直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

hugging face教程

回答

以下是为您整理的关于 Hugging Face 的教程:

  1. 在“AIGC Weekly #41”中,有一个非工程师指南:训练 LLaMA 2 聊天机器人的教程。它展示了如何使用 Hugging Face 提供的服务来训练和部署一个基于 LLM 的聊天机器人,无需任何代码知识。具体分为三个步骤:使用 AutoTrain 服务在线训练一个 LLM 模型;然后使用 ChatUI 服务将训练好的模型部署成一个可通过网页聊天的机器人;最后介绍了 Hugging Face 为普通用户提供的一些工具,比如 Spaces、AutoTrain、ChatUI 等,目的是让更多人能参与和利用机器学习。
  2. 在“AIGC Weekly #32”中,有一个由吴恩达工作室与 Hugging Face 合作的短期课程,旨在教授如何快速创建和演示机器学习应用程序。学员将学习构建图像生成、图像字幕和文本摘要应用程序,并与团队成员、测试人员等分享自己的应用程序。课程内容包括使用少量代码创建用户友好的应用程序,使用开源大型语言模型对输入文本进行摘要,并显示摘要。
  3. 在“大圣:全网最适合小白的 Llama3 部署和微调教程”中,介绍了在下载大模型之前的两个重要开源社区:HuggingFace 和 ModelScope(魔搭社区)。HuggingFace 是一家成立于纽约的 AI 研究公司,以其开源项目 Transformers 库而闻名,该库聚焦于自然语言处理(NLP)和机器学习,并支持超过 100 种语言的模型。HuggingFace 强调社区协作,致力于使 AI 更加民主化,为研究人员和开发者提供强大的工具,以推动人工智能技术的进步和应用。ModelScope(魔搭社区)是由中国的科技巨头阿里巴巴集团旗下的阿里云推出的一个开源平台。该平台专注于提供各种 AI 模型,包括但不限于自然语言处理、计算机视觉和音频处理。ModelScope 旨在简化 AI 模型的开发和部署过程,使技术更加透明和容易访问,特别是为中国的开发者和研究机构提供支持。这两个平台可以简单理解为开源大模型的仓库,从这些平台可以下载到各种开源的大模型。其区别可以类比于 github 和 gitee 的区别:HuggingFace 是国际上的平台,而 ModelScope 则是国内的平台。此外,还包括创建下载大模型的 Python 脚本文件:download.py 以及执行 Python 脚本下载大模型的步骤。出现相应界面则代表模型开始下载,预计下载 5 分钟,下载完成会有相应提示。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

AIGC Weekly #41

这个教程展示了如何使用Hugging Face提供的服务来训练和部署一个基于LLM的聊天机器人,而无需任何代码知识。它分为三个步骤:使用AutoTrain服务在线训练一个LLM模型。然后使用ChatUI服务将训练好的模型部署成一个可通过网页聊天的机器人。最后介绍了Hugging Face为普通用户提供的一些工具,比如Spaces、AutoTrain、ChatUI等,目的是让更多人能参与和利用机器学习。

AIGC Weekly #32

这个短期课程是吴恩达工作室与Hugging Face合作的,旨在教授如何快速创建和演示机器学习应用程序。学员将学习构建图像生成、图像字幕和文本摘要应用程序,并与团队成员、测试人员等分享自己的应用程序。课程内容包括使用少量代码创建用户友好的应用程序,使用开源大型语言模型对输入文本进行摘要,并显示摘要;图片加载中

大圣:全网最适合小白的 Llama3 部署和微调教程

在我们下载大模型之前,先来介绍两个重要的开源社区:HuggingFaceModelScope(魔搭社区)HuggingFace是一家成立于纽约的AI研究公司,以其开源项目Transformers库而闻名,该库聚焦于自然语言处理(NLP)和机器学习,并支持超过100种语言的模型。HuggingFace强调社区协作,致力于使AI更加民主化,为研究人员和开发者提供强大的工具,以推动人工智能技术的进步和应用。ModelScope(魔搭社区)是由中国的科技巨头阿里巴巴集团旗下的阿里云推出的一个开源平台。该平台专注于提供各种AI模型,包括但不限于自然语言处理、计算机视觉和音频处理。ModelScope旨在简化AI模型的开发和部署过程,使技术更加透明和容易访问,特别是为中国的开发者和研究机构提供支持。这两个平台可以简单理解为开源大模型的仓库。从这些平台,我们可以下载到各种开源的大模型。他们的区别可以类比于github和gitee的区别:HuggingFace是国际上的平台,而ModelScope则是国内的平台。1.创建下载大模型的Python脚本文件:download.py1.执行Python脚本,下载大模型出现如下界面则代表模型开始下载中,预计下载5分钟1.下载完成

