直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

我想改变一个图片的风格,要区别于一般的滤镜,例如写实照片变成3D模型的

回答

目前知识库中没有关于将写实照片转变为 3D 模型风格的具体方法和相关内容。但一般来说,要实现这种效果可能需要使用专业的图像处理软件,如 Adobe Photoshop、Blender 等。在这些软件中,可能会涉及到一些复杂的操作,例如建模、材质设置、光照调整等。您也可以尝试使用一些在线的 AI 图像处理工具,部分工具可能具备将照片转换为 3D 风格的功能。不过具体的效果和操作方式可能因工具而异。

内容由 AI 大模型生成,请仔细甄别(powered by aily)
其他人在问
要想写实,需哪些模型
写实风格的图片绘制需要考虑以下几个方面: 1. 模型选择:可以选择麦橘、墨幽等模型大佬的系列模型,如麦橘写实、麦橘男团、墨幽人造人等,这些模型在生成写实风格的图片方面表现出色。 2. lora 选择:lora 可以帮助控制图片效果及质量。可以多看看广场上做得好看的帖子,了解他们使用的lora。 3. 提示词设置:使用英文写提示词,用单词和短语的组合去表达需求,单词、短语之间用英文半角逗号隔开。同时,可以使用负向提示词来避免产生不想要的内容。 4. 其他设置:如 VAE、CLIP 跳过层等,可以根据需求进行调整。 总的来说,写实风格的图片绘制需要综合考虑模型、lora、提示词等多个因素,并进行不断地尝试和调整,以达到满意的效果。
2024-06-10
麦橘写实v7
麦橘写实 V7 是由 majicMIX 系列作者开发的 AI 模型,真实系模型世界排名第一。该模型在各大模型平台全面上线,可在 C 站、吐司和 liblib.ai 等平台上下载。V7 模型的发布引起了广泛的关注,许多插画师和设计师都对其进行了试用和评价。 宗 rich 是一位资深游戏美术和神级插画师,他在抖音上分享了自己使用麦橘写实 V7 模型创作的作品。这些作品细节拉满,让人惊叹不已。他的创作过程和心得也在文章中进行了介绍,让读者更好地了解了麦橘写实 V7 模型的特点和应用场景。 此外,文章还介绍了麦橘写实 V7 模型的主题创作活动,鼓励读者一起参与创作,展示自己的才华和创意。同时,文章也提供了麦橘写实 V7 模型的返图欣赏,让读者可以更好地了解该模型的创作效果和应用前景。 总的来说,麦橘写实 V7 是一款非常优秀的 AI 模型,具有很高的真实度和表现力。它的发布为插画师和设计师提供了更多的创作工具和灵感,也为 AI 绘画的发展注入了新的活力。
2024-06-06
Dall·E照片级写实风格提示词
以下是一些可以尝试在 DALLE 中使用的提示词,来生成照片级的写实风格图像: 1. "一张拥有极高分辨率和令人惊艳的细节的照片..." 2. "拍摄于自然光线下,无滤镜,无修饰的写实..." 3. "使用高端相机和镜头拍摄的,能看到每一个毛孔的超高分辨率..." 4. "逼真到仿佛能从画面中嗅到气味的写实风格..." 5. "照片般的写实效果,清晰可见皱纹、纹理和细微表情..." 6. "令人难以区分真实照片与渲染图像的无与伦比的写实画面..." 7. "展现出 的肌肤质感、织物褶皱和光线细节..." 8. "使用热成像相机和光学变焦镜头拍摄的近乎真实的..." 9. "胶片级细节,颗粒感和动态光比的顶尖图像..." 10. "具备媲美 artsation.com 摄影作品般的逼真写实效果..." 这些提示词都强调了写实、细节、分辨率、真实感等关键词,有助于 DALLE 生成出照片般的高分辨率写实图像。你也可以继续探索其他组合,找到最佳的提示方式。
2024-04-18
有可以更具提供的文本和照片生成视频的AI吗?
