设计。 3. nTopology:基于 AI 的设计软件,可创建复杂 CAD 模型,包括拓扑优化、几何复杂度和轻量化设计等。 4. ParaMatters CogniCAD:基于 AI 的 CAD 软件,可根据输入的设计目标和约束条件自动生成 3D 模型,适用于拓扑优化、结构设计和材料分布等领域。 对于绘制示意图,以下工具可供选择: 1. Lucidchart:强大的在线图表制作工具,集成 AI 功能,可自动化绘制多种示意图。 2. Microsoft Visio:专业的图表绘制工具,适用于复杂的流程图、组织结构图和网络图,其 AI 功能可帮助自动化布局和优化图表设计。 3. Diagrams.net(原名 draw.io):免费且开源的在线图表绘制工具,适用于各种类型的示意图绘制。
2025-01-07
我想用AI做一个人物访谈录发在公众号上,请帮我取公众号的一个名字,请给出10个供我参考
以下是为您提供的 10 个适合发布人物访谈录的公众号名字,供您参考: 1. 《深度人物志》 2. 《人物访谈集萃》 3. 《名人面对面访谈》 4. 《非凡人物访谈录》 5. 《人物心灵访谈》 6. 《魅力人物访谈窗》 7. 《人物故事访谈馆》 8. 《杰出人物访谈记》 9. 《人物风采访谈坛》 10. 《热点人物访谈坊》
2024-12-26
我想系统性的,由浅入深的学习AI知识,请给出我一个规划
以下是为您制定的由浅入深系统性学习 AI 知识的规划: 一、基础阶段 1. 编程语言学习 选择 Python 或 JavaScript 等编程语言,学习编程语法、数据结构和算法等基础知识,为后续的 AI 学习打下坚实基础。 2. 了解 AI 基本概念 阅读相关入门文章,熟悉 AI 的术语、基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 二、入门阶段 1. 学习路径引导 参考「」中的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并争取获得证书。 2. 体验 AI 工具和平台 尝试使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 三、深入学习阶段 1. 选择感兴趣的模块 AI 领域广泛,包括图像、音乐、视频等。根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且实用。 2. 学习 AI 基础知识 了解 AI 的发展历程、主要技术(如机器学习、深度学习等)。 学习 AI 在教育、医疗、金融等领域的应用案例。 四、实践阶段 1. 参与实践项目 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 2. 分享与交流 在知识库分享自己实践后的作品和经验,与他人交流学习。 五、前沿关注阶段 1. 关注动态 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,按照以上规划,从编程基础、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,您将逐步深入 AI 领域,为未来的发展做好准备。
2024-12-24
我想用coze搭建一个智能体,关于自然语言课程的期末复习指南,要将我的教材导入扣子作为知识库,智能体支持用户提问,搜索知识点,结合知识库和互联网搜索的内容给出问答,需要使用多智能体或工作流,使用卡片功能进行显示,请给出我搭建这个智能体的步骤
以下是使用 Coze 搭建一个关于自然语言课程期末复习指南智能体的步骤: 1. 访问 Coze 官网(https://www.coze.cn),注册并登录。 2. 点击页面左上角的⊕,通过【标准创建】填入智能体的基本信息。 3. 了解 Bot 开发调试界面: 人设与回复逻辑(左侧区域):设定智能体的对话风格、专业领域定位,配置回复的逻辑规则和限制条件,调整回复的语气和专业程度。 功能模块(中间区域): 技能配置: 插件:扩展智能体的专业能力,如计算器、日历等工具。 工作流:设置固定的处理流程和业务逻辑。 图像流:处理和生成图像的相关功能。 触发器:设置自动化响应条件。 知识库管理: 文本:存储文字类知识材料。 表格:结构化数据的存储和调用。 照片:图像素材库。 记忆系统: 变量:存储对话过程中的临时信息。 数据库:管理持久化的结构化数据。 长期记忆:保存重要的历史对话信息。 文件盒子:管理各类文档资料。 交互优化(底部区域): 开场白:设置初次对话的问候语。 用户问题建议:配置智能推荐的后续问题。 快捷指令:设置常用功能的快速访问。 背景图片:自定义对话界面的视觉效果。 预览与调试(右侧区域):实时测试智能体的各项功能,调试响应效果,优化交互体验。 4. 设定智能体的人设与回复逻辑后,为智能体配置对应的技能,以保证其可以按照预期完成目标任务。例如,以获取 AI 新闻的智能体为例,需要为它添加一个搜索新闻的接口来获取相关新闻。具体操作如下: 在智能体编排页面的技能区域,单击插件功能对应的+图标。 在添加插件页面,选择相关功能,然后单击新增。 修改人设与回复逻辑,指示智能体使用相应插件来搜索所需内容。 (可选)为智能体添加开场白,让用户更好地了解智能体的功能。开场白功能目前支持豆包、微信公众号(服务号)。 5. 配置好智能体后,在预览与调试区域中测试智能体是否符合预期。可单击清除图标清除对话记录。 6. 完成测试后,将智能体发布到社交渠道中使用。具体操作如下: 在智能体的编排页面右上角,单击发布。 在发布页面输入发布记录,并勾选发布渠道。 单击发布。 更多内容,请访问 Coze 官方文档: 英文版:https://www.coze.com/docs/welcome.html 中文版:https://www.coze.cn/docs/guides/welcome
