直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

token 什么意思

回答

在大语言模型领域,Token 通常用来表示文本数据中的一个单元。在不同的语境下,一个 Token 可能代表一个字、一个词,或者是一个句子。在英文中,一个 Token 通常是一个词或者是标点符号。在一些汉语处理系统中,一个 Token 可能是一个字,也可能是一个词。Token 是处理和理解文本数据的基本单元。

在深度学习的语言模型中,如 Transformer,输入的文本首先被切分成一系列的 Tokens。这些 Tokens 被转换成向量,然后被输入到神经网络中进行处理。因此,在这种情况下,Token 可以被理解为语言模型接收和处理的最小的信息单元。在训练过程中,每个 Token 会关联一个预测,这个预测可以是下一个 Token 的预测,也可以是该 Token 的属性预测,如词性、情感等。训练 Token 的数量会影响模型的性能和准确性。更多的训练 Token 通常意味着更多的训练数据,这可能会提升模型的准确性和泛化能力。然而,处理更多的 Token 也会增加计算的复杂性和计算资源的需求。

Unicode(统一码、万国码、单一码)是一种在计算机上使用的字符编码。Unicode 是为了解决传统的字符编码方案的局限而产生的,它为每种语言中的每个字符设定了统一并且唯一的二进制编码,以满足跨语言、跨平台进行文本转换、处理的要求。例如中文中的“你”字对应如下 Unicode 编码:\u 表示后面是一个 Unicode 编码,它用 16 进制数表示。4F60 转换成 10 进制对应 20320,20320 表示在 Unicode 编码中,第 20320 个编码对应的字是“你”。最后将 20320 转换为 2 进制。有意思的是,Unicode 不仅有自然语言,实际上也包含 emoji 等自然语言之外的符号。这也是为什么 ChatGPT 能理解和回复 emoji 的原因。所以,GPT 实际是将我们输入的文字转换成 Token,然后通过 GPT 模型预测 Token,再将 Token 转换成文字,最后再输出给我们。通过 Token 的学习,我们能感觉到 ChatGPT 理解文本的方式和人类并不相同,它在以自己的方式理解这个世界。

基于上述解释,很多同学把 Token 理解为中文语义里的“字节”,对于这种理解,只能说从类比关系上有一定的相似度,因为“字节”是计算机存储和处理数据的基本单元,而“Token”则是语言模型处理文本信息的基本单元。但这种理解不够准确的地方在于:“Token”在语言模型中的作用比“字节”在计算机中的作用更加复杂和多元。在大语言模型中,“Token”不仅代表文本数据中的一个单位,而且每个“Token”都可能携带了丰富的语义信息。比如,在处理一句话时,“Token”可能表示一个字,一个词,甚至一个短语,这些都可以被认为是语言的基本单元。同时,每个“Token”在模型中都有一个对应的向量表示,这个向量包含了该“Token”的语义信息、句法信息等。另外,如果现在正在浏览这篇帖子的你曾经“机翻”过一些文档的话,你会经常看到“token”被自动翻译工具翻译为“令牌”。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

关于 token 你应该了解……

在大语言模型领域,Token通常用来表示文本数据中的一个单元。在不同的语境下,一个token可能代表一个字、一个词,或者是一个句子。在英文中,一个token通常是一个词或者是标点符号。在一些汉语处理系统中,一个token可能是一个字,也可能是一个词。Token是处理和理解文本数据的基本单元。在深度学习的语言模型中,如Transformer,输入的文本首先被切分成一系列的tokens。这些tokens被转换成向量,然后被输入到神经网络中进行处理。因此,在这种情况下,token可以被理解为语言模型接收和处理的最小的信息单元。在训练过程中,每个token会关联一个预测,这个预测可以是下一个token的预测,也可以是该token的属性预测,如词性、情感等。训练token的数量会影响模型的性能和准确性。更多的训练token通常意味着更多的训练数据,这可能会提升模型的准确性和泛化能力。然而,处理更多的token也会增加计算的复杂性和计算资源的需求。

关于 token 你应该了解……

Unicode(统一码、万国码、单一码)是一种在计算机上使用的字符编码。Unicode是为了解决传统的字符编码方案的局限而产生的,它为每种语言中的每个字符设定了统一并且唯一的二进制编码,以满足跨语言、跨平台进行文本转换、处理的要求。例如中文中的你字对应如下unicode编码:\u表示后面是一个unicode编码,它用16进制数表示。4F60转换成10进制对应20320,20320表示在unicode编码中,第20320个编码对应的是字是你。最后将20320转换为2进制,得到如下结果:有意思的是,unicode不仅有自然语言,实际上也包含emoji等自然语言之外的符号。这也是为什么ChatGPT能理解和回复emoji的原因。所以,GPT实际是将我们输入的文字转换成token,然后通过GPT模型预测token,再将token转换成文字,最后再输出给我们。通过token的学习,我们能感觉到ChatGPT理解文本的方式和人类并不相同,它在以自己的方式理解这个世界。

