GraphRAG 是一种基于图的 RAG 工具,具有以下特点和优势:
微软前几天发布的 GraphRAG 架构非常厉害,Neo4j 的 CTO 写了一篇详细的文章《GraphRAG 宣言:为 GenAI 增加知识》,通俗易懂地介绍了 GraphRAG 的原理、与传统 RAG 的区别、GraphRAG 的优势、知识图谱的创建和利用知识图谱工作。
在社区摘要应用中,GraphRAG在全面性和多样性上以70-80%的胜率大幅领先于传统RAG。GraphRAG是一种基于图的RAG工具,通过LLM从文档集合中自动提取丰富的知识图谱,助力处理私有或未知数据集的问答。GraphRAG能通过检测图中的“社区”(即密集连接的节点群组),从高层主题到低层话题,层次化地划分数据的语义结构。它利用LLM为这些社区生成摘要,提供对数据集的全面概览,无需事先设定问题。这种方法尤其适合回答全局性问题。
微软前几天发布的GraphRAG架构非常厉害,但是具体的原理和内容可能不太好理解。Neo4j的CTO写了一篇详细的文章《GraphRAG宣言:为GenAI增加知识》。通俗易懂的介绍了GraphRAG的原理、与传统RAG的区别、GraphRAG的优势、知识图谱的创建和利用知识图谱工作。
[title]通过增强PDF结构识别,革新检索增强生成技术(RAG)[heading1] 5 结论[content]参考文献[1]Alibaba Group Holding Limited.Fiscal year annual report 2023.https://static.alibabagroup.com/reports/fy2023/ar/ebook/en/index.html,2023.[2]Rongyu Cao,Hongwei Li,Ganbin Zhou,and Ping Luo.Towards document panoptic segmentation with pinpoint accuracy:Method and evaluation.In 16th International Conference on Document Analysis and Recognition,pages 3–18,2021.[3]https://pdflux.com/.[4]Daisho Microline Holdings Limited.Fiscal year annual report 2022.https://www1.hkexnews.hk/listedco/listconews/sehk/2022/0626/2022062600094.pdf,2022.[5]Peiyi Wang,Lei Li,Liang Chen,Dawei Zhu,Binghuai Lin,Yunbo Cao,Qi Liu,Tianyu Liu,and Zhifang Sui.Large language models are not fair evaluators,2023.[6]Tesla Inc.Model 3 owner’s manual.https://manual-directory.com/manual/2023-tesla-model-3-owners-manual/,2023.[7]Flávio Cunha,Fatih Karahan,and Ilton Soares.Returns to skills and the college premium.Journal of Money,Credit and Banking,43:39–86,2011.https://sci-hub.hkvisa.net/https://doi.org/10.1111/j.1538-4616.2011.00410.x.[8]Tom S.Vogl.Height,skills,and labor market outcomes in mexico.NBER Working Paper Series,2012.https://www.nber.org/system/files/working_papers/w18318/w18318.pdf.