其他人在问
人工智能时代下最重要的三个基石是什么,我们可以在哪里找到这三个基石的资源? 例如: huggingface
在人工智能时代,最重要的三个基石分别是架构、算力和人才网络。 架构方面,当前市场上许多令人惊叹的 AI 技术成就都可追溯到两个核心架构——Transformer 和 Diffusion。Transformer 代表了数据转换的能力,Diffusion 代表了数据向图像转换的能力,它们构成了当前 AI 技术的重要基石。 算力方面,自 2010 年以来,GPU 等计算资源的快速发展使算力得到了空前的提升,为 AI 技术的进步提供了强大支持。 人才网络方面,AI 领域的关键人才大多源自于 Google,特别是其在加拿大多伦多和蒙特利尔成立的两个实验室,以及收购的英国公司 DeepMind。这些机构和个人形成了强大的人才网络,推动了 AI 技术的发展,并培养了一批杰出的领军人物。人才在不同公司之间的流动和合作也促进了 AI 技术的快速进步。 关于这三个基石的资源,目前没有明确提及具体的获取渠道。但您可以通过以下途径寻找相关资源: 1. 学术研究网站和数据库,如知网、Web of Science 等,以获取关于架构、算力和人才网络的学术研究成果。 2. 科技行业的专业论坛和社区,与同行交流和分享资源。 3. 关注知名科技公司和研究机构的官方网站和社交媒体账号,获取最新的研究动态和资源。
2024-10-10
人工智能时代下最重要的三个基石是什么,我们可以在哪里找到这三个基石的资源? 例如: huggingface
在人工智能时代,最重要的三个基石分别是架构、算力和人才网络。 架构方面,当前市场上许多令人惊叹的 AI 技术成就都可追溯到两个核心架构——Transformer 和 Diffusion。Transformer 代表了数据转换的能力,Diffusion 代表了数据向图像转换的能力,它们构成了当前 AI 技术的重要基石。 算力方面,自 2010 年以来,GPU 等计算资源的快速发展使算力得到了空前的爆发,为 AI 技术的进步提供了强大支持。 人才网络方面,AI 领域的关键人才几乎都源自于 Google,特别是 Google 在加拿大多伦多和蒙特利尔成立的两个实验室,以及它收购的英国公司 DeepMind。这些机构和个人形成了强大的人才网络,推动了 AI 技术的发展,并培养了一批杰出的 AI 领军人物。从 Google 到 OpenAI,再到 Facebook 和其他多家公司,人才的流动和合作推动了 AI 技术的快速进步。 关于这三个基石的资源,您可以通过以下途径获取: 1. 学术研究论文:在相关的学术数据库中搜索关于 AI 架构、算力和人才发展的研究成果。 2. 专业技术论坛和社区:例如一些知名的 AI 技术论坛,开发者们会在其中分享和讨论相关的知识和经验。 3. 科技公司的官方网站和技术博客:如 Google、NVIDIA 等公司的网站,可能会发布有关其在 AI 领域的技术创新和人才培养的信息。 4. 在线教育平台:一些提供 AI 课程的平台,可能会涵盖这三个方面的知识和案例。
2024-10-10
人工智能时代下最重要的三个基石是什么,我们可以在哪里找到这三个基石的资源? 例如: huggingface
在人工智能时代,最重要的三个基石分别是架构、算力和人才网络。 架构方面,当前市场上许多出色的 AI 技术成就都可追溯到 Transformer 和 Diffusion 这两个核心架构,它们分别在数据转换和数据向图像转换方面发挥着关键作用。 算力方面,自 2010 年以来,GPU 等计算资源的快速发展使算力得到空前爆发,为 AI 技术进步提供了强大支持。 人才网络方面,AI 领域的关键人才大多源自 Google 及其相关机构,如在加拿大多伦多和蒙特利尔成立的实验室以及收购的英国公司 DeepMind,这些人才的流动与合作推动了 AI 技术的发展。 关于这三个基石的资源,目前没有明确提及具体的获取渠道。但您可以通过以下途径寻找相关资源: 1. 学术研究网站和数据库,获取关于架构、算力和人才网络的最新研究成果和报告。 2. 科技公司的官方网站和技术文档,了解其在相关领域的创新和实践。 3. 专业的 AI 技术论坛和社区,与同行交流和分享资源。
2024-10-10
人工智能时代下最重要的三个基石是什么,我们可以在哪里找到这三个基石的资源? 例如: huggingface ​
