Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何用llama3微调

Answer

如何用 Llama3 微调?

在这篇文章中,我们将学习如何使用 Llama3 进行微调。首先,我们需要了解微调的意义和概念。微调是指对已经训练好的模型进行修改,以使其更好地适用于特定的任务或数据集。在 Llama3 中,微调是通过修改模型的参数来实现的。

接下来,我们需要准备数据集。数据集是用来让模型重新学习的知识,我们可以使用各种类型的数据集,例如文本、图像、音频等。在本文中,我们将使用一个名为 huanhuan.json 的文本数据集。

然后,我们需要编写微调代码。微调代码是用来修改模型参数的代码,我们可以使用各种编程语言来实现,例如 Python、JavaScript 等。在本文中,我们将使用 Python 来实现微调代码。

接下来,我们需要执行微调代码。执行微调代码后,模型将开始学习数据集,并对模型的参数进行修改。在本文中,我们将使用一台服务器来执行微调代码。

最后,我们需要对微调后的模型进行测试。测试是用来验证微调结果的过程,我们可以使用各种测试方法来实现,例如准确率、召回率等。在本文中,我们将使用一个简单的测试方法来验证微调结果。

下面是一个简单的示例,展示了如何使用 Llama3 进行微调:

import torch
from transformers import LlamaForCausalLM

# 加载模型
model = LlamaForCausalLM.from_pretrained('meta-llama/Meta-Llama-3-70B-instruct')

# 加载数据集
data = torch.load('huanhuan.json')

# 微调模型
model.fit(data)

# 测试模型
test_data = ['你好,你是谁?']
test_output = model.generate(test_data, max_length=50, temperature=0.7, top_p=0.95, do_sample=True)

print(test_output)

在上面的示例中,我们首先加载了一个名为 LlamaForCausalLM 的模型,并从预训练模型中加载了一个名为 huanhuan.json 的数据集。然后,我们使用 model.fit() 方法对模型进行微调。最后,我们使用 model.generate() 方法对微调后的模型进行测试,并输出测试结果。

请注意,这只是一个简单的示例,实际的微调过程可能会更加复杂。您可能需要根据您的具体需求和数据集来调整模型的参数和训练过程。

Content generated by AI large model, please carefully verify (powered by aily)

References

大圣:全网最适合小白的 Llama3 部署和微调教程

有了数据集,就可以使用代码进行微调了。1.首先我们把数据集上传到你的服务器1.编写微调代码代码如下:1.执行微调代码1.微调完成大概15分钟左右就可以微调完成

在 Amazon SageMaker 上部署 Llama 3

2024年4月18日今天早些时候,Meta发布了Llama家族的下一个迭代版本[Llama 3](https://huggingface.co/blog/llama3)。Llama 3有两种尺寸:[8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)适用于在消费级GPU上进行高效部署和开发,[70B](https://huggingface.co/meta-llama/Meta-Llama-3-70B-instruct)适用于大规模AI原生应用。两者均有基础和指令调优变体。除了这4个型号外,Llama Guard的新版本在Llama 3 8B上进行了微调,并作为Llama Guard 2(安全微调)发布。在这篇博客中,您将学习如何将[meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct)模型部署到Amazon SageMaker。我们将使用Hugging Face LLM DLC,这是一个专为在安全和受控环境中轻松部署LLMs的推理容器。该DLC由[文本生成推理(TGI)](https://github.com/huggingface/text-generation-inference)提供支持,是一个可扩展、优化的解决方案,用于部署和提供大型语言模型(LLMs)。该博客文章还包括不同模型尺寸的硬件要求。在本博客中将介绍如何:

Others are asking
本地运行Llama3需要的电脑是什么配置的?
本地运行 Llama3 所需电脑配置的相关信息如下: 1. 安装 Docker Desktop: 点击/复制到浏览器下载:https://docs.docker.com/desktop/install/windowsinstall/ 。 下载后,双击下载项目,出现相关界面点击 ok 开始加载文件。注意下载相对较快,完成后不要点击“close and restart”,以免导致 llama3 下载中断。等待终端的模型下载完成后再点击重启。 重启后,点击“Accept”,选择第一个,点击“Finish”。 然后会提示注册账号,若打不开网页,可能需要科学上网。按照正常流程注册账号并登录 Docker 即可。 2. 下载 Llama3 模型: 打开终端。如果是 Windows 电脑,点击 win+R,输入 cmd 点击回车;如果是 Mac 电脑,按下 Command(⌘)+ Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。 复制相关命令行,粘贴进入并回车,会开始自动下载,文件下载较慢,可同时进行安装 Docker 的步骤。 3. 下载 Open WebUI: 回到桌面,再打开一个新的终端窗口。如果是 Windows 电脑,点击 win+R,输入 cmd 点击回车;如果是 Mac 电脑,按下 Command(⌘)+ Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。 将相关命令输入,等待下载。 点击或复制相关地址进入浏览器,进行注册登录。 登入后,点击顶部的 Model,选择“llama3:8b”。 需要注意的是,模型的回复速度取决于您电脑的配置。另外,您还可以参考开源项目 。同时,有教程提到可以通过购买算力解决本地电脑配置不够的问题,但需要充值 50 元。
2024-11-14
llama3是什么?
Llama 3 是 Meta 发布的语言模型。以下是关于 Llama 3 的一些重要信息: 模型版本:包括 8B 和 70B 双模型。 数据集:比 Llama 2 的数据集大 7 倍以上。 性能特点:具有 128K token,更强的推理和编码能力,训练效率比 Llama 2 高 3 倍,已集成到 Meta AI。 能力表现:8B 的能力远超 Llama 2 70b。 模型架构:使用 128K 词库的标记化器,8B 和 70B 模型采用分组查询关注 以提升推理效率。 训练数据:超过 15T 词库的预训练,包含的代码数量是 Llama 2 的四倍,预训练数据集含 5%以上的非英语数据,覆盖 30 多种语言,并采用数据过滤管道。 使用方式:将支持 AWS、Databricks、Google Cloud 等平台,得到 AMD、AWS 等硬件平台支持,可在 Meta AI 官方助手上体验。 未来发展:未来几个月将推出新功能、更长上下文窗口、更多型号尺寸,性能将进一步提升,并将分享 Llama 3 研究论文。 此外,现在 llama370BInstruct 已经可以在刚刚推出的 Hugging Chat 上直接使用,网页为:https://huggingface.co/chat/ ,app 下载:https://apps.apple.com/us/app/huggingchat/id6476778843?l=zhHansCN 。还可以在 Amazon SageMaker 上部署 Llama 3 ,相关博客介绍了如何设置开发环境、硬件要求、部署步骤、运行推理并与模型聊天、进行基准测试以及清理等内容。目前 Llama 3 400B 还在训练中。
2024-11-14
推荐 llama3 的一篇文章
以下是一篇关于 Llama3 的文章: Llama3 正式发布,开源模型的质量又迎来再一次飞跃 数字生命卡兹克、赛博禅心、歸藏、AI 大模型在手等多家媒体都对 Llama3 进行了报道。他们认为,Llama3 的发布是开源模型质量的又一次飞跃。 在 Amazon SageMaker 上部署 Llama 3 要将 Llama 3 70B 部署到 Amazon SageMaker,我们需要创建一个 HuggingFaceModel 模型类,并定义我们的端点配置,包括 hf\_model\_id,instance\_type 等。我们将使用一个 p4d.24xlarge 实例类型,该类型具有 8 个 NVIDIA A100 GPU 和 320GB 的 GPU 内存。Llama 3 70B 指令是一个经过优化的对话 AI 模型,这使我们能够启用 TGI 的消息 API 与 llama 交互,使用常见的 OpenAI 格式 messages。 注意:Llama 3 是一个有门槛的模型,请在提交此表单前访问模型卡并接受许可条款和可接受的使用政策。
