直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

Ai现在在什么阶段

回答

目前 AI 正处于重要的发展阶段:

  • 在客户服务领域,生成式 AI 预计将经历从在人工监督下处理复杂查询,到更独立地处理大多数问题,最终在每个用户旅程中提供支持的阶段,使客户服务部门成为灵活、数据驱动的组织,创造差异化体验。
  • 从行业整体来看,AI 正处于所谓的“巨型周期”,众多产品和解决方案将逐渐被 AI 驱动的创新替代品取代。应用层大量创新的第一年已经到来,重点正从基础训练转移到更高层次的认知任务,如计划和推理。
  • 从技术发展历程看,AI 经历了早期阶段(1950s - 1960s)的专家系统、博弈论、机器学习初步理论,知识驱动时期(1970s - 1980s)的专家系统、知识表示、自动推理,统计学习时期(1990s - 2000s)的机器学习算法,到如今深度学习时期(2010s - 至今)的深度神经网络、卷积神经网络、循环神经网络等。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

生成式人工智能在客户服务中的兴起与挑战

预计生成式AI在客户服务领域的融入将经历几个阶段。起初,AI将在人工监督下处理复杂查询。随着技术的成熟,AI将能够更独立地处理大多数问题,最终几乎在每个用户旅程中都能提供支持。这将使客户服务部门成为一个灵活的、数据驱动的组织,能够创造真正差异化的客户体验。

观点:红杉资本 | 2024年:AI的机遇、现状和未来预测

尽管我们已经认识到人工智能(AI)所带来的变革性影响,但考虑到AI正处于一个重要的发展阶段,即所谓的“巨型周期”,这一周期内,历史上众多产品和解决方案都将逐渐被AI驱动的创新替代品所取代。因此,探讨这一转变对行业和社会的深远影响,无疑是一个值得高度关注的重要议题。如果我们将人工智能以类人的方式进行创建、推理和交互的能力引入需要大量劳动力或只能由专业人员执行的任务中,会怎么样?这个问题对于发展基于人工智能的业务至关重要。人工智能行业在一年内实现了与SaaS行业十年时间相同的收入,这一事实很好地表明了这种变化的规模。虽然已经对云转型进行了类比,但我个人认为,产业变革会更大,人工智能相关行业的TAM将扩展到几乎所有人类参与的行业。我们正处于应用层大量创新的第一年。正如Sonya所预测的那样,AI已经从副驾驶转向了代理。虽然到目前为止,重点一直放在基础训练上,但现在它将转移到更高层次的认知任务,如计划和推理。由于成本降低,拥抱人工智能的公司将越来越多地成为行业标准,取代大型组织或外包公司。

问:AI的技术历史和发展方向,目前最前沿的技术点有哪些

1.早期阶段(1950s-1960s):专家系统、博弈论、机器学习初步理论2.知识驱动时期(1970s-1980s):专家系统、知识表示、自动推理3.统计学习时期(1990s-2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)4.深度学习时期(2010s-至今):深度神经网络、卷积神经网络、循环神经网络等

