Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

18种提示词框架

Answer

以下是为您整理的 18 种提示词框架相关内容:

提示词框架的理解和运用非常重要。您可以先从相对基础的框架入手,比如“情境(Situation):任务(Task):行动(Action):结果(Result)”。

常见的提示词框架有:

  1. CRISPE(Capacity and Role,Insight,Statement,Personality,Experiment)
  2. BROKE(Background,Role,Objectives,Key Results,Evolve)
  3. ICIP 框架:包括指令(Instruction,必须)、背景信息(Context,选填)、输入数据(Input Data,选填)和输出指示器(Output Indicator,选填)

提示词框架的发展为 Prompt 的构建提供了高度概括和结构化的方法,例如:

  1. 明确任务目标,强调任务描述的精确性和完整性。
  2. 采用角色扮演方法,让模型更好地理解上下文并生成更相关的回答。
  3. 使用基于 Markdown 语法和角色法框架的结构化提示词,提高提示词的可读性和组织性。
  4. 进行提示词测试和迭代,不断优化提示词效果。
  5. 将提示词封装为智能体,使复杂任务的处理更加模块化和可复用。

随着大语言模型在商业和研究领域的应用,定制化的 Prompt 编写服务日渐受到欢迎,由资深的提示词工程师深入了解客户需求,为其设计、优化并定制最合适的 Prompt。

Content generated by AI large model, please carefully verify (powered by aily)

References

小七姐:Prompt 喂饭级系列教程 小白学习指南(二)

对框架的理解和运用是非常重要的一部分,参考上图,来源:[prompt-engineering/prompt-patterns:Prompt编写模式:如何将思维框架赋予机器,以设计模式的形式来思考prompt(](https://github.com/prompt-engineering/prompt-patterns)[github.com](http://github.com)[)](https://github.com/prompt-engineering/prompt-patterns)提示词框架有很多,有的简单有的复杂,你可以选一个看起来不那么难的先入手,比如可以从非常基础的:情境(Situation):任务(Task):行动(Action):结果(Result):开始。如果你拿到我给你的这个由四个词语组成的提示词框架还是觉得无从下手,你可以试试这样:恭喜你,就在刚才你已经写出你的第一个提示词了,它是:请告诉我如何用下列四个词编写一个框架性的提示词(prompt)?情境(Situation):任务(Task):行动(Action):结果(Result):请你回忆一下你是怎么写出这条提示词的吧。最后复习一下本节课的三步走:1、懂原理2、找需求3、用框架下课啦~我是prompt学习者和实践者小七姐,欢迎链接我交流prompt相关知识:se7en319

小七姐:Prompt is not enough

1.OpenAI官方的六项最佳实践最初,我们主要依赖OpenAI官方给出的指导,包括写清晰具体的指令、给模型时间思考、使用分隔符等基本技巧——这些实践为我们使用大模型开了个好头。1.提示词框架随后,各种提示词框架开始出现,如CRISPE(Capacity and Role,Insight,Statement,Personality,Experiment)和BROKE(Background,Role,Objectives,Key Results,Evolve)等。我们是这用这些框架为提示词编写提供一个系统化的方法。1.明确任务目标清晰地定义我们希望大模型完成的任务是至关重要的。这个阶段强调了任务描述的精确性和完整性。1.角色扮演方法探索让大模型扮演特定角色来完成任务的方法。这种方法能够让模型更好地理解上下文并生成更相关的回答。1.结构化提示词使用基于Markdown语法和角色法框架的结构化提示词。这种方法提高了提示词的可读性和组织性,使复杂任务的分解变得更加直观。1.提示词测试和迭代随着实践的深入,开发了一些提示词测试和迭代的方法。这个过程帮助我们不断优化提示词,提高其效果。1.提示词封装为智能体将提示词封装为智能体,这使得复杂任务的处理变得更加模块化和可复用。

