Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

? Llama3 怎么下载

Answer

您可以在以下网站找到 Llama 3 模型的下载地址:

  1. Llama 3 官网链接:https://llama.meta.com/llama3
  2. 模型下载链接:https://llama.meta.com/llama-downloads/
  3. Hugging Face 链接:https://huggingface.co/meta-llama
  4. Replicate 链接:https://replicate.com/meta
  5. GitHub 项目地址:https://github.com/meta-llama/llama3

您可以通过这些链接找到 Llama 3 模型的下载地址并获取所需的文件。

Content generated by AI large model, please carefully verify (powered by aily)

References

Others are asking
本地运行Llama3需要的电脑是什么配置的?
本地运行 Llama3 所需电脑配置的相关信息如下: 1. 安装 Docker Desktop: 点击/复制到浏览器下载:https://docs.docker.com/desktop/install/windowsinstall/ 。 下载后,双击下载项目,出现相关界面点击 ok 开始加载文件。注意下载相对较快,完成后不要点击“close and restart”,以免导致 llama3 下载中断。等待终端的模型下载完成后再点击重启。 重启后,点击“Accept”,选择第一个,点击“Finish”。 然后会提示注册账号,若打不开网页,可能需要科学上网。按照正常流程注册账号并登录 Docker 即可。 2. 下载 Llama3 模型: 打开终端。如果是 Windows 电脑,点击 win+R,输入 cmd 点击回车;如果是 Mac 电脑,按下 Command(⌘)+ Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。 复制相关命令行,粘贴进入并回车,会开始自动下载,文件下载较慢,可同时进行安装 Docker 的步骤。 3. 下载 Open WebUI: 回到桌面,再打开一个新的终端窗口。如果是 Windows 电脑,点击 win+R,输入 cmd 点击回车;如果是 Mac 电脑,按下 Command(⌘)+ Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。 将相关命令输入,等待下载。 点击或复制相关地址进入浏览器,进行注册登录。 登入后,点击顶部的 Model,选择“llama3:8b”。 需要注意的是,模型的回复速度取决于您电脑的配置。另外,您还可以参考开源项目 。同时,有教程提到可以通过购买算力解决本地电脑配置不够的问题,但需要充值 50 元。
2024-11-14
llama3是什么?
Llama 3 是 Meta 发布的语言模型。以下是关于 Llama 3 的一些重要信息: 模型版本:包括 8B 和 70B 双模型。 数据集:比 Llama 2 的数据集大 7 倍以上。 性能特点:具有 128K token,更强的推理和编码能力,训练效率比 Llama 2 高 3 倍,已集成到 Meta AI。 能力表现:8B 的能力远超 Llama 2 70b。 模型架构:使用 128K 词库的标记化器,8B 和 70B 模型采用分组查询关注 以提升推理效率。 训练数据:超过 15T 词库的预训练,包含的代码数量是 Llama 2 的四倍,预训练数据集含 5%以上的非英语数据,覆盖 30 多种语言,并采用数据过滤管道。 使用方式:将支持 AWS、Databricks、Google Cloud 等平台,得到 AMD、AWS 等硬件平台支持,可在 Meta AI 官方助手上体验。 未来发展:未来几个月将推出新功能、更长上下文窗口、更多型号尺寸,性能将进一步提升,并将分享 Llama 3 研究论文。 此外,现在 llama370BInstruct 已经可以在刚刚推出的 Hugging Chat 上直接使用,网页为:https://huggingface.co/chat/ ,app 下载:https://apps.apple.com/us/app/huggingchat/id6476778843?l=zhHansCN 。还可以在 Amazon SageMaker 上部署 Llama 3 ,相关博客介绍了如何设置开发环境、硬件要求、部署步骤、运行推理并与模型聊天、进行基准测试以及清理等内容。目前 Llama 3 400B 还在训练中。