以下是一些可以根据提供的文本和照片生成视频的 AI 工具: 1. Pika:一款出色的文本生成视频 AI 工具,擅长动画制作并支持视频编辑。目前内测免费,其生成服务托管在 Discord 中。操作步骤包括加入 Pika Labs 的 Discord 频道,在“generate”子区输入指令生成或上传本地图片生成视频,对不满意的效果可再次生成优化。 2. SVD:如果熟悉 Stable Diffusion,可以安装这款最新的插件,在图片基础上直接生成视频,它是由 Stability AI 开源的 video model。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但需要收费。 4. Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可以生成长达 1 分钟以上的视频。 更多的文生视频的网站可以查看:https://www.waytoagi.com/category/38 。 内容由 AI 大模型生成,请仔细甄别。
2024-11-11
照片生成卡通画
以下是关于照片生成卡通画的相关内容: 1. 个性卡通头像生成: 复杂提示词:如“Disney boy,Low saturation Pixar Super details,clay,anime waifu,looking at viewer,nighly detailedreflections transparent iridescent colors.lonctransparent iridescent RGB hair,art by Serafleurfrom artstation,white background,divine cinematic edgelighting,soft focus.bokeh,chiaroscuro 8K,bestquality.ultradetailultra detail.3d,c4d.blender,OCrenderer.cinematic lighting,ultra HD3D renderino iw 1.5 s 500 v 5”。 不同照片生成:可更换新照片使用上述提示词重新生成。 其他调整:若不喜欢 Disney 风格,可将提示词中的“Disney”换成“Pixar”;若为女孩,可将“boy”换成“girl”。每次生成 4 张图片,满意可点击下方的 U1~U4 生成大图,对风格满意但需调整可点击 V1~V4 进行修改。 2. 【SD】简笔水彩风格插画生成: 大模型:“Flat2D Animerge”,适合生成卡通动漫图片,官方建议 CFG 值在 5 或 6(使用动态阈值修复可拉到 11)。 Lora:“Chinese painting style”可增加中国画水彩风格效果,权重设置为 0.4;“Crayon drawing”可添加简单线条和小孩子笔触,权重设置为 0.8。 操作步骤:将图片丢到标签器中反推关键词,发送到“文生图”;在正向提示词末尾添加上述 lora;设置好尺寸,重绘幅度开 0.5 让 AI 更自由发挥,想接近原图可降低数值;将图放入 controlnet 中,选择 tile 模型,权重为 0.5,控制模式选择“更注重提示词”。 3. 进阶使用技巧总结: 通用人物模版:想用真人照片生成卡通头像,可用「真人照片」+「照片描述」+「方法 1 的关键词」处理。若生成满意的图要记得保存,下次同种类型可直接喂图,效果更好。
2024-11-07
照片修复
以下是关于照片修复的相关知识: 图像高清修复与无损放大的流程通常分为三部分: 图像输入:添加 Load Image 节点加载图像,不建议上传大分辨率图片,因其处理时间长。 图像高清修复:使用 Iceclear/StableSR 等模型进行高清修复并 2 倍放大,搭配 Stable SR Upscaler 模型和合适的提示词,如正向:(masterpiece),(best quality),(realistic),(very clear),反向:3d,cartoon,anime,sketches,(worst quality),(low quality)等。 图像高清放大:用 realisticVision 底膜进行二次修复,使用提示词反推 node 提取画面提示词,搭配 tile ControlNet 提升细节感,再用合适的高清放大模型二次放大。 用 AI 给老照片上色: 启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染功能,在显存不够时将图片放大。 可在 PS 里调整角度和裁切照片,然后上色。对于复杂照片,可放弃人物服装颜色指定,只给场景方向,加入第二个 controlnet 控制颜色,如使用 t2ia_color 模型,关键词如蓝天、绿树、灰石砖。 将照片放入后期处理,使用 GFPGAN 算法清晰人脸,五官重绘后,再将图片发送到图生图中,打开 stableSR 脚本放大两倍,切换到 sd2.1 模型修复,vae 选择 vqgan,可不写提示词以免干扰原图。