刘海:「AI 提示词工程师」の 见解和经验分享

提示词工程师已经发展出了多种提示词框架,它们为Prompt的构建提供了一种高度概括和结构化的方法。可以将这些框架看作是构建有效提示词的方法论或"元结构"。例如:ICIP框架:此框架包括四个部分,其中有指令(Instruction,必须)、背景信息(Context,选填)、输入数据(Input Data,选填)和输出指示器(Output Indicator,选填)。BROKE框架:此框架着重于五个方面,包括背景(Background)、角色定义(Role)、目标设定(Objectives)、关键成果展示(Key Result)以及持续的试验与优化(Evolve)。CRISPE框架:此框架分为六个部分,涵盖了上下文(Context)、角色(Role)、说明(Instruction)、主题(Subject)、预设(Preset)和例外(Exception)。定制化提示词编写服务:随着大语言模型在商业和研究领域的应用,定制化的Prompt编写服务日渐受到欢迎。这些专业服务往往由资深的提示词工程师提供,他们会深入了解客户的具体需求,从而为其设计、优化并定制出最合适的Prompt。

Others are asking
哪些ai软件能制作r18图片
制作 R18 图片是不符合道德和法律规范的行为,因此没有合法的 AI 软件可以用于此目的。AI 技术应当被用于有益和合法的用途。
2025-01-27
18种提示词框架
以下是 18 种提示词框架: 1. Instruction(指令):即您希望 AI 执行的具体任务,比如翻译或者写一段什么文字。 2. Context(背景信息):给 AI 更多的背景信息,引导模型做出更贴合需求的回复。 3. Input Data(输入数据):告知模型需要处理的数据。 4. Output Indicator(输出引导):告知模型我们要输出的类型或风格。 5. Capacity and Role(能力和角色):ChatGPT 应扮演什么角色。 6. Insight(见解):提供您请求的背后见解、背景和上下文。 7. Statement(声明):您要求 ChatGPT 做什么。 8. Personality(个性):您希望 ChatGPT 以何种风格、个性或方式回应。 9. Experiment(实验):请求 ChatGPT 为您回复多个示例。 10. Background(背景):说明背景,为 ChatGPT 提供充足信息。 11. Role(角色):您希望 ChatGPT 扮演的角色。 12. Objectives(目标):我们希望实现什么。 13. Key Result(关键结果):您要什么具体效果,试验并调整。 14. Evolve(试验并改进):三种改进方法自由组合:a.改进输入:从答案的不足之处着手改进背景、目标与关键结果;b.改进答案:在后续对话中指正 ChatGPT 答案缺点;c.重新生成:尝试在 Prompt 不变的情况下多次生成结果,优中选优。 15. CONTEXT 上下文背景:为对话设定舞台。 16. OBJECTIVE 目的:描述目标。 17. ACTION 行动:解释所需的动作。 18. SCENARIO 方案:描述场景。 此外,还有一些常见的特定框架,如: 1. ICIP 框架:包括指令(Instruction,必须)、背景信息(Context,选填)、输入数据(Input Data,选填)和输出指示器(Output Indicator,选填)。 2. BROKE 框架:着重于背景(Background)、角色定义(Role)、目标设定(Objectives)、关键成果展示(Key Result)以及持续的试验与优化(Evolve)。 3. CRISPE 框架:分为上下文(Context)、角色(Role)、说明(Instruction)、主题(Subject)、预设(Preset)和例外(Exception)。 提示词工程师是专门负责为大语言模型设计、优化和实施 Prompt 的技术角色,他们深刻理解模型的工作原理,能够根据具体需求定制合适的 Prompt,确保其有效性。随着大语言模型在商业和研究领域的应用,定制化的 Prompt 编写服务日渐受到欢迎。这些专业服务往往由资深的提示词工程师提供,他们会深入了解客户的具体需求,从而为其设计、优化并定制出最合适的 Prompt。