其他人在问
AI有哪些趣味应用
以下为一些 AI 的趣味应用: 智联招聘 APP:作为 AI 招聘筛选工具,运用自然语言处理和机器学习技术,能帮助企业快速筛选简历,提高招聘效率。例如企业招聘程序员,APP 会筛选出有相关技术经验和技能的简历。 贝壳找房 APP:其 AI 房地产评估系统通过数据分析和机器学习,可准确评估房地产价值,为买卖双方提供参考。比如用户想出售房屋,APP 可以给出一个合理的价格区间。 腾讯游戏助手:拥有 AI 游戏角色生成器,借助图像生成和机器学习技术,为游戏开发者生成独特的游戏角色,丰富游戏内容。例如在一款角色扮演游戏中,生成不同外貌、性格和技能的角色,增加游戏的趣味性。 墨迹天气 APP:利用数据分析和机器学习的 AI 天气预报助手,能提供精准的天气预报和气象预警,包括温度、湿度、风力等信息,同时还能提供气象预警,如暴雨、台风等,帮助用户合理安排出行和生活。 宝宝树安全座椅推荐:其 AI 儿童安全座椅推荐系统通过数据分析和机器学习,能根据儿童年龄、体重等信息,为家长推荐合适的儿童安全座椅。 途虎养车保养推荐:AI 汽车保养套餐推荐系统运用数据分析和机器学习,根据车辆型号、行驶里程等,为用户推荐合适的保养套餐,如更换机油、滤清器等。 丰巢快递柜管理系统:利用数据分析、物联网技术的 AI 物流快递柜管理系统,能优化快递柜使用效率,如分配柜子、通知取件等,提高快递配送效率。 智联招聘面试模拟功能:其 AI 招聘面试模拟平台通过自然语言处理和机器学习,模拟面试官提问,为求职者提供面试练习和反馈。 酷家乐装修设计软件:AI 房地产装修设计平台借助图像生成和机器学习,为用户提供装修设计方案,用户可根据自己的喜好进行选择和调整。
2024-11-20
AI如何做副业赚钱
以下是关于 AI 做副业赚钱的一些信息: 生成式 AI 在艺术创作方面有应用。当前许多 AI 工具存在一些问题,如出现幻觉或处理请求时间长,但为满足高级用户需求,不少公司会推出如 ChatGPT 那样的“专业版”套餐来实现盈利。 生成式 AI 能将想象变为现实,内容创作是其第一个主流用例,如 Lensa 所展示的。肖像画只是开始,它还将服务于各种用例,包括消费者娱乐创作和创作者或个体创业者的盈利创作。 若 AI 导致工作机会变化,政府可通过税收平衡差异,全民基本收入(UBI)是一种解决方法。
2024-11-20
ai诈骗概念
AI 诈骗是指利用人工智能技术进行的欺诈行为。例如,通过生成逼真的虚假内容、模拟真实身份等手段来欺骗受害者。 拜登签署的 AI 行政命令中提到要保护美国人免受 AI 带来的诈骗和欺骗,商务部将为内容认证和水印制定指导方针,以清晰标注 AI 生成的内容,联邦机构将使用这些工具让美国人容易知晓从政府收到的通信是真实的,并为私营部门和全球各国政府树立榜样。 在 AI 术语中,与相关概念有关的术语包括智能体(Agent)等。 在小学课堂的课程设计中,对于三年级的孩子,会用他们能理解的语言来介绍 AI,比如简单说明 AI 是让计算机或机器能像人类一样思考和学习的技术。
2024-11-20
ai诈骗直接案例
以下为您提供一些与 AI 诈骗相关的案例: GPTCHA:这是一款由三位开发者共同搭建的由 GPT4 驱动的小工具,致力于解决电话诈骗问题。它能够拦截可疑电话,并用虚拟声音与呼叫方聊天,直到确认电话合法且安全。您可通过 http://gptcha.ai/ 了解更多。 此外,在周鸿祎免费课 AI 系列第一讲中提到,AIGC 可能被用于深度伪造,不仅涉及个人诈骗,还可能影响国家安全。比如利用 Stable Diffusion、Midjourney 等工具生成虚假图像进行诈骗。
2024-11-20
ai案例
以下是一些 AI 的应用案例: 在汽车行业: 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定,如特斯拉、Waymo 和 Cruise 等公司在开发和测试自动驾驶汽车。 车辆安全系统:用于增强车辆的安全性能,如自动紧急制动、车道保持辅助和盲点检测系统。 个性化用户体验:根据驾驶员的偏好和习惯调整车辆设置。 预测性维护:通过分析车辆实时数据预测潜在故障和维护需求。 生产自动化:在汽车制造中用于自动化生产线,提高效率和质量控制。 销售和市场分析:分析市场趋势、消费者行为和销售数据。 电动化和能源管理:在电动汽车的电池管理和充电策略中发挥作用。 