关于 token 你应该了解……

基于上述解释,很多同学把token理解为中文语义里的“字节”,对于这种理解,只能说从类比关系上有一定的相似度,因为"字节"是计算机存储和处理数据的基本单元,而"token"则是语言模型处理文本信息的基本单元。但这种理解不够准确的地方在于:"Token"在语言模型中的作用比"字节"在计算机中的作用更加复杂和多元。在大语言模型中,"token"不仅代表文本数据中的一个单位,而且每个"token"都可能携带了丰富的语义信息。比如,在处理一句话时,"token"可能表示一个字,一个词,甚至一个短语,这些都可以被认为是语言的基本单元。同时,每个"token"在模型中都有一个对应的向量表示,这个向量包含了该"token"的语义信息、句法信息等。所以,尽管"token"和"字节"都是基本的处理单位,但是"token"在大语言模型中的含义和作用要比"字节"在计算机中的含义和作用更加丰富和复杂。另外,如果现在正在浏览这篇帖子的你曾经“机翻”过一些文档的话,你会经常看到“ token ”被自动翻译工具翻译为“令牌”,我不知道你是否对于这一翻译感到过疑惑,我感到过,所以我问了:为什么会有token

其他人在问
上下文窗口和 tokens限制
以下是关于上下文窗口和 tokens 限制的详细解释: Token 方面: Token 是大模型语言体系中的最小单元。人类语言发送给大模型时,会先被转换为大模型自己的语言,大模型推理生成答案后再翻译为人类能看懂的语言输出。 不同厂商的大模型对中文的文本切分方法不同,通常 1Token 约等于 1 2 个汉字。 大模型的收费计算方法以及对输入输出长度的限制,都是以 token 为单位计量的。 上下文方面: 上下文指对话聊天内容前、后的内容信息,其长度和窗口都会影响大模型回答的质量。 上下文长度限制了模型一次交互中能够处理的最大 token 数量,上下文窗口限制了模型在生成每个新 token 时实际参考的前面内容的范围。 目前常见模型的 token 限制: Claude 2 100k 模型的上下文上限是 100k Tokens,即 100000 个 token。 ChatGPT 16k 模型的上下文上限是 16k Tokens,即 16000 个 token。 ChatGPT 4 32k 模型的上下文上限是 32k Tokens,即 32000 个 token。 Token 限制的影响: 对一次性输入和一次对话的总体上下文长度同时生效。 当达到上限时,不是停止对话,而是遗忘最前面的对话,类似于鱼的短暂记忆。 查看 token 使用量: 对于 GPT,可以打开查看实时生成的 tokens 消耗和对应字符数量。 需注意 GPT3 和 GPT3.5/4 的 token 计算方式不同,且英文的 Token 占用相对于中文较少,这也是很多中文长 Prompt 会被建议翻译成英文设定然后要求中文输出的原因。 Token 限制对 Prompt 编写的影响:理解前面的内容后,答案应在您的脑海中有雏形。
2024-11-15
在tensorflow中实现分词器tokenizer
在 TensorFlow 中实现分词器(tokenizer)的方法如下: 1. 对文本数据进行预处理,添加开始和结束特殊标记。 2. 通过使用 TensorFlow 的文本矢量化模块,可以创建分词器。创建分词器后,可以将文本中的词转换为索引,例如像“开始标记”“猫”“狗”等。 3. 在 Stable Diffusion 中,Tokenizer 首先将 Prompt 中的每个词转换为一个称为标记(token)的数字,这是计算机理解单词的方式。然后,通过 text_encoder 将每个标记都转换为一个 768 值的向量,称为嵌入(embedding),用于 UNet 的 condition。 4. 需要注意的是,prompt 的长度会占用 token 数量。在大型语言模型中,输入的文本会被分词器拆分成一串 token 序列输入给模型,每个 token 通常对应一个单词或字符串片段。不同的分词器有不同的分词策略和词表,对于同一个 prompt,可能得到不同的 token 数。很多大模型对输入长度有限制,比如 GPT3 接受的最大 token 数是 2048。因此,要控制好 prompt 的长度,可使用一些技巧来节省 token 数,如使用简洁的词语、缩写/代词替代复杂词组、去除不必要的标点和空格、小写替代部分大写单词等。对于特别复杂的输入,可以考虑分步骤输入以规避长度限制。
2024-09-23
AI 为什么说于英文的 Token 占用相对中文较少
