Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

hugging face教程

Answer

以下是为您整理的关于 Hugging Face 的教程:

  1. 在“AIGC Weekly #41”中,有一个非工程师指南:训练 LLaMA 2 聊天机器人的教程。它展示了如何使用 Hugging Face 提供的服务来训练和部署一个基于 LLM 的聊天机器人,无需任何代码知识。具体分为三个步骤:使用 AutoTrain 服务在线训练一个 LLM 模型;然后使用 ChatUI 服务将训练好的模型部署成一个可通过网页聊天的机器人;最后介绍了 Hugging Face 为普通用户提供的一些工具,比如 Spaces、AutoTrain、ChatUI 等,目的是让更多人能参与和利用机器学习。
  2. 在“AIGC Weekly #32”中,有一个由吴恩达工作室与 Hugging Face 合作的短期课程,旨在教授如何快速创建和演示机器学习应用程序。学员将学习构建图像生成、图像字幕和文本摘要应用程序,并与团队成员、测试人员等分享自己的应用程序。课程内容包括使用少量代码创建用户友好的应用程序,使用开源大型语言模型对输入文本进行摘要,并显示摘要。
  3. 在“大圣:全网最适合小白的 Llama3 部署和微调教程”中,介绍了在下载大模型之前的两个重要开源社区:HuggingFace 和 ModelScope(魔搭社区)。HuggingFace 是一家成立于纽约的 AI 研究公司,以其开源项目 Transformers 库而闻名,该库聚焦于自然语言处理(NLP)和机器学习,并支持超过 100 种语言的模型。HuggingFace 强调社区协作,致力于使 AI 更加民主化,为研究人员和开发者提供强大的工具,以推动人工智能技术的进步和应用。ModelScope(魔搭社区)是由中国的科技巨头阿里巴巴集团旗下的阿里云推出的一个开源平台。该平台专注于提供各种 AI 模型,包括但不限于自然语言处理、计算机视觉和音频处理。ModelScope 旨在简化 AI 模型的开发和部署过程,使技术更加透明和容易访问,特别是为中国的开发者和研究机构提供支持。这两个平台可以简单理解为开源大模型的仓库,从这些平台可以下载到各种开源的大模型。其区别可以类比于 github 和 gitee 的区别:HuggingFace 是国际上的平台,而 ModelScope 则是国内的平台。此外,还包括创建下载大模型的 Python 脚本文件:download.py 以及执行 Python 脚本下载大模型的步骤。出现相应界面则代表模型开始下载,预计下载 5 分钟,下载完成会有相应提示。
Content generated by AI large model, please carefully verify (powered by aily)

References

AIGC Weekly #41

这个教程展示了如何使用Hugging Face提供的服务来训练和部署一个基于LLM的聊天机器人,而无需任何代码知识。它分为三个步骤:使用AutoTrain服务在线训练一个LLM模型。然后使用ChatUI服务将训练好的模型部署成一个可通过网页聊天的机器人。最后介绍了Hugging Face为普通用户提供的一些工具,比如Spaces、AutoTrain、ChatUI等,目的是让更多人能参与和利用机器学习。

AIGC Weekly #32

这个短期课程是吴恩达工作室与Hugging Face合作的,旨在教授如何快速创建和演示机器学习应用程序。学员将学习构建图像生成、图像字幕和文本摘要应用程序,并与团队成员、测试人员等分享自己的应用程序。课程内容包括使用少量代码创建用户友好的应用程序,使用开源大型语言模型对输入文本进行摘要,并显示摘要;图片加载中

大圣:全网最适合小白的 Llama3 部署和微调教程