共享出行服务:优化路线规划、调度车辆和定价策略。 语音助手和车载娱乐:如 Amazon Alexa Auto 和 Google Assistant 等语音助手。 车辆远程监控和诊断:远程监控车辆状态,提供实时诊断和支持。 在活动策划中: 活动主题及内容生成:根据活动目标、参与者背景等生成合适的主题和内容框架建议。 邀请函和宣传文案生成:基于活动信息生成吸引人的文案。 现场活动管理:利用计算机视觉、语音识别等辅助管理人流、秩序等。 虚拟助手:作为虚拟活动助手提供信息查询和问题咨询服务。 活动反馈分析:自动分析活动反馈,总结关键观点和改进建议。 活动营销优化:基于参与者行为数据优化营销策略。 在工作场景中: 企业运营:日常办公文档材料撰写整理,营销对话机器人,市场分析,销售策略咨询,法律文书起草、案例分析、法律条文梳理,人力资源简历筛选,预招聘,员工培训。 教育:协助评估学生学习情况,为职业规划提供建议,定制化学习内容,论文初稿搭建及审核,帮助低收入国家/家庭获得平等教育资源。 游戏/媒体:定制化游戏,动态生成 NPC 互动,自定义剧情,开放式结局,出海文案内容生成,语言翻译及辅助广告投放和运营,数字虚拟人直播,游戏平台代码重构,AI 自动生成副本。 零售/电商:舆情、投诉、突发事件监测及分析,品牌营销内容撰写及投放,自动化库存管理,自动生成或完成 SKU 类别选择、数量和价格分配,客户购物趋势分析及洞察。 金融/保险:个人金融理财顾问,贷款信息摘要及初始批复,识别并检测欺诈活动风险,客服中心分析及内容洞察。
2024-11-20
ai新闻
以下是为您提供的 AI 新闻: 2024 年人工智能现状: OpenAI 的 o1 模型在数学、科学和推理方面重新定义了 AI 的极限,让竞争对手感到困惑和受挫。 中国的 AI 模型在克服制裁的情况下,凭借坚韧和战略智慧在排行榜上占据一席之地。 生成式 AI 初创公司获得巨额收益,但可持续性仍难以捉摸。 对未来的预测包括:预计明年会有团体花费超过 10 亿美元训练单个大规模模型;计算需求的增长将超出电网支持能力;AI 对选举的影响尚未显现。 25 个 AI 新产品: Magic Editor for Google Photos 可进行照片的局部修改。 MusicLM 可文本生成音乐,当前可在 AI Test Kitchen with Google 试用。 Gen AI for Android 包括 Magic Compose 可自动回复信息,Gen AI for Wallpaper 可生成手机壁纸。 ML Hub for Developers 提供 ML 模型训练与部署一站式服务。 Immersive View for Google Map 是仿真 3D 沉浸式地图。 「Help me write」 in Gmail 是电子邮件写作助手。 Peridot by Niantic 是 AI 驱动的 AR 电子宠物。
2024-11-20
AI能根据阶段性成果推断出最终结果吗
在最简单的情形下,我们基本想用人工智能做归纳推理,输入一系列测量结果,让其预测尚未完成的测量结果。此时,我们把人工智能视作黑匣子,只关心其能否给出正确答案,可能认为能设置它“不做任何假设”而“遵循数据”,但人工智能不可避免存在一些底层结构,使其最终要假设某种数据模型。这是机器学习中常见的情况,比如训练神经网络来预测、分类等,若“向内看”很难明白其运作原理。应用图像识别神经网络会有最终结果,网络中约一半层产生的“中间想法”可能存在类似“猫性的最终标志”,但这不在当前科学词典中,无法用于构建解释图像的“科学叙述”。 综上,人工智能在一定程度上能根据阶段性成果进行推断,但存在诸多限制和不确定性。
2024-11-13
针对现阶段我国AI发展情况,实体企业面临的机会和挑战有哪些?
现阶段我国 AI 发展情况下,实体企业面临的机会和挑战如下: 机会: 1. 提高工作效率:如在编程、自动化任务处理和内容创作等方面,AI 能够快速完成复杂任务。 2. 创新业务模式:企业领导者可利用 AI 提高工作效率,将更多精力投入创新和战略规划。 3. 拓展市场边界:通过提示词工程优化 AI 输出,提升市场竞争力。 挑战: 1. 岗位替代风险:部分技术岗位如系统管理员、数字营销文案撰写等可能受到 AI 的冲击。 2. 伦理考量:包括数据隐私和安全、算法公平性、透明度和可解释性、人机协作以及社会影响等方面。 3. 适应新技术环境:企业需要不断调整和适应 AI 带来的工作方式和业务模式的变化。 同时,在国际上,如欧洲国家,要成为 AI 超级大国,需创造良好环境,应对包括物理伤害、国家安全、心理健康等风险,解决伦理挑战,建立公众信任,以充分发挥 AI 的优势。