2024-11-06
老照片修复
以下是关于用 AI 给老照片上色的详细步骤和方法: 1. 启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染功能,在显存不够时放大图片。 2. 在 PS 里进行角度调整和照片裁切。 3. 对于人物照片还原,选择 realisian 的写实大模型,提示词直接描述颜色和对应内容。ControlNet 选择 Recolor,预处理器选择“recolor_luminance”效果较好。 4. 将照片放入后期处理,使用 GFPGAN 算法将人脸变清晰。 5. 把图片发送到图生图中,打开 stableSR 脚本放大两倍,切换到 sd2.1 的模型进行修复,vae 选择 vqgan,提示词可不写以免干扰原图。 6. 对于复杂的照片,如人物多、场景复杂、像素低的,可先放弃人物服装颜色指定,只给场景方向,让 AI 自行决定颜色。还可加入第二个 controlnet 控制颜色,使用 t2ia_color 模型,给出简单关键词如“蓝天、绿树、灰石砖”。 参考文章: 1. 2. 作者:白马少年,发布时间:20230910 19:00,原文网址:https://mp.weixin.qq.com/s/hlnSTpGMozJ_hfQuABgLw
2024-11-06
能修复老照片吗
AI 可以修复老照片。以下是一些相关的方法和工具: 可以使用 Stable Diffusion(SD)中的 controlnet 模型中的 Recolor 新模型为黑白老照片重新上色。提示词可直接描述颜色和对应的内容,ControlNet 选择 Recolor,预处理器选择“recolor_luminance”效果较好。 将照片放入后期处理中,使用 GFPGAN 算法将人脸变清晰。 把图片发送到图生图中,打开 stableSR 脚本,放大两倍,切换到 sd2.1 的模型进行修复,vae 选择 vqgan,提示词可不写以免干扰原图。 辅助工具方面: 本地工具放大:https://www.upscayl.org/download SD 放大:扩散模型可增加更多细节 开源工作流: 其他工具和网站: stability.ai 的 https://clipdrop.co/tools 画质增强 magnific 遥遥领先:https://magnific.ai/ Krea https://www.krea.ai/apps/image/enhancer Image Upscaler:https://imageupscaler.com/ 佐糖:https://picwish.cn/photoenhancerapi?apptype=apsbdapi&bd_vid=8091972682159211710 腾讯 ARC https://arc.tencent.com/zh/aidemos/humansegmentation?ref=88sheji.cn 腾讯开源的模型,能恢复老照片:https://github.com/TencentARC/GFPGAN ,在线测试地址:https://replicate.com/tencentarc/gfpgan 美图老照片修复:https://www.xdesign.com/quality/?channel=sllbd90&bd_vid=11711254260543749686 Imglarger:https://imglarger.com/ Let's Enhance:https://letsenhance.io/ Waifu2x:http://waifu2x.udp.jp/
2024-11-05
如何用两张照片,合成一张绘画效果的图
以下是将两张照片合成为一张绘画效果的图的步骤: 1. 利用 Dalle3 绘图,根据以下提示词分别把高中和大学时期的内容绘制成两幅四格漫画: 高中:中午,急急忙忙跑到食堂,排长队买饭。 大学:中午,懒洋洋在宿舍点外卖,直接送到宿舍楼下。 2. 利用 Python 进行图片处理: 统一设置:使用上传的字体,字体颜色黑色。 首先: 在每张图片的上面创建一个空白的白色背景区域(从原图片进行延长,而不是遮盖原图),用来放置文字(高中的图片写上“高中”,大学的图片写上“大学”)。 文字的字体大小设置成 65px,居中显示。 然后: 在图片下方创建一个空白的白色背景区域(从原图片进行延长,而不是遮盖原图),用来放置文字(高中的图片写上),如果句子过长,要注意换行显示。 文字的字体大小设置成 45px,居中显示。 最后把两张图片拼成一张图,高中的图片在左,大学的图片在右。两张图中间放置 50px 的空白区域。 另外,还有一些相关的知识供您参考: Double Exposure 是一种视觉艺术风格,将两个或多个照片合成到一起,创建出具有艺术效果的图像,灵感来自于传统的双重曝光摄影技术。最佳提示词:Double Exposure。 在 Stable Diffusion 中,可以使用【X/Y/Z plot】脚本来做参数对比,例如将 X 轴设置为提示词相关性,取值范围是 1 30。通过对比找到合适的参数,如提示词相关性在 6 11 中间为最佳。还可以使用绘图功能进行局部修改,如增加红色眼镜、去掉衣服上的图案、更换头部或帽子等部分。