在人工智能时代,以下是被认为最重要的三个基石: 1. 架构:当前市场上许多出色的 AI 技术成就可追溯到两个核心架构——Transformer 和 Diffusion。Transformer 代表了数据转换的能力,Diffusion 代表了数据向图像转换的能力,它们构成了当前 AI 技术的重要基础。 2. 算力:自 2010 年以来,GPU 等计算资源的快速发展使算力得到空前爆发,为 AI 技术的进步提供了强大支持。 3. 人才网络:AI 领域的关键人才网络起到了不可忽视的作用,特别是 Google 在加拿大多伦多和蒙特利尔成立的两个实验室以及其收购的英国公司 DeepMind 培养和汇聚的人才,他们的流动与合作推动了 AI 技术的发展。 关于这三个基石的资源,您可以通过以下途径获取: 1. 学术研究网站和数据库,例如一些知名的科技学术数据库。 2. 专业的 AI 技术论坛和社区,与同行交流获取相关信息。 3. 大型科技公司的官方网站和技术文档,如 Google 等。 4. 相关的学术会议和研讨会。
2024-10-10
Error occurred when executing IPAdapterAdvanced: insightface model is required for FaceID models File "D:\AI\comfyui_20240421\execution.py", line 151, in recursive_execute output_data, output_ui = get_output_data(obj, input_data_all) File "D:\AI\co
以下是针对您所遇到的报错问题的一些解决建议: 1. 对于 ipadater 部分报错说 model 不存在的情况,将文中画圈部分修改调整到不报错。Pulid 部分,除了下载好对应的节点以及参考官方网站最下面的安装对应要求外,还要注意上图中的第二要点,对应安装一些内容,具体要求可查看云盘中命名为“pulid 插件模型位置.png”的文件及对应的云盘链接:PulID 全套模型,链接:https://pan.baidu.com/s/1ami4FA4w9mjuAsPK49kMAw?pwd=y6hb,提取码:y6hb。否则将会遇到报错:Error occurred when executing PulidEvaClipLoader。 2. 对于 Ollama 大模型部分,为了应对没下载大模型带来的报错,需要下载大模型。首先,下载 ollama,网站: 。 3. 如果缺少 ipadapter 的模型,可去这个网址下载:https://github.com/cubiq/ComfyUI_IPAdapter_plus 。如果遇到“Error occurred when executing IPAdapterUnifiedLoader:ClipVision model not found.......”类似的报错,可在这个网址里找到多个关于 IPAdapter 报错的解决办法:https://github.com/cubiq/ComfyUI_IPAdapter_plus/issues/313 。 另外,换脸工作流的核心组件是 Apply InstantID Advanced 节点,这个节点的作用就是将源人脸替换到目标图像中。其中,instantID 模型擅长提取图片的高层次特征,包括面部的纹理信息、几何结构、风格特征等,在图中例子是 IPAdpater,用于识别和保留目标图像 image_kps 的风格并迁移到生成图像中。instantID Face Analysis 节点用于提取人脸五官的特征向量,作用是使生成图像时,人脸的眼睛、鼻子、嘴巴等样子仍然符合源人脸 image 的特征。controlnet 模型的作用是识别目标图像 image_kps 的低层次特征,包括骨架、姿势、边缘、结构。controlnet 模型和 instantID 模型起到不同的控制作用,结合使用可以达到将源人脸的五官替换目标图像中五官的效果。
2024-09-03
吴恩达关于使用hugging face 、langchain 创建自己应用的教程
以下是一些与吴恩达关于使用 hugging face 、langchain 创建自己应用的相关教程资源: 1. 面向开发者的 LLM 入门课程: 地址: 简介:一个中文版的大模型入门教程,围绕吴恩达老师的大模型系列课程展开,包括吴恩达《ChatGPT Prompt Engineering for Developers》课程中文版,吴恩达《Building Systems with the ChatGPT API》课程中文版,吴恩达《LangChain for LLM Application Development》课程中文版等。 2. 提示工程指南: 地址: 简介:该项目基于对大语言模型的浓厚兴趣,编写了这份全新的提示工程指南,介绍了大语言模型相关的论文研究、学习指南、模型、讲座、参考资料、大语言模型能力以及与其他与提示工程相关的工具。 3. LangChain 🦜️🔗中文网,跟着 LangChain 一起学 LLM/GPT 开发: 地址: 简介:Langchain 的中文文档,由是两个在 LLM 创业者维护,希望帮助到从刚进入 AI 应用开发的朋友们。 4. AIGC Weekly 32 中的精选文章: 地址: 简介:这个短期课程是吴恩达工作室与 Hugging Face 合作的,旨在教授如何快速创建和演示机器学习应用程序。学员将学习构建图像生成、图像字幕和文本摘要应用程序,并与团队成员、测试人员等分享自己的应用程序。课程内容包括使用少量代码创建用户友好的应用程序,使用开源大型语言模型对输入文本进行摘要,并显示摘要。