2024-10-20
生成式人工智能在义务教育阶段的应用
生成式人工智能在义务教育阶段的应用较为广泛,以下为您详细介绍: 教学方面: 自适应学习:可根据学生的学习情况调整教学进度和内容。 智慧课程:例如清华的相关探索。 AI 助教:能够精准回答学生问题,协助教师工作。 为教师提供数字资源。 教育的不同时代特点: 口传时代:通过口诀、歌谣、神话故事等在生活场景、部落仪式中,以口耳相传、身体力行示范等方式传授生存技能和传承部落文化。 手抄时代:借助私塾、官学、书院等,通过手抄本,以背诵领会、注疏评点等方式掌握典籍知识。 印刷时代:在学校、课堂、图书馆等场所,利用印刷书籍,通过讲授说理、考试评价等方式进行启蒙教育和专业教育。 电子媒体时代:在课堂、演播室等,通过广播电视教材、函授讲义等,开展基础教育、职业教育等。 数字媒体时代:利用互联网等进行教学。 技术相关: API 方式比网页版 ChatGPT 可控性更高,可控制候选词汇数量等。 预训练内容包括编程语言、维基百科、新闻常识、网络社区、各类书籍等,但不包括期刊论文数据库。 Transformer 是一种机器学习模型,可并行计算、压缩知识。 随着大语言模型规模增大,会展现出如推理、跨任务泛化等复杂能力。 高等教育领域的影响: 生成式人工智能对高等教育的影响大于基础教育,因其可能出现“幻觉”,成人更具判断能力。 典型应用场景包括让学生分析整理人工智能生成的答案以训练批判性思维,或让其扮演辩论对手以建立全面认识。 可能改变学校教育培养目标,如减少对事实性知识的学习,更注重方法论等元认知策略。但过度依赖机器可能带来人类被自然淘汰的风险,高等教育需关注在科技进步中保持和发展人类智慧。 需要注意的是,目前生成式人工智能在义务教育阶段的应用仍需谨慎,充分考虑其可能带来的影响,并合理引导学生正确使用。
2024-10-12
现阶段ai工具解决问题的方式方法是什么
现阶段 AI 工具解决问题主要有以下方式方法: 1. 生成式 AI 在艺术创作方面,虽存在幻觉或处理请求时间长等问题,但为满足高级用户需求,许多公司预计会添加如 ChatGPT 那样的“专业版”套餐以提供更高质量服务。 2. AI 工作流:每个工作环节都有自身特点,不能仅依靠一个 AI 工具解决所有问题,而是要为每个环节选择最合适的 AI 工具,通过局部最优解达到全局最优解。AI 能帮助人类迅速写出基础文章,人类在此基础上优化,效率更高。随着大模型进化和提示词能力提升,未来 AI 有望输出更高质量文章。现在学习 AI 工作流是为了提前布局、抢占先机。 3. 在游戏创建领域,第一阶段重点关注工具,生成式人工智能可成为创作者的副驾驶,优化现有 UGC 工作流程,现有平台会添加相关工具,初创公司也会针对其优化工作流程。第二阶段可能会出现从头重新构想创作工作流程的新公司,形成全新创作范式,但具体形式难以预测。
2024-09-27
AI目前发展到什么阶段了?
目前 AI 的发展大致可以分为以下几个阶段: 1. 小模型阶段:能力单一,无法泛化和理解,例如早期的人脸识别,只能完成特定任务。 2. GPT 出现阶段:AGI 迎来拐点,机器实现与人类的交流。 3. Sora 出现阶段:打开了 AGI 的大门,能够认知世界并与世界互动,但训练算力可能受到一定限制。未来有望通过加大算力和训练,与具身机器人结合提升智能。 4. 强人工智能阶段:机器能看懂一些常识并交流,但还缺少对世界力量的感知,如加速度、重力等,目前热炒的具身智能正朝着与物理世界互动的方向发展。 5. AI 生产力阶段:目前 AI 的发展处于前两个阶段,距离整个生产方式的根本变革还有一段距离。
2024-08-16
人工智能发展阶段
