Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何用llama3微调

Answer

如何用 Llama3 微调?

在这篇文章中,我们将学习如何使用 Llama3 进行微调。首先,我们需要了解微调的意义和概念。微调是指对已经训练好的模型进行修改,以使其更好地适用于特定的任务或数据集。在 Llama3 中,微调是通过修改模型的参数来实现的。

接下来,我们需要准备数据集。数据集是用来让模型重新学习的知识,我们可以使用各种类型的数据集,例如文本、图像、音频等。在本文中,我们将使用一个名为 huanhuan.json 的文本数据集。

然后,我们需要编写微调代码。微调代码是用来修改模型参数的代码,我们可以使用各种编程语言来实现,例如 Python、JavaScript 等。在本文中,我们将使用 Python 来实现微调代码。

接下来,我们需要执行微调代码。执行微调代码后,模型将开始学习数据集,并对模型的参数进行修改。在本文中,我们将使用一台服务器来执行微调代码。

最后,我们需要对微调后的模型进行测试。测试是用来验证微调结果的过程,我们可以使用各种测试方法来实现,例如准确率、召回率等。在本文中,我们将使用一个简单的测试方法来验证微调结果。

下面是一个简单的示例,展示了如何使用 Llama3 进行微调:

import torch
from transformers import LlamaForCausalLM

# 加载模型
model = LlamaForCausalLM.from_pretrained('meta-llama/Meta-Llama-3-70B-instruct')

# 加载数据集
data = torch.load('huanhuan.json')

# 微调模型
model.fit(data)

# 测试模型
test_data = ['你好,你是谁?']
test_output = model.generate(test_data, max_length=50, temperature=0.7, top_p=0.95, do_sample=True)

print(test_output)

在上面的示例中,我们首先加载了一个名为 LlamaForCausalLM 的模型,并从预训练模型中加载了一个名为 huanhuan.json 的数据集。然后,我们使用 model.fit() 方法对模型进行微调。最后,我们使用 model.generate() 方法对微调后的模型进行测试,并输出测试结果。

请注意,这只是一个简单的示例,实际的微调过程可能会更加复杂。您可能需要根据您的具体需求和数据集来调整模型的参数和训练过程。

Content generated by AI large model, please carefully verify (powered by aily)

References

大圣:全网最适合小白的 Llama3 部署和微调教程

有了数据集,就可以使用代码进行微调了。1.首先我们把数据集上传到你的服务器1.编写微调代码代码如下:1.执行微调代码1.微调完成大概15分钟左右就可以微调完成

在 Amazon SageMaker 上部署 Llama 3

2024年4月18日今天早些时候,Meta发布了Llama家族的下一个迭代版本[Llama 3](https://huggingface.co/blog/llama3)。Llama 3有两种尺寸:[8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)适用于在消费级GPU上进行高效部署和开发,[70B](https://huggingface.co/meta-llama/Meta-Llama-3-70B-instruct)适用于大规模AI原生应用。两者均有基础和指令调优变体。除了这4个型号外,Llama Guard的新版本在Llama 3 8B上进行了微调,并作为Llama Guard 2(安全微调)发布。在这篇博客中,您将学习如何将[meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct)模型部署到Amazon SageMaker。我们将使用Hugging Face LLM DLC,这是一个专为在安全和受控环境中轻松部署LLMs的推理容器。该DLC由[文本生成推理(TGI)](https://github.com/huggingface/text-generation-inference)提供支持,是一个可扩展、优化的解决方案,用于部署和提供大型语言模型(LLMs)。该博客文章还包括不同模型尺寸的硬件要求。在本博客中将介绍如何:

Others are asking
本地运行Llama3需要的电脑是什么配置的?
本地运行 Llama3 所需电脑配置的相关信息如下: 1. 安装 Docker Desktop: 点击/复制到浏览器下载:https://docs.docker.com/desktop/install/windowsinstall/ 。 下载后,双击下载项目,出现相关界面点击 ok 开始加载文件。注意下载相对较快,完成后不要点击“close and restart”,以免导致 llama3 下载中断。等待终端的模型下载完成后再点击重启。 重启后,点击“Accept”,选择第一个,点击“Finish”。 然后会提示注册账号,若打不开网页,可能需要科学上网。按照正常流程注册账号并登录 Docker 即可。 2. 下载 Llama3 模型: 打开终端。如果是 Windows 电脑,点击 win+R,输入 cmd 点击回车;如果是 Mac 电脑,按下 Command(⌘)+ Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。 复制相关命令行,粘贴进入并回车,会开始自动下载,文件下载较慢,可同时进行安装 Docker 的步骤。 3. 下载 Open WebUI: 回到桌面,再打开一个新的终端窗口。如果是 Windows 电脑,点击 win+R,输入 cmd 点击回车;如果是 Mac 电脑,按下 Command(⌘)+ Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。 将相关命令输入,等待下载。 点击或复制相关地址进入浏览器,进行注册登录。 登入后,点击顶部的 Model,选择“llama3:8b”。 需要注意的是,模型的回复速度取决于您电脑的配置。另外,您还可以参考开源项目 。同时,有教程提到可以通过购买算力解决本地电脑配置不够的问题,但需要充值 50 元。
2024-11-14
llama3是什么?
Llama 3 是 Meta 发布的语言模型。以下是关于 Llama 3 的一些重要信息: 模型版本:包括 8B 和 70B 双模型。 数据集:比 Llama 2 的数据集大 7 倍以上。 性能特点:具有 128K token,更强的推理和编码能力,训练效率比 Llama 2 高 3 倍,已集成到 Meta AI。 能力表现:8B 的能力远超 Llama 2 70b。 模型架构:使用 128K 词库的标记化器,8B 和 70B 模型采用分组查询关注 以提升推理效率。 训练数据:超过 15T 词库的预训练,包含的代码数量是 Llama 2 的四倍,预训练数据集含 5%以上的非英语数据,覆盖 30 多种语言,并采用数据过滤管道。 使用方式:将支持 AWS、Databricks、Google Cloud 等平台,得到 AMD、AWS 等硬件平台支持,可在 Meta AI 官方助手上体验。 未来发展:未来几个月将推出新功能、更长上下文窗口、更多型号尺寸,性能将进一步提升,并将分享 Llama 3 研究论文。 此外,现在 llama370BInstruct 已经可以在刚刚推出的 Hugging Chat 上直接使用,网页为:https://huggingface.co/chat/ ,app 下载:https://apps.apple.com/us/app/huggingchat/id6476778843?l=zhHansCN 。还可以在 Amazon SageMaker 上部署 Llama 3 ,相关博客介绍了如何设置开发环境、硬件要求、部署步骤、运行推理并与模型聊天、进行基准测试以及清理等内容。目前 Llama 3 400B 还在训练中。
2024-11-14
推荐 llama3 的一篇文章
以下是一篇关于 Llama3 的文章: Llama3 正式发布,开源模型的质量又迎来再一次飞跃 数字生命卡兹克、赛博禅心、歸藏、AI 大模型在手等多家媒体都对 Llama3 进行了报道。他们认为,Llama3 的发布是开源模型质量的又一次飞跃。 在 Amazon SageMaker 上部署 Llama 3 要将 Llama 3 70B 部署到 Amazon SageMaker,我们需要创建一个 HuggingFaceModel 模型类,并定义我们的端点配置,包括 hf\_model\_id,instance\_type 等。我们将使用一个 p4d.24xlarge 实例类型,该类型具有 8 个 NVIDIA A100 GPU 和 320GB 的 GPU 内存。Llama 3 70B 指令是一个经过优化的对话 AI 模型,这使我们能够启用 TGI 的消息 API 与 llama 交互,使用常见的 OpenAI 格式 messages。 注意:Llama 3 是一个有门槛的模型,请在提交此表单前访问模型卡并接受许可条款和可接受的使用政策。
2024-05-23
🐑 Llama3 怎么下载
您可以在以下网站找到 Llama 3 模型的下载地址: 1. Llama 3 官网链接: 2. 模型下载链接: 3. Hugging Face 链接: 4. Replicate 链接: 5. GitHub 项目地址: 您可以通过这些链接找到 Llama 3 模型的下载地址并获取所需的文件。
2024-04-19
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
如何构建自己领域的微调数据集