2025-01-15
18种提示词框架
以下是 18 种提示词框架的相关介绍: 1. ICIP 框架:包括指令(Instruction,必须)、背景信息(Context,选填)、输入数据(Input Data,选填)和输出指示器(Output Indicator,选填)四个部分。 2. BROKE 框架:着重于背景(Background)、角色定义(Role)、目标设定(Objectives)、关键成果展示(Key Result)以及持续的试验与优化(Evolve)五个方面。 3. CRISPE 框架:分为上下文(Context)、角色(Role)、说明(Instruction)、主题(Subject)、预设(Preset)和例外(Exception)六个部分。 4. 情境框架:基础且简单,易于入手。 提示词工程师是专门负责为大语言模型设计、优化和实施 Prompt 的技术角色。他们不仅要编写 Prompt,还需进行测试和优化以确保输出质量。善于发现需求、解析需求并写成专业的 Prompt 以解决问题。 标识符如、<>等,以及属性词如 Role、Profile、Initialization 等,有助于控制内容层级和标识语义结构。 结构化提示词框架可视为提示词的标准格式,在不了解如何开始设计提示词时可作为通用标准使用,其在行业内应用广泛且成熟度较高。 您可以在 AGI 的相关板块看到优秀的结构化 Prompt 示例。如果觉得某些例子复杂,可结合自身生活或工作场景,如自动给班级孩子起昵称、排版运营文案、安排减脂餐、列学习计划、设计调研问卷等,选择一个适合的提示词框架开启首次编写。
2024-11-29
COZE 是基于什么框架
Coze 基于以下框架构成: 1. 提示词:使用了结构化提示词的框架,通过提示要求大模型根据不同的行为调用不同的工作流。 2. 数据库:能够记录不同用户历史记账记录,工作流里会用到。 3. 工作流:增加记账调用 add_accounting_record 工作流;查询账户余额调用 query_accounting_balance 工作流;删除所有记账记录调用 init_accounting_records 。 此外,还有关于 Coze 的其他信息: Coze 是由字节跳动推出的 AI 聊天机器人和应用程序编辑开发平台,专为开发下一代 AI 聊天机器人而设计。 具有多语言模型支持、插件系统、知识库功能、数据库和记忆能力、工作流设计、多代理模式等特点。 目前对用户完全免费,且易于发布和分享。
2025-01-26
12个prompt 框架
以下是 12 种 Prompt 框架: 1. Instruction(指令):即希望 AI 执行的具体任务,如翻译或写一段文字。 2. Context(背景信息):给 AI 更多背景信息,引导模型做出更贴合需求的回复。 3. Input Data(输入数据):告知模型需要处理的数据。 4. Output Indicator(输出引导):告知模型输出的类型或风格。 5. Capacity and Role(能力和角色):ChatGPT 应扮演的角色。 6. Insight(见解):提供请求背后的见解、背景和上下文。 7. Statement(声明):说明要求 ChatGPT 做什么。 8. Personality(个性):希望 ChatGPT 以何种风格、个性或方式回应。 9. Experiment(实验):请求 ChatGPT 回复多个示例。 10. Background(背景):说明背景,为 ChatGPT 提供充足信息。 11. Role(角色):希望 ChatGPT 扮演的角色。 12. Objectives(目标):希望实现的目标。 此外,还有以下框架: 1. TASK(任务):定义特定任务。 2. ACTION(行动):描述需要做的事情。 3. GOAL(目标):解释最终目标。 4. INPUT(输入):描述信息或资源。 5. STEPS(步骤):询问详细的步骤。 6. EXPECTATION(期望):描述所需的结果。 7. REQUEST(请求):描述您的要求。 8. Key Result(关键结果):要什么具体效果,试验并调整。 9. Evolve(试验并改进):三种改进方法自由组合,包括改进输入、改进答案、重新生成。 10. CONTEXT(上下文背景):为对话设定舞台。 11. OBJECTIVE(目的):描述目标。 12. SCENARIO(方案):描述场景。 同时,还有一些特定的框架,如 ICIO 框架、CRISPE 框架、BROKE 框架等。