2024-11-04
可以调用不同大预言模型的整合工具推荐
以下是为您推荐的可以调用不同大语言模型的整合工具: 1. Poe:由 Quora 开发,有 APP 版本,支持跨端使用。集成了 Chat GPT、GPT4、Claude+、Claude、Dragonfly 等模型,同时支持用户自建 Chatbot。不同语言模型回复效果有差异,适合需要调用多种大语言模型的用户。访问地址: 。Dragonfly 擅长给出较短的回答,并擅长在输入中给出示例时遵循指示。Claude 更擅长创造性回复,配合 Poe 中的提问引导,非常适合在查阅资料时使用,有时能够给出超越直接使用 Chat GPT 时的体验(但和 Chat GPT 一样,Claude 也时常会给出一些错误回复,一些问题可以尝试在两个模型中都问一遍提升信息准确性)。此外支持分享用户和模型的对话内容,但 GPT4、Claude+产品需要付费订阅使用。 2. 国内的一些模型,如智谱和文心,在文生图方面有一定能力。 另外,大模型工具可根据自身条件准备,推荐顺序为:1. chatGPT 4.0 2. kimichat 3. 智谱清言 4 。
2024-11-12
国内外大预言模型对比
以下是国内外大语言模型的对比情况: 1. 工具使用能力: 在工具使用的测评中,GPT4 Turbo 取得满分。 国内大模型中智谱清言表现不俗,取得 83.78 的高分,排名国内第一。文心一言 4.0、通义千问 2.0、Yi34BChat、AndesGPT 均有超过 70 分的表现。超过 GPT3.5 的国内模型有 12 个。 开源模型中,Baichuan213BChat、Xverse13B2Caht 表现可圈可点,均超过 GPT3.5 以及众多闭源模型。总体来看,国内大模型在工具使用能力上表现优异,这与国内大模型厂商积极落地应用密不可分。 2. 主观和客观对比: 通过对比模型在主观简答题 OPEN 和客观选择题 OPT 上的不同表现,国内大模型多数擅长做选择题,普遍选择题分数高于简答题分数。文心一言 4.0 和智谱清言表现相对稳定。 GPT4 Turbo 的表现最为稳定。 客观题相对主观题更容易通过题库形式进行训练和提升,同时由于客观题中包含中文特性问题,中文模型有一定优势,应综合来看模型的评测效果。 在本次测评中,国外的代表性大模型如 GPT4 的不同版本、Claude2、Llama2 都有很好的稳定性表现,值得国内大模型进一步分析研究。 3. 总体表现: GPT 4 Turbo 总分 90.63 分遥遥领先,高于其他国内大模型及国外大模型。国内最好模型文心一言 4.0有 4.9 分的差距。 过去 1 年国内大模型有长足进步,综合能力超过 GPT 3.5 和 GeminiPro 的模型有 11 个。 在 SuperCLUE 测评中,国外模型的平均成绩为 69.42 分,国内模型平均成绩为 65.95 分,差距在 4 分左右。国内外的平均水平差距在缩小,11 月差距在 10 分左右。 国内开源模型在中文上表现好于国外开源模型,如百川智能的 Baichuan213BChat、阿里云的 Qwen72B、Yi 34BCha t 均优于 Llama213BChat。
2024-11-12
利用gpt-4模型的AI工具有哪些
以下是一些利用 GPT4 模型的 AI 工具: 1. Kickresume 的 AI 简历写作器:使用 GPT4 语言模型自动生成简历,能为简历摘要、工作经验和教育等专业部分编写内容,并保持一致语调。 2. Rezi:受到超过 200 万用户信任的领先 AI 简历构建平台,使用先进的 AI 技术自动化创建可雇佣简历的各个方面,包括写作、编辑、格式化和优化。 3. Huntr 的 AI 简历构建器:提供免费的简历模板,以及 AI 生成的总结/技能/成就生成器和 AI 驱动的简历工作匹配。 更多 AI 简历产品,还可以查看这里:https://www.waytoagi.com/category/79 。您可以根据自己的需要选择最适合的工具。 此外,在生成式人工智能领域,GPT4 有以下突破点: 1. 赋予模型使用工具的能力,如 OpenAI 推出的 ChatGPT 插件测试版,允许与多种工具交互。 2. 在计划和解决问题方面具有一定能力,能通过玩游戏或模拟环境快速学习和从经验中学习。 3. 在许多任务上达到人类水平的表现,对人类的理解有所提升。 4. 但也存在一些限制,如架构中的自回归特性导致缺乏规划能力等。