在我们下载大模型之前,先来介绍两个重要的开源社区:HuggingFaceModelScope(魔搭社区)HuggingFace是一家成立于纽约的AI研究公司,以其开源项目Transformers库而闻名,该库聚焦于自然语言处理(NLP)和机器学习,并支持超过100种语言的模型。HuggingFace强调社区协作,致力于使AI更加民主化,为研究人员和开发者提供强大的工具,以推动人工智能技术的进步和应用。ModelScope(魔搭社区)是由中国的科技巨头阿里巴巴集团旗下的阿里云推出的一个开源平台。该平台专注于提供各种AI模型,包括但不限于自然语言处理、计算机视觉和音频处理。ModelScope旨在简化AI模型的开发和部署过程,使技术更加透明和容易访问,特别是为中国的开发者和研究机构提供支持。这两个平台可以简单理解为开源大模型的仓库。从这些平台,我们可以下载到各种开源的大模型。他们的区别可以类比于github和gitee的区别:HuggingFace是国际上的平台,而ModelScope则是国内的平台。1.创建下载大模型的Python脚本文件:download.py1.执行Python脚本,下载大模型出现如下界面则代表模型开始下载中,预计下载5分钟1.下载完成

Others are asking
Dreamface数字人
以下是关于 Dreamface 数字人的相关信息: 生成数字人: 在剪映右侧窗口顶部打开“数字人”选项,选取免费且适合的数字人形象,如“婉婉青春”。选择后软件会播放其声音,可判断是否需要,点击右下角“添加数字人”将其添加到当前视频中,软件会生成对应音视频并添加到轨道中,左下角会提示渲染完成时间,可点击预览查看效果。 增加背景图片: 可删除先前导入的文本内容,为视频增加背景图片。点击左上角“媒体”菜单并“导入”选择本地图片上传,将图片添加到视频轨道上(会覆盖数字人),将轨道右侧竖线向右拖拽使其与视频对齐,选中轨道后可调整图片尺寸和数字人位置。 虚拟数字人的分类和驱动方式: 虚拟数字人通过各种技术创造,具有人类特征,呈现为虚拟形象。从驱动层面分为中之人驱动和 AI 驱动。中之人驱动运用动作捕捉和面部捕捉技术实现交互,有上限且缺乏高并发和量产化能力;AI 驱动使用 AI 技术创建、驱动和生成内容,赋予感知和表达等交互能力。从应用层面可分为服务型、表演型和身份型。服务型如虚拟主播、助手、教师、客服和医生等,表演型如虚拟偶像,身份型是物理世界“真人”的数字分身。 构建高质量 AI 数字人的要点: 1. AI Agent:要让数字人像人一样思考需编写类似人的 Agent,记忆模块、工作流模块和工具调用模块的构建是挑战。 2. 驱动躯壳的实现:定义灵魂部分接口,躯壳通过 API 调用,方式视躯壳实现而定。包含情绪的语音表达及保证躯壳口型、表情、动作和语音的同步及匹配,目前主流方案只能预设表情动作和做逻辑判断播放预设,语音驱动口型相对成熟但闭源。 3. 实时性:数字人算法组成庞大,几乎不能单机部署,算法一般部署到额外集群或调用 API,网络耗时和模型推理耗时会影响体验,低延时是需解决的问题。 4. 多元跨模态:仅语音交互不够,可根据需求添加其他感官,如通过摄像头数据获取视觉信息并做图像解析。 5. 拟人化场景:正常与人交流非线性,插话、转移话题等情况需通过工程丝滑处理。
2025-01-17
deepfacelive
以下是关于 DeepFaceLive 以及换脸相关的信息: 换脸应用: 1. 在线换脸,使用上传的图片。 2. 在线视频操纵软件。 3. 在照片上交换面孔,效果出众。 4. 在自拍上叠加名人的脸。 5. 实时换脸的视频通话。 6. 在线媒体中的换脸。 7. 在线图片换脸。 8. 改进的实时换脸视频通话。 9. 视频和图片的换脸解决方案。 辅助工具换脸方面,同样有上述这些应用。 此外,还有关于深度学习核心概念中的特征学习的介绍:特征学习算法可以找到对区分类很重要的共同模式,并自动提取它们以用于分类或回归过程。特征学习可以被认为是由算法自动完成的特征工程。在深度学习中,卷积层特别擅长于在图像中找到好的特征到下一层,从而形成一个非线性特征的层次结构,这些特征的复杂性不断增加(例如,斑点、边缘– >鼻子、眼睛、脸颊– >面部)。最后一层使用所有这些生成的特征进行分类或回归(卷积网络中的最后一层本质上是多项式逻辑回归)。图 1 显示了由深度学习算法生成的特性,该算法可以生成易于解释的特性。但通常特征很难解释,尤其是在像循环神经网络和 LSTM 这样的深层网络或非常深的卷积网络中。
2024-12-09
Face Swapper技术路径
以下是一些关于 Face Swapper 的技术路径和相关工具: 在线换脸工具: :可在线换脸,使用上传的图片。 :在线视频操纵软件。 :在照片上交换面孔,效果出众。 :在自拍上叠加名人的脸。 :支持实时换脸的视频通话。 :用于在线媒体中的换脸。 :在线图片换脸。 :改进的实时换脸视频通话。 :提供视频和图片的换脸解决方案。 辅助工具: E4S:精细化的面部交换(换脸)技术,能确保换出的脸在形状、纹理和光照方面自然逼真,精确处理脸部细节。项目地址: Misgif:可以将您的脸放入喜欢的 GIF 表情包中的应用,具有娱乐性。网址: Face Swapper:AI 换脸工具,可一次替换多张脸,支持 JPG、PNG、WEBP 格式,最大 1024px 分辨率,应用场景包括时尚、美容、电影、媒体、人力资源。网址:
2024-11-28
hungging face是什么
Hugging Face 是一个提供自然语言处理(NLP)和机器学习(ML)模型的平台和社区。 其具有以下特点和优势: 1. 提供简单易用的 API,方便开发者轻松使用先进的 NLP 模型。 2. 支持开发者分享、训练和部署自己的模型。 3. 社区中有大量的开发者和研究人员,不断推动和改进 NLP 和 ML 技术,分享和评估模型,并提供丰富的教程和资源。 4. 近期发布了自己的聊天产品 HuggingChat。 访问地址: 此外,AutoGPT on Hugging Face 是在 Hugging Face 上运行的 AutoGPT。Hugging Face 的首席执行官 Clem Delangue 曾谈到其起源最初是一个 AI 电子宠物,后来转型成为目前最常用的 AI 开放平台,还谈到了未来的方向,包括支持更广泛的 AI 应用领域,并使更多人能够更容易地构建 AI,以及关于人工智能的伦理问题和如何防止人工智能被滥用或滥用。
2024-11-05
人工智能时代下最重要的三个基石是什么,我们可以在哪里找到这三个基石的资源? 例如: huggingface
在人工智能时代,最重要的三个基石分别是架构、算力和人才网络。 架构方面,当前市场上许多令人惊叹的 AI 技术成就都可追溯到两个核心架构——Transformer 和 Diffusion。Transformer 代表了数据转换的能力,Diffusion 代表了数据向图像转换的能力,它们构成了当前 AI 技术的重要基石。 算力方面,自 2010 年以来,GPU 等计算资源的快速发展使算力得到了空前的提升,为 AI 技术的进步提供了强大支持。 人才网络方面,AI 领域的关键人才大多源自于 Google,特别是其在加拿大多伦多和蒙特利尔成立的两个实验室,以及收购的英国公司 DeepMind。这些机构和个人形成了强大的人才网络,推动了 AI 技术的发展,并培养了一批杰出的领军人物。人才在不同公司之间的流动和合作也促进了 AI 技术的快速进步。 关于这三个基石的资源,目前没有明确提及具体的获取渠道。但您可以通过以下途径寻找相关资源: 1. 学术研究网站和数据库,如知网、Web of Science 等,以获取关于架构、算力和人才网络的学术研究成果。 2. 科技行业的专业论坛和社区,与同行交流和分享资源。 3. 关注知名科技公司和研究机构的官方网站和社交媒体账号,获取最新的研究动态和资源。
2024-10-10
人工智能时代下最重要的三个基石是什么,我们可以在哪里找到这三个基石的资源? 例如: huggingface
在人工智能时代,最重要的三个基石分别是架构、算力和人才网络。 架构方面,当前市场上许多令人惊叹的 AI 技术成就都可追溯到两个核心架构——Transformer 和 Diffusion。Transformer 代表了数据转换的能力,Diffusion 代表了数据向图像转换的能力,它们构成了当前 AI 技术的重要基石。 算力方面,自 2010 年以来,GPU 等计算资源的快速发展使算力得到了空前的爆发,为 AI 技术的进步提供了强大支持。 人才网络方面,AI 领域的关键人才几乎都源自于 Google,特别是 Google 在加拿大多伦多和蒙特利尔成立的两个实验室,以及它收购的英国公司 DeepMind。这些机构和个人形成了强大的人才网络,推动了 AI 技术的发展,并培养了一批杰出的 AI 领军人物。从 Google 到 OpenAI,再到 Facebook 和其他多家公司,人才的流动和合作推动了 AI 技术的快速进步。 关于这三个基石的资源,您可以通过以下途径获取: 1. 学术研究论文:在相关的学术数据库中搜索关于 AI 架构、算力和人才发展的研究成果。 2. 专业技术论坛和社区:例如一些知名的 AI 技术论坛,开发者们会在其中分享和讨论相关的知识和经验。 3. 科技公司的官方网站和技术博客:如 Google、NVIDIA 等公司的网站,可能会发布有关其在 AI 领域的技术创新和人才培养的信息。 4. 在线教育平台:一些提供 AI 课程的平台,可能会涵盖这三个方面的知识和案例。
2024-10-10
人工智能时代下最重要的三个基石是什么,我们可以在哪里找到这三个基石的资源? 例如: huggingface