2025-01-23
dify编排框架是什么意思
Dify 编排框架是一种在 AI 领域中应用的可视化编排框架,例如在 workflow 可视化编排页面中使用(框架:React Flow)。它具有以下特点和优势: 1. 集各家所长,在用户体验方面表现出色。 2. 可以人为编排 Workflow 里的子任务,与 AutoGPT 由大模型编排任务的方式不同,这种手动编排方式带来了明显的优化,如在流程中加入人类 Knowhow 以补足模型知识的不足,通过专家测试试跑减少生产环境中的反复无效反思,引入图的概念灵活组织节点、连接各类工具等。 3. 加入图的概念后,workflow 的天花板变得非常高,可以在流程中任意增加节点和各种类型的节点,不仅能套工具、套其它 agent,还能写代码用硬逻辑处理或接大模型进行判断,能力上限很大程度取决于想象力。 4. 对于个人开发者构建高质量的 AI 数字人很有帮助,有大量开源工作者维护,集成了各种主流的模型供应商、工具以及算法实现等,可以通过它快速编排出自己的 AI Agent,赋予数字人灵魂。利用其编排和可视化交互能任意修改流程,构造不同的 AI Agent,并实现相对复杂的功能,如知识库搭建、工具使用等,无需任何编码和重新部署工作。同时,Dify 的 API 暴露了 audiototext 和 texttoaudio 两个接口,基于这两个接口可将数字人的语音识别和语音生成都交由 Dify 控制。如果有更加高度定制的模型,也可以在 Dify 中接入 XInference 等模型管理平台进行部署。此外,数字人 GUI 工程中仍保留了多个模块,能保持更好的扩展。 在使用 Dify 接口时,需要注意必须在应用编排功能中打开文字转语音和语音转文字功能,否则接口会返回未使能的错误。只有接入了支持 TTS 和 SPEECH2TEXT 的模型供应商,才会在功能板块中展示出来,Dify 的模型供应商图标下标签有展示该供应商支持哪些功能,可自行选择方便使用的。对于 TTS,不同的模型供应商支持的语音人物不同,可以根据个人喜好添加。
2025-01-21
对话框架都有哪些
以下是一些常见的对话框架: 1. 智谱·AI 开源模型列表中的 Chat 模型框架: ChatGLM36B:第三代 ChatGLM 对话模型,采用全新 Prompt 格式,原生支持工具调用、代码执行和 Agent 任务等复杂场景,上下文 token 数为 8K。 ChatGLM36Bbase:第三代 ChatGLM 基座模型,采用更多样训练数据、更充分训练步数和更合理训练策略,在 10B 以下基础模型中性能最强,上下文 token 数为 8K。 ChatGLM36B32k:第三代 ChatGLM 长上下文对话模型,在 ChatGLM36B 基础上强化长文本理解能力,能处理最多 32K 长度上下文。 ChatGLM26B32k:第二代 ChatGLM 长上下文对话模型,在 ChatGLM26B 基础上进一步强化长文本理解能力,能处理最多 32K 长度上下文。 ChatGLM26B32kint4:ChatGLM26B32K 的 int4 版本。 ChatGLM6B:第一代 ChatGLM 对话模型,支持中英双语,基于 General Language Model架构,具有 62 亿参数,结合模型量化技术可在消费级显卡上本地部署,上下文 token 数为 2K。 2. COSTAR 框架: 定义:指明文本的整体风格,包括词汇选择、句式结构及可能的参照对象。 重要性:不同风格适合不同场合,如学术论文和社交媒体帖子。 示例:科学论文需正式语言和客观语气,博客文章可采用轻松、个人色彩写作风格。 