2024-11-14
推荐 llama3 的一篇文章
以下是一篇关于 Llama3 的文章: Llama3 正式发布,开源模型的质量又迎来再一次飞跃 数字生命卡兹克、赛博禅心、歸藏、AI 大模型在手等多家媒体都对 Llama3 进行了报道。他们认为,Llama3 的发布是开源模型质量的又一次飞跃。 在 Amazon SageMaker 上部署 Llama 3 要将 Llama 3 70B 部署到 Amazon SageMaker,我们需要创建一个 HuggingFaceModel 模型类,并定义我们的端点配置,包括 hf\_model\_id,instance\_type 等。我们将使用一个 p4d.24xlarge 实例类型,该类型具有 8 个 NVIDIA A100 GPU 和 320GB 的 GPU 内存。Llama 3 70B 指令是一个经过优化的对话 AI 模型,这使我们能够启用 TGI 的消息 API 与 llama 交互,使用常见的 OpenAI 格式 messages。 注意:Llama 3 是一个有门槛的模型,请在提交此表单前访问模型卡并接受许可条款和可接受的使用政策。
2024-05-23
如何用llama3微调
如何用 Llama3 微调? 在这篇文章中,我们将学习如何使用 Llama3 进行微调。首先,我们需要了解微调的意义和概念。微调是指对已经训练好的模型进行修改,以使其更好地适用于特定的任务或数据集。在 Llama3 中,微调是通过修改模型的参数来实现的。 接下来,我们需要准备数据集。数据集是用来让模型重新学习的知识,我们可以使用各种类型的数据集,例如文本、图像、音频等。在本文中,我们将使用一个名为 huanhuan.json 的文本数据集。 然后,我们需要编写微调代码。微调代码是用来修改模型参数的代码,我们可以使用各种编程语言来实现,例如 Python、JavaScript 等。在本文中,我们将使用 Python 来实现微调代码。 接下来,我们需要执行微调代码。执行微调代码后,模型将开始学习数据集,并对模型的参数进行修改。在本文中,我们将使用一台服务器来执行微调代码。 最后,我们需要对微调后的模型进行测试。测试是用来验证微调结果的过程,我们可以使用各种测试方法来实现,例如准确率、召回率等。在本文中,我们将使用一个简单的测试方法来验证微调结果。 下面是一个简单的示例,展示了如何使用 Llama3 进行微调: ```python import torch from transformers import LlamaForCausalLM 加载模型 model = LlamaForCausalLM.from_pretrained 加载数据集 data = torch.load 微调模型 model.fit 测试模型 test_data = test_output = model.generate print ``` 在上面的示例中,我们首先加载了一个名为 LlamaForCausalLM 的模型,并从预训练模型中加载了一个名为 huanhuan.json 的数据集。然后,我们使用 model.fit 方法对微调后的模型进行测试,并输出测试结果。 请注意,这只是一个简单的示例,实际的微调过程可能会更加复杂。您可能需要根据您的具体需求和数据集来调整模型的参数和训练过程。
2024-05-06
数据集去哪下载
以下是一些数据集的下载途径: 对于微调 Llama3 的数据集,获取及原理可参考文档:。 鸢尾花数据集下载请点击链接:https://scikitlearn.org/stable/modules/generated/sklearn.datasets.load_iris.html 。 天气数据集下载请点击链接:https://www.kaggle.com/datasets/muthuj7/weatherdataset 。建议创建一个文件夹,将下载下来的数据集放入文件夹中。
2025-04-14
如果你是一个AI领域的专家,我有个问题关于应用AI来学习的:假设我有一个网上的课程,然后我把这个网上的课程全部视频都下载下来,然后输入给AI,让AI来学习,如果以后我问AI关于这方面的问题的话,AI能像课程老师一样思考,来回答我的问题吗
以下是关于您提问的相关内容: AI 的学习方式与人类有相似之处,也有不同之处。在医疗保健领域,为产生真正的改变,AI 应像人类一样学习。成为某个领域顶尖人才通常从多年密集信息输入开始,如正规学校教育和学徒实践,通过面对面学习获取书本外的信息。对于 AI 来说,当前学习方式及技术人员对待方式存在问题,应通过堆叠模型训练,而非仅依靠大量数据和生成模型。例如先训练生物学、化学模型,再添加特定数据点。开发具有潜在空间层次结构的堆叠 AI 模型,能反映对基本元素的理解和预测能力,可能会平行于人类教育范例发展,也可能专门发展出新型专业知识。创建特定领域的专家 AI 可能比全能 AI 更容易,且需要多个专家 AI 提供多样意见。同时,应让 AI 接触现实世界互动,避免复制危险偏见。但不能因恐惧传播人类偏见而限制探索 AI 帮助民主化人类专家知识的意愿。 然而,您所提到的将网上课程视频全部下载输入给 AI 让其学习,然后期望它像课程老师一样回答问题,目前的技术和情况还不能完全保证实现。AI 的学习和回答能力取决于其训练数据、模型结构和算法等多种因素。