在人工智能时代,最重要的三个基石分别是架构、算力和人才网络。 架构方面,当前市场上许多出色的 AI 技术成就都可追溯到 Transformer 和 Diffusion 这两个核心架构,它们分别在数据转换和数据向图像转换方面发挥着关键作用。 算力方面,自 2010 年以来,GPU 等计算资源的快速发展使算力得到空前爆发,为 AI 技术进步提供了强大支持。 人才网络方面,AI 领域的关键人才大多源自 Google 及其相关机构,如在加拿大多伦多和蒙特利尔成立的实验室以及收购的英国公司 DeepMind,这些人才的流动与合作推动了 AI 技术的发展。 关于这三个基石的资源,目前没有明确提及具体的获取渠道。但您可以通过以下途径寻找相关资源: 1. 学术研究网站和数据库,获取关于架构、算力和人才网络的最新研究成果和报告。 2. 科技公司的官方网站和技术文档,了解其在相关领域的创新和实践。 3. 专业的 AI 技术论坛和社区,与同行交流和分享资源。
2024-10-10
人工智能时代下最重要的三个基石是什么,我们可以在哪里找到这三个基石的资源? 例如: huggingface ​
在人工智能时代,以下是被认为最重要的三个基石: 1. 架构:当前市场上许多出色的 AI 技术成就可追溯到两个核心架构——Transformer 和 Diffusion。Transformer 代表了数据转换的能力,Diffusion 代表了数据向图像转换的能力,它们构成了当前 AI 技术的重要基础。 2. 算力:自 2010 年以来,GPU 等计算资源的快速发展使算力得到空前爆发,为 AI 技术的进步提供了强大支持。 3. 人才网络:AI 领域的关键人才网络起到了不可忽视的作用,特别是 Google 在加拿大多伦多和蒙特利尔成立的两个实验室以及其收购的英国公司 DeepMind 培养和汇聚的人才,他们的流动与合作推动了 AI 技术的发展。 关于这三个基石的资源,您可以通过以下途径获取: 1. 学术研究网站和数据库,例如一些知名的科技学术数据库。 2. 专业的 AI 技术论坛和社区,与同行交流获取相关信息。 3. 大型科技公司的官方网站和技术文档,如 Google 等。 4. 相关的学术会议和研讨会。
2024-10-10
吴恩达关于使用hugging face 、langchain 创建自己应用的教程
以下是一些与吴恩达关于使用 hugging face 、langchain 创建自己应用的相关教程资源: 1. 面向开发者的 LLM 入门课程: 地址: 简介:一个中文版的大模型入门教程,围绕吴恩达老师的大模型系列课程展开,包括吴恩达《ChatGPT Prompt Engineering for Developers》课程中文版,吴恩达《Building Systems with the ChatGPT API》课程中文版,吴恩达《LangChain for LLM Application Development》课程中文版等。 2. 提示工程指南: 地址: 简介:该项目基于对大语言模型的浓厚兴趣,编写了这份全新的提示工程指南,介绍了大语言模型相关的论文研究、学习指南、模型、讲座、参考资料、大语言模型能力以及与其他与提示工程相关的工具。 3. LangChain 🦜️🔗中文网,跟着 LangChain 一起学 LLM/GPT 开发: 地址: 简介:Langchain 的中文文档,由是两个在 LLM 创业者维护,希望帮助到从刚进入 AI 应用开发的朋友们。 4. AIGC Weekly 32 中的精选文章: 地址: 简介:这个短期课程是吴恩达工作室与 Hugging Face 合作的,旨在教授如何快速创建和演示机器学习应用程序。学员将学习构建图像生成、图像字幕和文本摘要应用程序,并与团队成员、测试人员等分享自己的应用程序。课程内容包括使用少量代码创建用户友好的应用程序,使用开源大型语言模型对输入文本进行摘要,并显示摘要。
2024-08-19
huggingface
Hugging Face 是数据科学领域非常受欢迎的人工智能工具: 在 2022 年 9 月至 2023 年 8 月期间吸引了 3.166 亿流量。 用户每次访问平均分配 11 分 2 秒的时间,与行业平均水平类似。 桌面端和移动端的流量分布分别为 48%和 52%。 用户群以男性为主,占 84.48%,女性用户占 15.52%。 美国是主要的流量来源,日本紧随其后。 跳出率略高于平均水平 63.46%。 此外,在 2023 年的百模大战中,Hugging Face 是专门做模型托管的,各种大模型、小模型、垂直模型、专业模型、通用模型都能在上面找到,并且能使用。其拥有的大模型数量众多,每秒钟都有人在上传,可能很快会迎来百万大模型大战。