Tone(语气) 定义:设定文本的情感基调,确保符合预期氛围。 重要性:正确语气可建立与读者联系,传达适当态度。 示例:商业计划书需正式、专业且有说服力语气,产品评测可采用轻松幽默语气。 Audience(受众) 定义:明确回答或文本的目标读者。 重要性:了解受众有助于调整语言复杂度、术语使用及整体信息传递方式。 示例:专业人士可用行业术语和复杂概念,大众需简化语言避免专业化术语。 Response(回复) 定义:指定最终输出的形式和结构。 重要性:正确格式使信息更易理解和消化。 示例:详细分析报告按标准报告格式组织,简单问答可直接列表呈现答案。
2025-01-14
提示词框架
以下是关于提示词框架的相关内容: 视频模型中的提示词框架: Vidu Prompt 基本构成: 提示词基础架构:包括主体/场景、场景描述、环境描述、艺术风格/媒介。需调整句式和语序,避免主体物过多/复杂、模糊术语表达,使用流畅准确的口语化措辞,丰富、准确和完整的描述以生成特定艺术风格、满足需求的视频。 提示词与画面联想程度的说明:以单帧图像为例,通过具体详实的位置描述/环境描述进行构图,艺术风格描述提升效果和氛围,统一画面风格。 AI 提示词工程师相关的提示词框架: 提示词工程师是专门负责为大语言模型设计、优化和实施 Prompt 的技术角色,不仅编写 Prompt,还需测试和优化以确保输出内容质量。 发展出多种提示词框架,如 ICIP 框架(包括指令、背景信息、输入数据、输出指示器)、BROKE 框架(包括背景、角色定义、目标设定、关键成果展示、持续的试验与优化)、CRISPE 框架(包括上下文、角色、说明、主题、预设、例外)。 有定制化的 Prompt 编写服务,由资深提示词工程师深入了解客户需求设计、优化并定制最合适的 Prompt。 RAG 提示工程中的提示词框架: 在输入环节构建全面的提示词框架,包含伦理审查及针对不同类型攻击的审查规则,具体划分为伦理审查及对越狱类、泄露类、目标劫持类等攻击类型的审查。融入人格设定元素,利用大型模型的注意力机制,加固输入防护的审核能力及人格设定的稳定性。
2025-01-13
怎么给你提示词
以下是关于如何写提示词(prompt)的相关内容: 在学校通用场景中,有创建课程计划助手、写作素材收集助手、雅思写作助手等,其提示词示例如下: 创建课程计划助手:“我是教{……}的老师,帮我创建一份课程计划” 写作素材收集助手:“提供{指定主题}的结论和数据,帮我提供写作素材” 雅思写作助手:“我希望你作为雅思写作考官,帮我提升英语。我们现在开始,我的第一个问题是……” 编写提示词的方法和技巧包括: 假设情景:鼓励探讨假设性场景,例如“假设全球变暖持续恶化,我们需要采取哪些措施应对?” 数据:鼓励使用统计数据或数据支持主张,比如“在关于电动汽车的文章中提供销售数据和环境影响数据。” 个性化:根据用户偏好或特点要求个性化,如“请根据用户对喜剧电影的喜好推荐几部好看的电影。” 语气:指定所需语气(如正式、随意、信息性、说服性),例如“请用正式语气编写一篇关于气候变化的文章。” 格式:定义格式或结构(如论文、要点、大纲、对话),比如“请为我提供一个关于健康饮食的要点清单。” 限制:指定约束条件,如字数或字符数限制,例如“请提供一个关于太阳能的 100 字简介。” 引用:要求包含引用或来源以支持信息,比如“请在关于全球变暖的文章中引用权威研究。” 语言:如果与提示不同,请指明回应的语言,例如“请用法语回答关于巴黎旅游景点的问题。” 反驳:要求解决潜在的反驳论点,比如“针对抵制疫苗接种的观点提出反驳。” 术语:指定要使用或避免的行业特定或技术术语,例如“请用通俗易懂的语言解释区块链技术。” 编写提示词的建议: 1. 明确任务:清晰地定义任务,如写故事时包含背景、角色和主要情节。 2. 提供上下文:若任务需背景知识,提供足够信息。 3. 使用清晰语言:避免模糊或歧义词汇。 4. 给出具体要求:明确格式或风格等。 5. 使用示例:提供期望结果的示例。 6. 保持简洁:避免过多信息导致困惑。 7. 使用关键词和标签:帮助模型理解主题和类型。 8. 测试和调整:生成文本后检查并调整。 希望这些内容能帮助您更好地编写提示词。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-01-29