2024-12-20
3d模型自动生成的ai 啊
在 3D 模型生成方面,AI 主要完成了对 3D 模型生成流程的“一步到位”。工作流中的每一个环节几乎都需要一位或一组 3D 美术工程师来完成,而使用 3D 生成模型可以直接完成一个可调整的 3D 粗模,大大提升效率。 以下为一些 AI 生成 3D 模型的工具介绍: 1. 3dfy.ai: 概览:是一家专注于开发先进技术的公司,能将稀疏数据转化为逼真的三维世界,领导团队由计算成像领域资深专家组成。 使用场景:数字 3D 互动体验流行度提升,但受 3D 内容可用性限制,其技术能利用稀疏数据自动创建高质量 3D 模型。 目标用户:数字内容创作者和艺术家、游戏开发者和动画制作人、教育和培训行业专业人士、医疗行业、建筑和工程领域。 应用案例:暂未提及。 2. xiaohu.ai 相关 3D 信息: MakeACharacter:一键生成 3D 数字人,可自定义面部特征,基于真实人类扫描数据,使用 Unreal Engine 渲染,支持中英文提示,兼容多个行业应用。 Rodin Gen1:3D 原生生成模型,拥有 1.5B 参数,可实现 3Dto3D 生成,生成 3D 模型及物理基础渲染材质,支持 3D LoRA 技术。 Skybox AI 0.9 版本更新:可以从文本提示或草图生成 360 度 3D 世界,使用 NeRF 技术,增强图像的空间深度和真实感,提供不同分辨率的 3D 网格下载。 扫描物体生成 3D 模型:使用 APP 扫描物体,完成 3D 全貌捕获,创建 AR QR 码,展示物体于任何地点,在苹果新品官网展示中有应用。
2025-01-23
大模型学习之路
大模型的学习之路包括以下几个重要方面: 什么是大模型: 通俗来讲,大模型是通过输入大量语料,让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。 大模型的训练和使用过程: 1. 找学校:训练大模型需要大量计算,GPU更合适,只有购买得起大量GPU的才有资本训练自己的大模型。 2. 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用合适的算法讲述“书本”中的内容,让大模型能够更好理解Token之间的关系。 4. 就业指导:为了让大模型能够更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,正式干活,比如进行翻译、问答等,在大模型里称之为推导(infer)。 Token: Token被视为模型处理和生成的文本单位,可以代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法。在将输入进行分词时,会对其进行数字化,形成一个词汇表。 大模型的运作原理: 以“我今天吃了狮子头和蔬菜”这句话为例,在transformer中,会由attention层对这句话加入更多信息来补充,最终层与层之间,哪些信息需要补充、保留、传递,均由模型自主学习完成。这些层就好像人在阅读文章时的连贯性注意力的过程,大模型以词向量和transformer的模型学习海量知识,把知识作为向量空间中的一种关系网进行存储,并在接受输入时,通过向量空间中的一系列匹配进行输出。 大模型的构建过程: 1. 收集海量数据:如同教孩子成为博学多才的人,让其阅读大量书籍、观看纪录片、与人交谈,对于AI模型就是收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。 2. 预处理数据:像为孩子整理资料,AI研究人员也需要清理和组织收集到的数据,如删除垃圾信息、纠正拼写错误、将文本分割成易于处理的片段。 3. 设计模型架构:为孩子设计学习计划,研究人员需要设计AI模型的“大脑”结构,通常是一个复杂的神经网络,如使用Transformer架构。 4. 训练模型:如同孩子开始阅读和学习,AI模型开始“阅读”提供的数据,通过反复尝试预测句子中的下一个词,逐渐学会理解和生成人类语言。
2025-01-23
帮我用最简单的方法解释一下时间序列模型
时间序列模型是用于分析和处理随时间变化的数据的一类模型。 例如,在评估 GPT4V 对时间序列和视频内容的理解时,会考虑其对现实世界中随时间展开的事件的理解能力,像时间预测、排序、定位、推理和基于时间的理解等。 在视频生成方面,如 Video LDM 模型,先训练图像生成器,再微调添加时间维度以生成视频。 总的来说,时间序列模型旨在理解和预测数据在时间上的变化规律和趋势。
2025-01-23
以豆包为例,如何通过API调用豆包大模型?