2024-08-19
huggingface
Hugging Face 是数据科学领域非常受欢迎的人工智能工具: 在 2022 年 9 月至 2023 年 8 月期间吸引了 3.166 亿流量。 用户每次访问平均分配 11 分 2 秒的时间,与行业平均水平类似。 桌面端和移动端的流量分布分别为 48%和 52%。 用户群以男性为主,占 84.48%,女性用户占 15.52%。 美国是主要的流量来源,日本紧随其后。 跳出率略高于平均水平 63.46%。 此外,在 2023 年的百模大战中,Hugging Face 是专门做模型托管的,各种大模型、小模型、垂直模型、专业模型、通用模型都能在上面找到,并且能使用。其拥有的大模型数量众多,每秒钟都有人在上传,可能很快会迎来百万大模型大战。
2024-08-16
ai生成视频教程
以下是关于 AI 生成视频的教程: 使用 Adobe Firefly 生成带有文本提示和图像的视频: 在 Advanced 部分,您可以使用 Seed 选项添加种子编号,以帮助启动流程并控制 AI 创建的内容的随机性。如果使用相同的种子、提示和控制设置,则可以重新生成类似的视频剪辑。选择 Generate 进行生成。 将小说做成视频的制作流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 AI 视频工具合集: Runway(有免费额度) 网址:https://app.runwayml.com/videotools/ 官方使用教程:https://academy.runwayml.com/ 知识库详细教程: 简单介绍:支持文生视频、图生视频,视频生视频;使用英文提示词;文生视频支持正向提示词、风格选择、运镜控制、运动强度控制、运动笔刷,支持 16:9、9:16、1:1、4:3、3:4、21:9 尺寸,可设置种子值;图生视频、视频生视频除了尺寸不可选以外,其他跟文生视频基本相同;生成好的视频可以延长时间,默认生成 4s 的视频。 Stable video(有免费额度) 网址:https://www.stablevideo.com/generate 知识库详细教程: 简单介绍:支持文生视频、图生视频,仅英文;图生视频不可写 prompt,提供多种镜头控制;文生视频先生成 4 张图片,选择其中一张图片以后再继续生成视频。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2024-10-31
COZE教程
以下是关于 Coze 教程的相关信息: 这可能是全网最好的 Coze 教程之一,能一次性带你入门 Coze 工作流。即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。 阅读指南: 长文预警,请视情况收藏保存。 核心看点: 通过实际案例逐步演示,用 Coze 工作流构建能稳定按模板要求生成结构化内容的 AI Agent。 开源 AI Agent 的设计到落地的全过程思路。 10 多项常用的 Coze 工作流的配置细节、常见问题与解决方法。 适合人群: 任何玩过 AI 对话产品的一般用户(如果没用过,可以先找个国内大模型耍耍)。 希望深入学习 AI 应用开发平台(如 Coze、Dify),对 AI Agent 工作流配置感兴趣的爱好者。 注:本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。此外,还有 Coze 官方教程可供参考。
2024-10-29
可灵AI的教程
以下是关于可灵 AI 的教程: 可灵(免费): 支持文生视频、图生视频。 支持图生视频首尾帧功能。 提示词可使用中文。 文生视频支持正向提示词、反向提示词、运镜控制、时长选择(5s、10s),支持 16:9、9:16、1:1 尺寸。 图生视频除了不可运镜控制以外,其他跟文生视频基本相同。 默认生成 5s 的视频。 相关链接: 可灵官网:https://klingai.kuaishou.com/ 知识库详细教程: 使用可灵处理图片生成视频的步骤(以快影为例): 1. 打开快影(需要先通过内测申请),选择 AI 创作。 2. 选择 AI 生成视频。 3. 选择图生视频。 4. 上传处理好的图片,填写想要的互动动作和效果,然后点击生成视频。 5. 排队等待生成结束,点击下载。