构建自己领域的微调数据集可以参考以下步骤: 1. 确定目标领域和应用需求:明确您希望模型在哪个细分领域进行学习和优化。 2. 数据收集:广泛收集与目标领域相关的数据。例如,若要训练二次元模型,需收集二次元优质数据;若要微调 Llama3 ,可参考相关文档获取数据集。 3. 数据标注:对收集的数据进行准确标注,以便模型学习到有效的特征。 4. 数据清洗:去除无效或错误的数据,提高数据质量。 5. 特殊处理:如为数据添加特殊 tag 等。 以 Stable Diffusion 为例,可收集如 833 张宝可梦数据,并按照特定步骤进行清洗、标注和添加特殊 tag 。对于 Llama3 ,获取数据集后上传到服务器,编写并执行微调代码即可进行微调。 在微调过程中,还需注意一些问题,如大型语言模型微调可能面临训练时间长、成本高等挑战,此时可考虑参数有效调优等创新方法。
2025-02-17
微调
微调(Finetuning)是一种迁移学习技术,常用于深度学习中。其基本思路是先有一个在大量数据上预训练过的模型,该模型已学会一些基本模式和结构,然后在特定任务数据上继续训练,使其适应新任务。 例如在情感分类中,可先使用大量语料库预训练模型学会基本语法和单词语义,再用标注过的电影评论继续训练以判断情感。在图像分类中,先使用大量图片预训练模型学会识别基本形状和纹理,再用标注的猫和狗图片继续训练以区分二者。 创建微调模型时,假设已准备好训练数据,可使用 OpenAI CLI 开始微调工作。需确定从哪个基本模型(如 ada、babbage、curie 或 davinci)开始,并可使用后缀参数自定义微调模型名称。运行命令会上传文件、创建微调作业、流式传输事件直至作业完成。每个微调工作默认从 curie 模型开始,模型选择会影响性能和成本。作业开始后可能需几分钟或几小时完成,若事件流中断可恢复。此外,还可列出现有作业、检索作业状态或取消作业。 微调的超参数方面,选择了适用于一系列用例的默认超参数,唯一需要的参数是训练文件。但调整超参数通常可产生更高质量输出的模型,可能需配置的内容包括:要微调的基本模型名称(如“ada”“babbage”“curie”“davinci”);训练模型的时期数(n_epochs,默认为 4);批量大小(batch_size,默认为训练集中示例数量的 0.2%,上限为 256);微调学习率乘数(learning_rate_multiplier,默认为 0.05、0.1 或 0.2);是否计算分类指标(compute_classification_metrics,默认为假)。配置这些超参数可通过 OpenAI CLI 上的命令行标志传递。
2025-01-11
微调是什么意思
微调(Finetuning)是一种迁移学习技术,常用于深度学习中。其基本思路是:先有一个在大量数据上预训练过的模型,该模型已学会一些基本模式和结构(如自然语言处理中学会基本语法和单词语义,图像识别中学会基本形状和纹理)。然后,在特定任务数据上继续训练这个模型,使其适应新的任务。 以下是两个例子帮助理解: 1. 情感分类:先使用大量语料库预训练模型,使其学会基本语法和单词语义。再收集标注过的电影评论(一部分积极,一部分消极),在这些评论上继续训练模型,使其学会判断评论情感。 2. 图像分类:先使用大量图片(如 ImageNet 数据集)预训练模型,使其学会识别图片中的基本形状和纹理。再收集标注过的图片(一部分是猫,一部分是狗),在这些图片上继续训练模型,使其学会区分猫和狗。 微调在 LLM 应用中,是在已经训练好的模型基础上进一步调整,让模型的输出更符合预期。Finetune、Finetuning 是常用的英文写法。微调是在较小的、针对特定任务的标注数据集上进一步训练已经预训练过的 LLM 的过程,可调整部分模型参数以优化其在特定任务或任务集上的性能。 微调可让您从 API 提供的模型中获得更多收益,如比即时设计更高质量的结果、能够训练比提示中更多的例子、由于更短的提示而节省 Token、更低的延迟请求。GPT3 已在大量文本上预训练,微调通过训练比提示中更多的示例来改进小样本学习,让您在大量任务中取得更好的结果。对模型进行微调后,您将不再需要在提示中提供示例,这样可以节省成本并实现更低延迟的请求。 微调涉及以下步骤: 1. 准备和上传训练数据。 2. 训练新的微调模型。 3. 使用您的微调模型。 微调目前仅适用于以下基础模型:davinci、curie、babbage 和 ada。这些是原始模型,在训练后没有任何说明(例如 textdavinci003)。您还可以继续微调微调模型以添加其他数据,而无需从头开始。建议使用 OpenAI 命令行界面,安装时需注意相关要求。
2025-01-11
如何微调大模型
微调大模型主要包括以下几个方面: 1. 理解大模型:大模型是通过输入大量语料,让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。可以用“上学参加工作”来类比大模型的训练和使用过程,包括找学校(需要大量 GPU 进行训练)、确定教材(需要大量数据)、找老师(选择合适算法)、就业指导(微调)和搬砖(推导)。 2. 准备数据集:数据集是让大模型重新学习的知识。例如,对于 Llama3 的微调,可以参考相关文档获取和了解数据集,如下载数据集。 3. 选择微调方式:从参数规模的角度,大模型的微调分成两条技术路线,全量微调 FFT(Full Fine Tuning)对全量的模型参数进行全量训练,PEFT(ParameterEfficient Fine Tuning)只对部分模型参数进行训练。从成本和效果综合考虑,PEFT 是目前业界较流行的微调方案。 4. 进行微调操作:有了数据集后,将其上传到服务器,编写微调代码并执行,大概 15 分钟左右可完成微调。 5. 参考资源:OpenAI 官方微调教程 。 微调的好处包括提高模型在特定任务中的性能和提高模型效率。经过微调的模型可能会失去一些通用性,但对于特定任务会有更好的表现,同时还能实现更低的延迟和成本。
2025-01-10