2024-08-16
AI辅助PPT生成的教程
以下是关于 AI 辅助 PPT 生成的教程: 一、AI 辅助 PPT 的原理和作用 1. 减轻排版工作的压力。 2. 生成打底的内容,减轻人写内容的工作。 文章生成 PPT,是让 AI 帮忙摘要内容,生成大纲列表。 主题生成 PPT,让 AI 根据主题扩充成大纲列表,乃至具体内容。 在特定的场景下不用改直接用,如学生快速为小组展示配 PPT。 二、AI 辅助 PPT 生成的流程 1. 用户输入相关内容。 2. AI 输出文本。 3. 排版网站往往提供了各种形状和样式,网站把 AI 输出的文本丢给 LLM,让它根据内容,在已有的 UI 组件中选择更适合的组件。按时间线,每页 PPT 的文字,选出整个 PPT 中,每一页的 UI 组件。有的网站,如 tome、gamma,配图也是由 GenAI 根据页面内容生成的。呈现 AI 生成的 PPT 结果,用户不满意可以自行选择模版。 三、具体操作示例 1. 利用 Process ON 工具 网址:https://www.processon.com/ 输入大纲和要点 确定操作方式,目前该工具提供两种方式: 导入大纲和要点: 手动复制,相对比较耗时间。 导入方式: 复制最终大纲的内容,到本地的 txt 文件后,将后缀改为.md。如果看不见后缀,可以自行搜索开启后缀。 打开 Xmind 软件,将 md 文件导入 Xmind 文件中。 Process ON 导入 Xmind 文件。以导入方式新建思维导图,选择准备好的 Xmind 文件,导入成功。 输入主题自动生成大纲和要求:新增思维导图,输入主题,点击 AI 帮我创作,生成结束。 选择模版并生成 PPT:点击下载,选择导入格式为 PPT 文件,选择模版,再点击下载。如果喜欢用 Process ON 的小伙伴,没有会员,可以某宝买个一天会员。 2. 几款 PPT 生成工具(网站) https://wenku.baidu.com 百度文库付费质量好 https://zhiwen.xfyun.cn/ 讯飞智文免费引导好 http://Chatppt.com 付费,自动化程度高 http://Mindshow.fun Markdown 导入 http://Gamma.app Markdown 导入 http://Tome.app AI 配图效果好 剪映:图文成片(只需提供文案,自动配图配音) 希望以上内容对您有所帮助。
2025-02-05
deepseek教程
以下是关于 DeepSeek 的教程: 网址:https://www.deepseek.com/zh 。国内能访问,网页登录方便,目前完全免费。 获得游戏代码:只需点击开始对话,左边选择代码助手,直接向其许愿即可。 提示词使用: 效果对比:用 Coze 做了小测试,可对比查看 。 如何使用: 1. 搜索 www.deepseek.com,点击“开始对话”。 2. 将装有提示词的代码发给 DeepSeek 。 3. 认真阅读开场白之后,正式开始对话。 设计思路: 1. 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担。 2. 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 3. 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 4. 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改。 5. 用 XML 来进行更为规范的设定,而不是用 Lisp(对作者有难度)和 Markdown(运行下来似乎不是很稳定)。 完整提示词:v 1.3 。 特别鸣谢:李继刚的【思考的七把武器】在前期提供了很多思考方向,Thinking Claude 是作者现在最喜欢使用的 Claude 提示词,也是设计 HiDeepSeek 的灵感来源,Claude 3.5 Sonnet 是最得力的助手。 使用技巧: 特点与优势: 1. 推理型大模型:核心是推理型大模型,不需要用户提供详细步骤指令,通过理解用户真实需求和场景提供答案。 2. 更懂人话:能够理解用户用“人话”表达的需求,不需要用户学习和使用特定提示词模板。 3. 深度思考:回答问题时能够进行深度思考,不是简单罗列信息。 4. 文风转换器:可以模仿不同作家的文风进行写作,适用于多种文体和场景。 正确方法: 1. 可以扔掉提示词模板:用自然语言描述,直接描述真实场景和具体需求,提示词模板的目的是清晰表达,如果使用也完全没问题。 2. 让 DeepSeek“说人话”:在提问时加上“说人话”“小学生能听懂”“菜市场大妈能听懂的话”等,可以让 DeepSeek 的回答更加通俗易懂。 3. 激发深度思考:让 DeepSeek 进行批判性思考、反面思考和复盘,以恢复其深度思考能力。 4. 文风转换:通过指定模仿的作家和文体,让 DeepSeek 生成符合特定风格的文本。