人工智能的发展主要经历了以下几个阶段: 1. 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论等。 2. 知识驱动时期(1970s 1980s):以专家系统、知识表示、自动推理为主要特点。 3. 统计学习时期(1990s 2000s):出现了机器学习算法,如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等技术得到广泛应用。 周鸿祎总结的 AI 发展五个阶段为: 1. 小模型阶段,能力单一,无法泛化和理解,如早期的人脸识别。 2. GPT 出现,AGI 迎来拐点,机器实现与人类交流。 3. Sora 出现,打开 AGI 大门,能够认知世界和互动,但训练算力可能受限。 4. 强人工智能阶段,机器能看懂常识和交流,但还缺少对世界力量的感知,如加速度、重力等,具身智能是当前热点,但还不能与物理世界充分互动。 5. 未来阶段,能够与物理世界充分互动,例如知道被推是怎么回事,能处理拿鸡蛋、打蛋等动作。 在人工智能发展早期,符号推理流行,但因方法无法大规模拓展及知识提取和表示的复杂性,出现了“人工智能寒冬”。随着计算资源变便宜和数据增多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能,过去十年中“人工智能”常被用作“神经网络”的同义词。
2024-08-13
现在全球chatgpt发展到什么程度
ChatGPT 是由 OpenAI 开发的一款具有重要影响力的 AI 产品。 其成功具有多方面原因: 1. 开创性:作为首批向公众开放的大规模商用 AI 对话系统之一,在全球掀起了 AI 革命,为技术发展指明方向。 2. 用户体验:界面简洁直观,交互流畅自然,降低了普通人使用 AI 的门槛。 3. 技术实力:背后的 GPT 系列模型性能和能力领先,在语言理解和内容生成方面表现出色。 然而,ChatGPT 也存在一些局限性: 1. 市场竞争:随着 AI 技术发展,已不再是市场上唯一的顶级选择,其他产品在特定领域可能超越它。 2. 国内使用:国内用户可能因网络连接问题面临连接不稳定、响应延迟等困扰。 对于 ChatGPT 的定义,在 OpenAI 的官网中,2022 年宣发时称其为一种模型,而在帮助页面中称其为一种服务。目前我们所熟知的 ChatGPT 逐渐演变成了一种可以兼容多种 GPT 模型的聊天应用(服务)。 从反馈学习方面,例如 ChatGPT 通过人类反馈的强化学习(RLHF)来调整模型,使其成为通用的聊天机器人。 总的来说,在海外或拥有稳定国际网络连接的情况下,ChatGPT 是一个极佳选择,其强大功能和优秀用户体验使其成为 AI 对话领域的标杆产品。但国内用户可能需考虑本地化替代方案以获得更好体验。
2024-11-20
你现在是一个学习AI 方面的小白,你下定决心要去学习AI的相关知识。你应该从哪入手
对于决心学习 AI 相关知识的新手,建议从以下方面入手: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于不会代码的新手,若希望继续精进 AI 学习,可以尝试了解以下作为基础的内容: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。但需注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-19
FlowGpt这款应用现在发展得如何了
FlowGPT 是一个发展较为出色的应用。 在 2023 年,02 年出生的党嘉成(Jay)在伯克利大二辍学后,于 1 月初创建了 FlowGPT 这一全球最大的开源 AI 应用平台。在零广告投放的情况下,实现了超过 300 万的月活跃用户和 10 万个 AI 应用。 FlowGPT 是一个聊天 GPT 提示和 AI 提示社区,旨在改善人与人之间的沟通。它提供了一系列精心设计的聊天 GPT 提示,还提供了一个可视化界面以多线程方式展示对话流程,能帮助用户优化工作流程、提高生产力,用户可在其社区中分享、发现和学习有用的 ChatGPT 提示。 其网站为:https://flowgpt.com/
2024-11-19
我是一个大学生,现在需要快速了解一个领域的研究发展脉络,请推荐一个ai软件帮我推荐需要看的论文和总结文章大意