提示词是什么
提示词(Prompt)是给大语言模型的输入文本,用于指定模型应执行的任务和生成的输出。它发挥“提示”模型的作用,设计高质量的提示词需根据目标任务和模型能力精心设计,良好的提示词能让模型正确理解人类需求并给出符合预期的结果。 提示词由一些要素组成,包括指令(想要模型执行的特定任务或指令)、上下文(包含外部信息或额外的上下文信息,引导语言模型更好地响应)、输入数据(用户输入的内容或问题)、输出指示(指定输出的类型或格式)。但提示词所需的格式取决于想要语言模型完成的任务类型,并非所有要素都是必须的。 在星流一站式 AI 设计工具中,prompt 输入框可输入提示词,使用图生图功能辅助创作。输入语言方面,不同基础模型有不同要求,支持中英文输入。写好提示词要做到内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等;可调整负面提示词,帮助 AI 理解不想生成的内容;利用“加权重”功能让 AI 明白重点内容;还可使用预设词组、辅助功能如翻译、删除所有提示词、会员加速等。 如果您接触过大量提示工程相关的示例和应用,会注意到提示词是由一些要素组成的。为了更好地演示提示词要素,下面是一个简单的提示,旨在完成文本分类任务。在上面的提示示例中,指令是“将文本分类为中性、否定或肯定”。输入数据是“我认为食物还可以”部分,使用的输出指示是“情绪:”。请注意,此基本示例不使用上下文,但也可以作为提示的一部分提供。例如,此文本分类提示的上下文可以是作为提示的一部分提供的其他示例,以帮助模型更好地理解任务并引导预期的输出类型。
2025-01-29
AI提示词学习资料
以下是为您整理的关于 AI 提示词的学习资料: 《拘灵遣将|不会写 Prompt(提示词)的道士不是好律师——关于律师如何写好提示词用好 AI 这件事》:指出要从古人总结的智慧中学习写提示词,接受 AI 存在的“不稳定性”,提示词应是相对完善的“谈话方案”,成果在对话中产生,不能期待完美的提示词和答案。 《从零开始:AI 视频制作小白的成长之路📹》:提到提示词有很多坑,如有人花钱学习但仍上手困难。提示词的框架为主体(什么东西)+动作(干啥了)+场景+镜头(怎么拍),并举例说明。 《雪梅 May 的 AI 学习日记》:2023 年 ChatGPT 出现后,提示词成为基本功,沉淀了一些经典框架。作者学习了一段时间 Agent 后,打算看吴恩达的体系课程,推荐吴恩达的 prompt 课程,并分享了相关学习链接。作者还通过练习用 prompt 写白皮书,实际体验中 AI 能帮助完成约 20%的工作。
2025-01-29
提示词学习
以下是关于提示词学习的相关内容: 提示词的知识体系: 可分为五个维度,从高到低依次是思维框架、方法论、语句、工具和场景。但对于初学者,舒适的学习顺序应是反过来的。 场景:直接切入提示词的场景去学,对比在不同场景下使用提示词的效果。 工具:使用现成的提示词工具,包括 Meta Prompt、Al 角色定制等。 有效语句:学习大量经典论文中提出的提示词语句。 方法论:将有效语句及其背后的原理整合成稳定可控的方法。 学习 Stable Diffusion 的提示词: 是一个系统性的过程,需要理论知识和实践经验结合。 学习基本概念,包括了解工作原理、模型架构,理解提示词如何影响结果,掌握组成部分。 研究官方文档和教程。 学习常见术语和范例。 掌握关键技巧,如组合词条、控制生成权重、处理抽象概念等。 实践和反馈,对比结果并总结经验。 创建提示词库。 持续跟进前沿。 学习提示词运用的建议: 理解提示词的作用,其质量直接影响模型输出质量。 学习构建技巧,明确任务目标,提供足够背景信息和示例,使用清晰指令,明确特殊要求。 参考优秀案例,可在领域社区、Github 等资源中寻找。 实践、迭代、优化,多与语言模型互动,比较输出差异。 活用提示工程工具,如 Anthropic 的 Constitutional AI。 跟上前沿研究。
2025-01-29
请问我该怎么用精准的提示词