2025-02-01
零基础,如何系统性的学习和运用AI,请提供一个系统性的教程学习
对于零基础学习和运用 AI,以下是一个系统性的教程: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。这些课程将引导您了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。同时,建议您一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键。尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 六、深入学习 Python 编程(如果希望继续精进) 至少熟悉以下内容: 1. Python 基础 基本语法:了解 Python 的基本语法规则,比如变量命名、缩进等。 数据类型:熟悉 Python 中的基本数据类型,如字符串(String)、整数(Integer)、浮点数(Float)、列表(List)、元组(Tuple)、字典(Dictionary)等。 控制流:学习如何使用条件语句(if)、循环语句(for 和 while)来控制程序的执行流程。 2. 函数 定义和调用函数:学习如何定义自己的函数,以及如何调用现有的函数。 参数和返回值:理解函数如何接收参数和返回结果。 作用域和命名空间:了解局部变量和全局变量的概念,以及它们是如何在 Python 中工作的。 3. 模块和包 导入模块:学习如何导入 Python 标准库中的模块或者第三方库。 使用包:理解如何安装和使用 Python 包来扩展程序的功能。 4. 面向对象编程(OOP) 类和对象:了解面向对象编程的基本概念,包括类的定义和实例化。 属性和方法:学习如何为类定义属性和方法,以及如何通过对象来调用它们。 继承和多态:了解类之间的继承关系以及如何实现多态。 5. 异常处理 理解异常:了解什么是异常,以及它们在 Python 中是如何工作的。 异常处理:学习如何使用 try 和 except 语句来处理程序中可能发生的错误。 6. 文件操作 文件读写:学习如何打开文件、读取文件内容以及写入文件。 文件与路径操作:理解如何使用 Python 来处理文件路径,以及如何列举目录下的文件。
2025-01-29
cursor教程
以下是关于 Cursor 教程的相关内容: 1. 中文教程网站: 网站:,提供中文教程,帮助用户更好地掌握 AI 代码编辑器 Cursor 的使用方法,适合想深入了解和学习 Cursor 的用户。 2. 配置教程: 从穷👻套餐 2.0 开始,对 Cursor 的配置主要集中在接入更多模型,如 Qwen2.5Coder、Llama3.3、deepseek v3、gemini2.0flash 等,大部分是为了省 API 费用,但未完全挖掘出 Cursor 的潜力。接入再多的模型也无法完全填平 Cursor 免费版和 Cursor Pro 的差距,如 Agent、Yolo、Composer、Tab 代码补全等功能被限制。此次收集到 3 个插件,2 大 API 和 N 个新的提示语用法,给 Cursor 装配上 Tab 代码补全、AI Agent、全系大模型接入、开发进度管理、状态回滚等功能。 3. 0 编程基础入门极简使用指南: 下载 Cursor:https://www.cursor.com/ 注册账号,可用邮箱如 google/github/163/qq 邮箱,直接接受二维码登录。 安装中文包插件。 在设置中 Rule for AI 配置,按 ctrl/cmd+i 输入需求,如“帮我做一个贪吃蛇游戏,在网页中玩”,并清晰表达需求,包括游戏界面、蛇的移动、食物、增长、死亡条件、得分、难度递增和游戏结束等规则。
2025-01-29
coze教程