要通过 API 调用豆包大模型,以下是一些相关步骤和信息: 1. 直接调用大模型(之前完成过 coze 对接的同学,直接去二、百炼应用的调用): 百炼首页:https://bailian.console.aliyun.com/ 以调用“qwenmax”模型为例,在/root/chatgptonwechat/文件夹下,打开 config.json 文件,需要更改"model",和添加"dashscope_api_key"。 获取 key 的视频教程: 获取 key 的图文教程:以下是参考配置。 注意:需要“实名认证”后,这些 key 才可以正常使用,如果对话出现“Access to mode denied.Please make sure you are eligible for using the model.”的报错,那说明您没有实名认证,点击去,或查看自己是否已认证。 2. 创建大模型问答应用: 首先可以通过创建一个百炼应用,来获取大模型的推理 API 服务,用于实现 AI 助手。 创建应用: 进入百炼控制台的,在页面右侧点击新增应用。在对话框,选择智能体应用并创建。 在应用设置页面,模型选择通义千问Plus,其他参数保持默认。您也可以选择输入一些 Prompt,比如设置一些人设以引导大模型更好的应对客户咨询。 在页面右侧可以提问验证模型效果。不过您会发现,目前它还无法准确回答你们公司的商品信息。点击右上角的发布,我们将在后面的步骤中去解决这一问题。 获取调用 API 所需的凭证: 在我的应用>应用列表中可以查看所有百炼应用 ID。保存应用 ID 到本地用于后续配置。 在顶部导航栏右侧,点击人型图标,点击 APIKEY 进入我的 APIKEY 页面。在页面右侧,点击创建我的 APIKEY,在弹出窗口中创建一个新 APIKEY。保存 APIKEY 到本地用于后续配置。 3. 配置 FastGpt、OneAPI: 首先配置 OneAPI,还记得刚刚让您白嫖的大模型 API 吗?阿里的接口,这时要派上用场了,去阿里模型的链接里创建 ApiKey,并复制下来。然后在 OneAPI 的页面,点击【渠道】添加新渠道。添加时,类型选择阿里通义千问,名称自己取个,类型选择好后模型是会默认加进去,您不用删减,还有就把刚刚阿里那复制的 ApiKey 粘贴到秘钥里去。这样就 OK 了。后续有其他的大模型也是一样的添加方式。
2025-01-23
大模型训练方式
大模型的训练方式如下: 1. 通俗来讲,大模型是输入大量语料,让计算机获得类似人类的“思考”能力,能进行文本生成、推理问答、对话、文档摘要等工作。可以用“上学参加工作”来类比其训练和使用过程: 找学校:训练大模型需要大量计算,GPU更合适,只有购买得起大量GPU的才有资本训练。 确定教材:大模型需要大量数据,几千亿序列(Token)的输入基本是标配。 找老师:即选择合适算法讲述“书本”内容,让大模型更好理解Token之间的关系。 就业指导:为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。Token被视为模型处理和生成的文本单位,能代表单个字符、单词等,在将输入进行分词时,会形成词汇表。 2. 100基础训练大模型的步骤: 步骤一·创建数据集:进入厚德云模型训练数据集(https://portal.houdeyun.cn/sd/dataset),在数据集一栏中点击右上角创建数据集,输入数据集名称。zip文件可以是包含图片+标签txt,也可以只有图片没有打标文件,也可以一张一张单独上传照片,但建议提前把图片和标签打包成zip上传。Zip文件里图片名称与标签文件应当匹配,例如:图片名"1.png",对应的达标文件就叫"1.txt"。上传zip以后等待一段时间,确认创建数据集,返回到上一个页面,等待一段时间后上传成功,可以点击详情检查,可预览到数据集的图片以及对应的标签。 步骤二·Lora训练:点击Flux,基础模型会默认是FLUX 1.0D版本,选择数据集,点击右侧箭头,会跳出所有上传过的数据集。触发词可有可无,取决于数据集是否有触发词。模型效果预览提示词则随机抽取一个数据集中的标签填入即可。