英文的 Token 占用相对中文较少,主要有以下原因: 1. 英文基于空格和标点符号分词,单词之间有明显的分隔,而中文是连续书写,需要通过算法来识别词汇边界,分词处理相对复杂。 2. GPT3 和 GPT3.5/4 的 token 计算方式不同,例如 GPT3 用的编码是 p50k/r50k,GPT3.5 是 cl100K_base。 3. 很多中文长 prompt 会被建议翻译成英文设定然后要求中文输出,因为这样可以节省 token 占用,从而把省出来的 token 留给更多次数的对话。在编写 prompt 时,也需要珍惜 token,尽可能精简表达,尤其是在连续多轮对话中。 如果想要直观查看 GPT 如何切分 token,可以打开:。但请注意,这个网站仅用于 GPT3 对于 token 的计算,方便我们理解概念。目前所使用的 3.5 和 4.0 采用的是另一种编码方式,通过这个工具测算的结果不一定准确。基于这个需求,可以参考官方的开源计算方式:https://github.com/openai/openaicookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb ,在本地部署之后可以精确计算目前 4.0 的 token 消耗。
2024-08-15
怎么理解AI里面的token
Token 是 AI 中的一个重要概念,它可以理解为文本的基本单位。在 AI 中,文本通常被分解为 Token 进行处理和分析。Token 可以是单词,也可以是字符块。例如,单词“hamburger”可能被分解成标记“ham”、“bur”和“ger”。 Token 的数量和长度会影响 AI 模型的处理效率和成本。一般来说,Token 的数量越多,处理时间和成本就越高。因此,在实际应用中,需要合理控制 Token 的数量和长度。 不同的 AI 模型和应用可能对 Token 的定义和处理方式有所不同。例如,在某些模型中,标点符号可能被单独视为一个 Token,而在其他模型中,标点符号可能与单词一起计算。 此外,Token 在 AI 收费中也扮演着重要的角色。一些 AI 服务提供商可能会按照 Token 的数量来计费,因为 Token 的数量可以反映出模型处理的工作量和资源消耗。 总之,Token 是 AI 中一个重要的概念,它对于理解和应用 AI 技术具有重要意义。在实际应用中,需要根据具体情况合理使用和管理 Token。
2024-06-20
各个大模型tokens价格
截止 2024 年 5 月,我查询到的大模型Token价格供您参考: !
2024-05-13
prompt长度是否占用token?
是的,prompt 的长度会占用 token 数量。 在大型语言模型中,输入的文本会被分词器(tokenizer)拆分成一串 token 序列输入给模型。每个 token 通常对应一个单词或字符串片段。token 的数量就决定了输入序列的长度。 所以,prompt 中包含的每个单词、标点符号等都会被视为一个 token,从而占用 token 数量。 不同的分词器有不同的分词策略和词表,对于同一个 prompt,可能得到不同的 token 数。但总的来说,prompt 越长,占用的 token 数就越多。 很多大模型对输入长度有限制,比如 GPT3 接受的最大 token 数是 2048。这就要求控制好 prompt 的长度,否则会被截断或产生不准确的结果。 一些技巧可以用来节省 prompt 的 token 数: 1. 使用简洁的词语,避免冗余 2. 缩写/代词替代复杂词组 3. 去除不必要的标点和空格 4. 小写替代部分大写单词 总之,prompt 长度对应的 token 数需要根据具体任务合理控制,以在保证效果和节省计算的间权衡取舍。对于特别复杂的输入,可以考虑分步骤输入以规避长度限制。
2024-04-23
sft是什么意思
“SFT”可能有多种含义。在音乐领域,它可能指某种特定的音乐风格,如“Swift”指快速和敏捷的音乐风格,常用于表现快速和敏捷的情感,如 Taylor Swift 的《Shake It Off》;“Swirling”指旋转和流动的音乐风格;“Swooning”指陶醉和倾倒的音乐风格;“Syllabic”指音节和节奏的音乐风格;“Symbiotic”指共生和互助的音乐风格。 在语音处理方面,“SFT”可能指短时傅里叶变换(Shorttime Fourier Transform,STFT)。语音通常是短时平稳信号,在进行傅里叶变换前一般要进行分帧,取音频的小片段进行短时傅里叶变换。其结果是一个复数,包括幅度和相位信息。能量频谱是振幅频谱的平方,通过对频域信号进行逆傅里叶变换可恢复时域信号。离散傅里叶变换计算复杂度高,可采用快速傅里叶变换简化。在实际应用中,对语音信号分帧加窗处理,视为短时傅里叶变换。