以下为您推荐几款可以帮助您修改医学课题、推荐相关论文并总结文章大意的 AI 工具: 1. Scite.ai:这是一个为研究人员、学者和行业专业人员打造的创新平台,旨在增强他们对科学文献的洞察。它提供了一系列工具,如引用声明搜索、自定义仪表板和参考检查,这些都能简化您的学术工作。网址:https://scite.ai/ 2. Scholarcy:这是一款科研神器,主要为做科研、学术、写论文的人准备。它可以从文档中提取结构化数据,并通过知识归纳引擎生成文章概要,精炼地呈现文章的总结信息,分析中包含关键概念、摘要、学术亮点、学术总结、比较分析、局限等板块的内容。网址:https://www.scholarcy.com/ 3. ChatGPT:这是一个强大的自然语言处理模型,可以提供有关医学课题的修改意见。您可以向它提供您的文章,并提出您的问题和需求,它将尽力为您提供帮助。网址:https://chat.openai.com/ 这些工具可以从不同的角度审视和改进您的医学课题,提供专业的修改意见和建议。您可以根据自己的具体需求选择合适的工具进行尝试。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-18
现在有关UX设计的AI工具有哪些?
以下是一些有关 UX 设计的 AI 工具: Midjourney 和 Figma 结合用于 AI 驱动的 UI 设计,如设计和原型应用程序。 Generative UI Design: Einstein, Galileo, and the AI Design Process Uizard 自动设计器 Replit Future Tools CodeDesign.ai XR 设计 CoPilot Designer AIPowered NoCode Content Authoring Tool 用户研究工具:Synthetic user 搜索工具:perplexity Figma 平台的 AI 插件,如 Ando Your design copilot、Magician for Figma、Diagram 未来设计师的 AI 设计工具、QoQo your user experience AI companion 此外,目前有一些基于人工智能生成内容的工具(AIGC)可用于产品原型设计,如: UIzard:利用 AI 技术生成用户界面。 Figma:基于云的设计工具,提供自动布局和组件库,其社区也有一些 AI 插件。 Sketch:提供插件系统,部分插件利用 AI 技术辅助设计。 在 CAD 图绘制方面,存在以下 AI 工具和插件: CADtools 12:Adobe Illustrator 插件,添加了 92 个绘图和编辑工具。 Autodesk Fusion 360:集成了 AI 功能的云端 3D CAD/CAM 软件。 nTopology:基于 AI 的设计软件,可创建复杂 CAD 模型。 ParaMatters CogniCAD:根据用户输入自动生成 3D 模型。 主流 CAD 软件如 Autodesk 系列、SolidWorks 等提供的基于 AI 的生成设计工具。 需要注意的是,使用这些工具通常需要一定的 CAD 知识和技能,对于初学者建议先学习基本建模技巧再尝试使用。以上内容由 AI 大模型生成,请仔细甄别。
2024-11-18
国内的ai软件有什么推荐的吗?我现在只会用来写文案,对它的开发实在是很贫瘠
以下是为您推荐的一些国内的 AI 软件: 1. 聊天对话类: Kimi:具有超长上下文能力,最初支持 20 万字的上下文,现已提升到 200 万字,适合处理长文本或大量信息的任务,但在文字生成和语义理解、文字生成质量方面可能不如国内其他产品,且不支持用户自定义智能体。 智谱清言:背后的技术源自清华大学研发团队的科研成果转化,模型质量出色,以 ChatGPT 为对标打造用户体验,在逻辑推理和处理复杂提示词方面有优势,是国内首批开放智能体应用的公司之一。 2. 编程辅助类: GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能快速提供代码建议。 通义灵码:阿里巴巴团队推出,提供多种编程辅助能力。 CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,实时提供代码建议。 CodeGeeX:智谱 AI 推出的开源免费编程助手,基于 130 亿参数的预训练大模型。 Cody:Sourcegraph 推出,借助强大的代码语义索引和分析能力了解开发者的整个代码库。 CodeFuse:蚂蚁集团支付宝团队推出的免费 AI 代码助手,基于自研基础大模型微调。 Codeium:由 AI 驱动,提供代码建议、重构提示和代码解释。 更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 。每个工具的功能和适用场景可能不同,您可以根据自身需求选择。
2024-11-17