训练参数这里可以调节重复次数与训练轮数,厚德云会自动计算训练步数,如果不知道如何设置,可以默认20重复次数和10轮训练轮数,可以按需求选择是否加速,点击开始训练,会显示所需要消耗的算力,然后等待训练,会显示预览时间和进度条,训练完成的会显示出每一轮的预览图,鼠标悬浮到想要的轮次模型,中间会有个生图,点击会自动跳转到使用此lora生图的界面。点击下方的下载按钮则会自动下载到本地。 步骤三·Lora生图:点击预览模型中间的生图会自动跳转到相应页面。模型上的数字代表模型强度,可在0.61.0之间调节,也可以自己添加lora文件,点击后会显示训练过的所有lora的所有轮次。VAE不需要替换,正向提示词输入写的提示词,可以选择基于这个提示词一次性生成几张图,选择生成图片的尺寸,横板、竖版、正方形。采样器和调度器新手小白可以默认,迭代步数可以在2030之间调整,CFG可以在3.57.5之间调整,随机种子1代表随机生成图。所有设置都好了以后,点击开始生态,生成的图会显示在右侧。如果有哪次生成结果觉得很不错,想要微调或者高分辨率修复,可以点开那张图,往下滑,划到随机种子,复制下来,粘贴到随机种子这里,这样下次生成的图就会和这次的结果近似。如果确认了一张很合适的种子和参数,想要搞清放大,则点开高清修复,可以选择想放大的倍数,新手小白可以就默认这个算法,迭代步数建议在2030之间,重回幅度根据需求调整,正常在0.30.7之间调整。 3. 今日作业:按照比赛要求,收集六个主题中一个主题的素材并且训练出lora模型后提交lora模型与案例图像。提交链接:https://waytoagi.feishu.cn/share/base/form/shrcnpJAtTjID7cIcNsWB79XMEd
2025-01-23
大模型下文档投喂后,大模型是如何解读文档提取出答案?
大模型在文档投喂后解读文档并提取答案的过程通常包括以下步骤: 1. 问题解析阶段:接收并预处理问题,通过嵌入模型(如 Word2Vec、GloVe、BERT)将问题文本转化为向量,以确保问题向量能有效用于后续检索。 2. 知识库检索阶段:知识库中的文档同样向量化后,比较问题向量与文档向量,选择最相关的信息片段,并抽取相关信息传递给下一步骤。 3. 信息整合阶段:接收检索到的信息,与上下文构建形成融合、全面的信息文本。整合信息准备进入生成阶段。 4. 大模型生成回答:整合后的信息被转化为向量并输入到 LLM(大语言模型),模型逐词构建回答,最终输出给用户。 在这个过程中还包括以下信息处理步骤: 1. 信息筛选与确认:系统会对检索器提供的信息进行评估,筛选出最相关和最可信的内容,同时对信息的来源、时效性和相关性进行验证。 2. 消除冗余:识别和去除多个文档或数据源中可能存在的重复信息,以防在生成回答时出现重复或相互矛盾的信息。 3. 关系映射:分析不同信息片段之间的逻辑和事实关系,如因果、对比、顺序等,构建一个结构化的知识框架,使信息在语义上更加连贯。 4. 上下文构建:将筛选和结构化的信息组织成一个连贯的上下文环境,包括对信息进行排序、归类和整合,形成一个统一的叙述或解答框架。 5. 语义融合:在必要时,合并意义相近但表达不同的信息片段,以减少语义上的重复并增强信息的表达力。 6. 预备生成阶段:整合好的上下文信息被编码成适合生成器处理的格式,如将文本转化为适合输入到生成模型的向量形式。 最终,全新的上下文被一起传递给大语言模型。由于这个上下文包括了检索到的信息,大语言模型相当于同时拿到了问题和参考答案,通过 LLM 的全文理解,最后生成一个准确和连贯的答案。 相关概念: LLM:Large language model 的缩写,即大语言模型。 Prompt:中文译作提示词,是输入给大模型的文本内容,可以理解为和大模型说的话、下达的指令。 Token:大模型语言体系中的最小单元,不同厂商的大模型对中文文本的切分方法不同,通常 1Token≈12 个汉字,大模型的收费计算方法及对输入输出长度的限制通常以 token 为单位计量。 上下文:英文通常翻译为 context,指对话聊天内容前、后的内容信息,上下文长度和上下文窗口都会影响大模型回答的质量。
2025-01-23