2025-04-13
论文参考文献自动生成的免费工具,请提供具体下载网址
以下是一些可以自动生成论文参考文献的免费工具及相关信息: 1. 文献管理和搜索: Zotero:结合 AI 技术,能够自动提取文献信息,有助于您管理和整理参考文献。 Semantic Scholar:这是一个由 AI 驱动的学术搜索引擎,可提供相关文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术为您提供文本校对、语法修正和写作风格建议,提升论文语言质量。 Quillbot:基于 AI 的重写和摘要工具,能帮助您精简和优化论文内容。 需要注意的是,这些内容由 AI 大模型生成,请您仔细甄别。您可以通过以下网址获取这些工具: Zotero:https://www.zotero.org/ Semantic Scholar:https://www.semanticscholar.org/ Grammarly:https://www.grammarly.com/ Quillbot:https://quillbot.com/
2025-04-09
怎么下载deepseek
以下是关于 DeepSeek 的相关信息及下载方式: 论文下载: 下载方式:pc 端鼠标移到文章上面,会有下载链接,手机端类似。 模型下载地址:https://github.com/deepseekai/Janus 活动信息: DeepSeek+阿里云实训营全新升级上线,不用下载,教您稳定调用、开发满血版 DeepSeek 智能体,更多隐藏玩法等您解锁。2 月 20 日周四下午 2 点开始在线直播,可通过参与。 金融行业·大模型挑战赛|用大模型理解金融市场,初赛阶段(2024/12/3 2025/2/10),详情: 。 全新 AI 整活第六期|DeepSeek 小说家,投稿内容:使用 DeepSeek 写一篇以“反转”为主题的 1000 字内短篇小说。投稿地址:通往 AGI 之路 腾讯频道 【deepseek 专区】点击投稿,2 月 16 日晚 8 点截止并现场直播评选。活动详情: 。
2025-03-30
AI写的论文怎么下载
如果您想下载 AI 写的论文,以下是一些途径和方法: 1. 对于计算机领域(尤其是人工智能话题)的论文,您可以访问 https://www.aminer.cn/ ,可订阅自己感兴趣的话题。该网站提供免费的 AI 理解论文服务(每篇论文只要处理一次便全站可看,成本很低)以及基础的 chat with paper 功能,多数论文都有免费的 PDF 下载链接。 2. 关于一些特定的 AI 相关部署和操作,如将 AI 接入微信的部署: 点击菜单中的“终端”,然后开始粘贴代码。 注意复制代码时要复制全,每次只需要粘贴一行,然后点击一次回车。 回车后,只有最左边显示中括号对话前缀时,不要操作。 如果遇到卡点,进行不下去,可能是因为服务器网络问题,去拉取的时候下载不全,可以复制网址,手动去下载到电脑上。然后进入文件夹,找到 root 文件夹,把下载的文件上传进去。 3. 对于 Trae AI 的安装: 由于 Trae AI 官网部署在海外,以及 Trae 本身需要使用海外的大模型,所以后续请大家通过 VPN 等方式正常科学上网。 在官网直接点击下载即可。下载完之后,将左侧的 Trae 应用拖动到右侧的文件夹内(黄叔的是 Mac,以 Mac 为例,Windows 是双击 Trae 图标)就安装完成了。 安装完成后,点击图标就可以启动,有几个简单的设置,包括主题背景和默认的语言选项,咱们可以选择中文。对于一些不理解的设置,可以直接点“Skip”选项。
2025-03-30
在哪里可以下载pika
Pika 是一个 AI 视频平台,您可以通过以下方式获取和使用: 1. 下载地址:您可以在 pika.art 进行下载和使用。 2. 功能特点: 使任何人都能将创意愿景变为现实。 具有先进的视频基础模型和轻松易用的创作产品,正在重新定义视频制作和编辑方式。 更新的 Pikaffects 具有多款变身特效,如变名画、变公主、变成婴儿时期等。用户上传照片,选择效果,即可完成变身视频。 对于奇幻感比较强的画面把控较好,会比较自然,但真实环境的画面比较容易糊,还有嘴型同步功能,对二次元友好。
2025-03-22