以下是关于如何使用精准提示词的相关内容: 一、星流一站式 AI 设计工具中的提示词 1. 提示词的定义:用于描绘您想生成的画面。 2. 输入语言: 星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发)。 支持中英文输入。 3. 提示词优化:启用提示词优化后,可帮助扩展提示词,更生动地描述画面内容。 4. 写好提示词的方法: 预设词组:小白用户可以点击提示词上方官方预设词组进行生图。 提示词内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框。负面提示词可以帮助 AI 理解不想生成的内容,比如:不好的质量、低像素、模糊、水印。 利用“加权重”功能:可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先。还可对已有的提示词权重进行编辑。 辅助功能:包括翻译功能(一键将提示词翻译成英文)、删除所有提示词(清空提示词框)、会员加速(加速图像生图速度,提升效率)。 二、DALL·E 自动优化提示词 1. 提示词生成指南:创建能为图像生成绘制清晰画面的提示词。使用精确、视觉化的描述(而非难以捉摸的概念)。尽量保持提示词简短、精确且令人惊叹。 2. 提示词结构:“一个” 媒介:考虑图像应模仿的艺术形式。 主题:主要焦点,包括颜色、姿势、视角等。 背景:环境如何补充主题。 环境:室内、室外、抽象等。 颜色:与主题的对比或和谐关系。 光线:一天中的时间、强度、方向等。 风格特点:独特的艺术特点。 影响:启发作品的艺术流派或艺术家。 技术:对于绘画,如何操纵画笔;对于数字艺术,特定的数字技术。 照片:描述摄影类型、相机设备和相机设置等。 绘画:提及使用的颜料类型、画布的质地和笔触的形状/质地。 数字:注明使用的软件、阴影技术和多媒体方法。 三、【SD】文生图中的提示词 1. 描述逻辑:人物及主体特征(服饰、发型发色、五官、表情、动作),场景特征(室内室外、大场景、小细节),环境光照(白天黑夜、特定时段、光、天空),画幅视角(距离、人物比例、观察视角、镜头类型),画质(高画质、高分辨率),画风(插画、二次元、写实)。 2. 辅助方法: 下次作图时,先选择模板,点击倒数第二个按钮快速输入标准提示词。 对于新手,可通过功能型辅助网站书写提示词,如 http://www.atoolbox.net/ (通过选项卡快速填写关键词信息)、https://ai.dawnmark.cn/ (每种参数有缩略图参考,更直观选择提示词)、C 站(https://civitai.com/ )(可抄作业,复制每一张图的详细参数并粘贴到正向提示词栏,然后点击生成按钮下的第一个按键,Stable Diffusion 会自动匹配所有参数,但要注意图像作者使用的大模型和 LORA,不然即使参数一样,生成的图也会不同。也可取其中较好的描述词使用,比如人物描写、背景描述、一些小元素或者画面质感之类的。 希望以上内容对您有所帮助,祝您在使用提示词生成图像时取得满意的效果!
2025-01-29
我应该怎么入门ai提示词,从哪个开始学习,有课程指路吗
以下是入门 AI 提示词的建议: 1. 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅:在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,您可以根据自己的兴趣选择特定的模块进行深入学习。建议您一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试:理论学习之后,实践是巩固知识的关键。尝试使用各种产品做出您的作品,在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品:与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 国内大语言模型工具好用,学习可以从提示词开始。提示词的结构可以参考主体(什么东西)+动作(干啥了)+场景+镜头(怎么拍),例如“母亲很疲惫看着孩子”。 希望以上内容对您有所帮助。
2025-01-28