以下是关于 Coze 教程的相关内容: 可能是全网最好的 Coze 教程之一,能一次性带您入门 Coze 工作流。即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。 阅读指南: 长文预警,请视情况收藏保存。 核心看点: 通过实际案例逐步演示,用 Coze 工作流构建能够稳定按照模板要求生成结构化内容的 AI Agent。 开源 AI Agent 的设计到落地的全过程思路。 10+项常用的 Coze 工作流的配置细节、常见问题与解决方法。 适合人群: 任何玩过 AI 对话产品的一般用户(如果没用过,可以先找个国内大模型耍耍)。 希望深入学习 AI 应用开发平台(如 Coze、Dify),对 AI Agent 工作流配置感兴趣的爱好者。 注:本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。 Coze 概述: 字节的官方解释:Coze 是新一代一站式 AI Bot 开发平台。无论是否有编程基础,都可在 Coze 平台上快速搭建基于 AI 模型的各类问答 Bot,从解决简单的问答到处理复杂逻辑的对话。并且,可以将搭建的 Bot 发布到各类社交平台和通讯软件上,与这些平台/软件上的用户互动。 个人认为:Coze 是字节针对 AI Agent 这一领域的初代产品,在 Coze 中将 AI Agent 称之为 Bot。 字节针对 Coze 这个产品部署了两个站点,分别是国内版和海外版。 国内版: 网址:https://www.coze.cn 官方文档教程:https://www.coze.cn/docs/guides/welcome 大模型:使用的是字节自研的云雀大模型,国内网络即可正常访问。 海外版: 网址:https://www.coze.com 官方文档教程:https://www.coze.com/docs/guides/welcome 大模型:GPT4、GPT3.5 等大模型(可以在这里白嫖 ChatGPT4,具体参考文档:),访问需要突破网络限制的工具。 参考文档:https://www.coze.com/docs/zh_cn/welcome.html AI Agent 的开发流程: Bot 的开发和调试页面布局主要分为如下几个区块: 提示词和人设的区块。 Bot 的技能组件。 插件。 工作流。 Bot 的记忆组件。 知识库。 变量。 数据库。 长记忆。 文件盒子。 一些先进的配置,如触发器(例如定时发送早报)、开场白(用户和 Bot 初次对话时,Bot 的招呼话语)、自动建议(每当和 Bot 一轮对话完成后,Bot 给出的问题建议)、声音(和 Bot 对话时,Bot 读对话内容的音色)。下面会逐一讲解每个组件的能力以及使用方式。
2025-01-28
liblib教程
以下是关于 liblib 的教程: 线稿提取教程: 1. 出两张彩色的稍连贯的图片。 2. 提取第一张的线稿图: 用 liblib 提取,进入 https://www.liblib.art/ 。 点击【在线生图】。 滑到下面找出【ControlNet】并点击右侧。 点击上传图片。 勾选【启用】、【允许预览】、【Lineart】,预处理器选择【写实线稿提取】,并点击【运行&预览】。 把右侧的黑白图拉到左侧栏,预处理器改为【invert(白底黑线反色)】,并点击【运行&预览】,线稿提取大功告成!右键图片另存即可。 文生图简明操作流程: 1. 定主题:确定要生成的图片主题、风格和表达的信息。 2. 选择 Checkpoint:根据主题选择贴近的 checkpoint,如麦橘、墨幽的系列模型。 3. 选择 lora:寻找内容重叠的 lora 以控制图片效果及质量。 4. 设置 VAE:选择 840000 那一串。 5. CLIP 跳过层:设成 2。 6. Prompt 提示词:用英文写需求,单词、短语之间用英文半角逗号隔开。 7. 负向提示词 Negative Prompt:用英文写避免产生的内容,单词、短语组合,中间用英文半角逗号隔开。 8. 采样方法:一般选 DPM++2M Karras,也可参考 checkpoint 详情页上模型作者推荐的采样器。 9. 迭代步数:选 DPM++2M Karras 时,在 30 40 之间。 10. 尺寸:根据喜好和需求选择。 11. 生成批次:默认 1 批。 此外,还有 Liblibai 简易上手教程,包含概念与功能说明、简明操作流程、prompt 简易技巧三部分。可通过进入免费在线生图。若有不明白之处,可在评论区交流或添加微信:designurlife1st 沟通。
2025-01-28