2024-11-12
SD大模型无法加载
SD 大模型无法加载可能有以下原因及解决方法: 1. LORA 方面: LORA 可以提炼图片特征,文件通常有几十上百兆,承载信息量远大于 Embedding。下载的 LORA 放在根目录的【……\\models\\Lora】文件夹下,使用时点击红色小书,找到 LORA 选项卡加载。 使用 LORA 时要注意看作者使用的大模型,一般需配套使用,还可能需要加入特定触发词,如盲盒 LORA 需加入“full body, chibi”等提示词。 2. Hypernetworks 方面: Hypernetworks 主要针对画风训练,文件下载后放在根目录的【…\\models\\hypernetworks】,使用时点击红色小书,找到 Hypernetworks 选项卡加载。 3. 模型下载与安装方面: 常用的模型下载网站有:。 下载模型后需放置在指定目录,大模型(Ckpt)放入【models\\Stablediffusion】,VAE 模型放入【models\\Stablediffusion】或【models\\VAE】目录(有的大模型自带 VAE 则无需再加),Lora/LoHA/LoCon 模型放入【extensions\\sdwebuiadditionalnetworks\\models\\lora】或【models/Lora】目录,Embedding 模型放入【embeddings】目录。模型类型可通过检测。 不会科学上网时,可在启动器界面直接下载模型,将下载的大模型放在根目录的【……\\models\\Stablediffusion】,在左上角模型列表中选择(看不到就点旁边蓝色按钮刷新)。 旁边的 VAE 相当于给模型增加提高饱和度的滤镜和局部细节微调,可在启动器里下载,放在根目录的【……\\models\\VAE】。 Embedding 功能相当于提示词打包,下载 Embedding 可在 C 站通过右上角筛选 Textual Inversion 找到,放在根目录下的【embeddings】文件夹里。 由于无法确定您大模型无法加载的具体原因,您可以根据上述内容逐一排查。
2024-11-12
有什么特别好的AI识别图片的大模型API
以下是一些关于 AI 识别图片的大模型 API 相关的信息: 学习笔记《【这就是 ChatGPT】了解原理让大语言模型 AI 成为你的打工人》中提到,对于识别印刷体图片,会先将图片变成黑白、调整大小为固定尺寸,然后与数据库中的内容进行对比得出结论。但这种基于规则的方法存在多种局限,而神经网络专门处理未知规则的情况,在图片识别中具有优势。 搭建 OneAPI 可以汇聚整合多种大模型接口,方便后续更换使用各种大模型。 0 基础手搓的“AI 拍立得”概念旨在简化操作流程,提升效率。用户可以选择拍摄场景类型并立即拍照,AI 会自动识别和分析照片中的内容信息,依据预设场景规则迅速生成符合情境的反馈。其实现场景包括图片转成文本和图片转绘图片等。例如,图片转成文本时,大模型会根据选择的场景生成与内容相关的文字描述或解说文本。
2024-11-11
多轮对话训练中你如何训练模型掌握情感需求
在多轮对话训练中,让模型掌握情感需求可以通过以下几种方式: 1. 利用相关数据集进行训练,例如: Guanaco:地址为,是一个使用 SelfInstruct 的主要包含中日英德的多语言指令微调数据集。 chatgptcorpus:地址为,开源了由 ChatGPT3.5 生成的 300 万自问自答数据,包括多个领域,可用于训练大模型。 SmileConv:地址为,数据集通过 ChatGPT 改写真实的心理互助 QA 为多轮的心理健康支持多轮对话,含有 56k 个多轮对话,其对话主题、词汇和篇章语义更加丰富多样,更符合长程多轮对话的应用场景。 2. 在创建提示时采用结构化模式,为模型提供一些情感需求的示例,如: |输入|输出| ||| |一部制作精良且有趣的电影|积极的| |10 分钟后我睡着了|消极的| |电影还行|中性的| 然后单击页面右侧的提交按钮。该模型现在可为输入文本提供情绪。还可以保存新设计的提示。 3. 在多轮次对话中,定期总结关键信息,重申对话的目标和指令,有助于模型刷新记忆,确保准确把握对话的进展和要点。 4. 进行意图识别和分类,特别关注在单一模型或情境中处理多个小逻辑分支的情况。例如在客户服务场景中,快速确定用户提出咨询、投诉、建议等多种类型请求的意图,并分类到相应处理流程中。
2024-11-11