2024-11-17
WAY TO AGI中AGI是什么意思?
AGI 指通用人工智能,也叫强人工智能。通常在其出现时会是奇点科技大爆炸的时刻,科技将推动文明呈指数级增长。虽然通往通用人工智能的道路可能还漫长,但它已如海风般逐渐临近。例如科幻作家刘慈欣所说“未来已来,像盛夏的大雨,在我们还不及撑开伞时就扑面而来”(很多人早就失业了)。
2024-11-15
AGI是什么意思?
AGI 即通用人工智能(Artificial General Intelligence),指能够像人类一样思考、学习和执行多种任务的人工智能系统。它可以做任何人类可以做的事。 Deepmind 的研究团队在去年十一月发表的论文《Levels of AGI》中,给 AGI 的定义提出了六个原则,其中最重要的一点是“关注能力,而非过程”,即应关注 AGI 能完成什么,而非它如何完成任务。AGI 的定义应包括多个级别,每个级别都有明确的度量标准和基准。 还有一个常见且较合理和可验证的定义:AGI 是一种自主系统,在大多数具有经济价值的工作中超越了人类的能力。例如 Sam Altman 常说的,用自动化来贡献 GDP。Andrej Karpathy 今年初在其博客上发表的《Selfdriving as a case study for AGI》(虽很快删除),全文用自动化的交通服务来类比 AGI 和它的经济价值。
2024-11-13
sd中的采样是什么意思
在 Stable Diffusion 中,采样(Sampling)指的是去噪过程。稳定扩散从随机高斯噪声起步,通过一步步降噪逐渐接近符合提示的图像。每一步都会产生一个新的样本图像,这种方法被称为采样器(Sampler)或采样(Sampling)。 不同的采样器具有不同的特点和效果,例如: Euler a 可以以较少的步数产生很大的多样性,不同的步数可能有不同的结果。 Euler 是最简单、最快的。 DDIM 收敛快,但效率相对较低,需要很多 step 才能获得好的结果,适合在重绘时候使用。 LMS 是 Euler 的衍生,使用一种相关但稍有不同的方法,大概 30 step 可以得到稳定结果。 PLMS 是 Euler 的衍生,可以更好地处理神经网络结构中的奇异性。 DPM2 旨在改进 DDIM,减少步骤以获得良好的结果,但速度较慢。 UniPC 效果较好且速度非常快,对平面、卡通的表现较好,推荐使用。 采样步数(Sampling Steps)也很重要,随着步数增多,可以得到对目标更小、更精确的图像,但增加步数会增加生成图像所需的时间,且增加步数的边际收益递减,一般开到 20 30 步。在实际应用中,如何选择采样器和设置采样步数可以按照模型作者的推荐进行。
2024-11-09
AGI是什么意思
AGI 指的是通用人工智能(Artificial General Intelligence),它是一种能够像人类一样思考、学习和执行多种任务的人工智能系统。做任何人类可以做的事,涵盖了广泛的认知技能和能力,包括推理、规划、解决问题、抽象思维、理解复杂思想、快速学习和从经验中学习等。在 2000 年代初,“通用人工智能”这一名词开始流行,以强调从“狭义 AI”到更广泛的智能概念的追求。但目前 AGI 还未取得巨大进展。
2024-11-02
boosting 模型是什么意思
Boosting 模型是一种集成学习方法,主要包括以下两种常见类型: 1. Bagging(Bootstrap Aggregating):通过多次有放回抽样生成多个数据集,训练多个相同类型的模型(如决策树、多项式等),对于回归任务将多个模型的预测结果取平均,对于分类任务通过多数投票来决定最终的分类结果,以减少机器学习模型的方差,提高泛化能力。其核心步骤包括从原始数据集中有放回地抽取多个子集,每个子集用于训练一个独立的模型,最后集成这些模型的结果。 2. AdaBoost(Adaptive Boosting):主要用于分类问题,也可用于回归问题。它通过组合多个弱学习器(通常是决策树桩)来构建一个强学习器,以提高模型的预测性能。弱学习器的准确率仅略高于随机猜测,例如在二分类问题中可能略高于 50%。在 AdaBoost 中,强学习器通常是具有高准确率、能很好泛化到新数据的复杂模型,如深度神经网络或支持向量机,能够捕捉数据中的复杂模式。 此外,在 Coze 上,GLM 模型和 MoonShot 模型因对结构化提示词的良好理解适合处理精确输入和输出任务,豆包系列模型在角色扮演和工具调用方面表现出色,将这三种模型结合在工作流或多 Agent 中可实现优势互补。
2024-10-21