2024-10-26
有可灵的教程吗
以下是关于可灵的教程和介绍: 可灵是一款由快手团队开发的 AI 应用,主要用于生成高质量的图像和视频。 教程方面: 知识库详细教程: 功能特点: 支持文生视频、图生视频。 支持图生视频首尾帧功能。 提示词可使用中文。 文生视频支持正向提示词、反向提示词、运镜控制、时长选择(5s、10s),支持 16:9、9:16、1:1 尺寸。 图生视频除了不可运镜控制以外,其他跟文生视频基本相同。 默认生成 5s 的视频。 使用相关: 最初采用内测邀请制,现在已向所有用户开放使用。 价格方面,相对较高。重度用户最高档年费可能达几千元人民币,平均每月使用成本在 400 到 600 元人民币之间。但临时或轻度使用有每日免费点数和 60 多元单月的最便宜包月选项。
2024-10-26
ai绘画相关的教程
以下为一些 AI 绘画相关的教程: 视频教程: 「AI 绘画」软件比较与 stable diffusion 的优势: 「AI 绘画」零基础学会 Stable Diffusion: 「AI 绘画」革命性技术突破: 「AI 绘画」从零开始的 AI 绘画入门教程——魔法导论: 「入门 1」5 分钟搞定 Stable Diffusion 环境配置,消灭奇怪的报错: 「入门 2」stable diffusion 安装教程,有手就会不折腾: 「入门 3」你的电脑是否跑得动 stable diffusion?: 「入门 4」stable diffusion 插件如何下载和安装?: 线稿上色 Midjourney+Stable Diffusion:在学习 AI 绘画这段时间,发现 AI 绘画并不会完全替代设计师,而是可以让出图质量更好,效率更高。比如上面是用 midjourney 生成线稿,PS 稍微做一些修正,再用 controlnet 控制,stable diffusion 上色,多套 AI 组合拳,可以快速生成效果惊艳的图。作者:三思。先欣赏下作品: 1、线稿产出:mj 关键词:Black and white line drawing illustration of a cute cat cartoon IP character,black line sketch,wearing a fortune hat,wearing a collar around the neck,Carrying a huge bag containing scrolls and ingots,matching rope and straps at his wrists,Chinese element style,popular toys,blind box toys,Disney style,white background niji 5 style expressive 2、ps 手动手动重绘错误的地方:有些图出来没有阴影容易飘,可以自己画一个出来 SD 新手:视频教程 从 0 入门 AI 绘画教程:🔥强烈推荐,学完变大神系列章节教学视频: 第一节课:AI 绘画原理与基础界面 第二节课:20 分钟搞懂 Prompt 与参数设置,你的 AI 绘画“咒语”学明白了吗? 第三节课:打破次元壁!用 AI“重绘”照片和 CG 第四节课:AI 绘画模型,“画风”自由切换 第五节课:提高 AI 绘画分辨率的方式 第六节课:LoRa | Hypernetwork 概念简析 第七节课:定向修手修脸,手把手教你玩转局部重绘! 第八节课:提示词补全翻译反推,“终极”放大脚本与细节优化插件 第九节课:LoRA 从原理到实践 第十节课:零基础掌握 ControlNet!
2024-10-25
AI视频制作教程
以下是使用 AI 把小说制作成视频的教程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。 另外,关于使用 Stable Diffusion 制作中文文字的教程: 1. 将中文字做成白底黑字,存成图片样式。 2. 使用文生图的方式,使用大模型真实系,作者用的 realisticVisionV20_v20.safetensorsControlNet 预设置。 3. 输入关键词,如奶油的英文单词,Cream + Cake(加强质感),反关键词:Easynegative(负能量),反复刷机,得到满意的效果即可。 4. 同理可输出 C4D 模型,可自由贴图材质效果,3d,blender,oc rendering。 5. 如果希望有景深效果,也可以打开 depth(增加阴影和质感)。 6. 打开高清修复,分辨率联系 1024 以上,步数:29 60。 同时,为您提供以下相关的 AI 视频工作流教程链接: 1. 2. 3. 4. 5. 6. 7. 8. 9.
2024-10-22