2024-05-23
? Llama3 怎么下载
您可以在以下网站找到 Llama 3 模型的下载地址: 1. Llama 3 官网链接: 2. 模型下载链接: 3. Hugging Face 链接: 4. Replicate 链接: 5. GitHub 项目地址: 您可以通过这些链接找到 Llama 3 模型的下载地址并获取所需的文件。
2024-04-19
热点的大模型微调蒸馏工具有哪些
以下是一些热点的大模型微调蒸馏工具: FLUX.1:包括 FLUX.1(可商用,为本地开发和个人使用定制,生成速度快,内存占用小,在 Apache 2.0 许可下公开提供,支持在 Replicate、fal.ai 和 Comfy UI 等平台使用,且支持用户根据自己数据集微调)。其训练参数高达 120 亿,在图像质量、提示词跟随等多方面超越流行模型,工作原理基于混合架构,结合变换器和扩散技术。 基于阿里云 PAI 平台:可复现 R1 蒸馏及蒸馏训练模型过程。部署 32b 的蒸馏模型展示效果,包括模型部署(如选中模型卡片后的操作、选择 vLLM 部署、涉及竞价系统等)、蒸馏数据获取(在本地 python 环境或 notebook gallery 建立实例执行代码获取蒸馏数据集)等。 DeepSeek:PaaS 平台支持多机分布式部署,满足推理性能要求,能一站式完成模型蒸馏。可登录 Pad 控制台通过 model gallery 进行部署,如 Deepseek R1 模型,可选择 SG 浪或 Vim 推理框架,根据资源出价部署,部署后可在模型在线服务 EAS 查看状态。还介绍了模型 API 调用、服务关停、蒸馏概念、应用场景及部署实操等。
2025-04-13
deepseek v3微调
以下是关于 Deepseek V3 微调的相关信息: 云舒文章总结卡 2.0 提示词全面支持 Deepseek V3,效果媲美 Claude3.7。V3 需要为 0324 更新的版本,DS 官网及 API 已更新,如调用其它平台 API 需要查看 DS 版本号。提示词复制链接:。横版为 1080 x 800 卡片提示词,竖版为 750 x 不限高卡片提示词。 各平台均需下载 html 文件,打开后才能查看真实效果,平台自带预览因兼容性问题无法正常展示效果。Claude 使用平台包括 Claude3.7 官网、API、Cursor,使用时需要下载为 HTML 文件打开查看效果。Deepseek 使用平台包括 Deepseek 官网、API(V3 需要为 0324 更新的版本),Deepseek 需要复制代码到 html 文件里,然后保存进行查看。 关于智能纪要,会带着大家复现模型的蒸馏和微调,并讲解相关知识。用 Deepseek RE Zero 蒸馏出带思考的数据,基于 Deepseek V3 微调,进行冷启动,再做强化学习,还从非公布模型提取微调数据,加上人类偏好,最终形成 R1。Deepseek R1 反过来蒸馏数据微调 V3,形成互相帮助的局面。 北京时间 00:30 至 08:30 期间,DeepSeek API 价格大幅下调,DeepSeekV3 降至原价的 50%。
2025-04-12
有哪些针对CoT能力的微调工具
以下是一些针对 CoT 能力的微调工具: 1. Selfconsistency CoT:使用手动设计的 Prompt 生成采样一组不同的推理路径,再通过“多数投票”找到推理步骤中“最一致”的路径,使用这条解码路径驱动原始的贪心解码方式来提示 CoT 性能。 2. MMCoT:侧重使用微调方法嵌入 CoT,通过将语言和图像合并在一个包含推理生成与答案推理的两阶段的框架中,使用微调大模型赋予输入多模态 CoT 的能力。 3. GoTInput 方法:通过对 CoT 生成的思维图进行抽取构建三元组,并使用 GNN 将文本、图像与 CoT 统一,从而生成包含 CoT 信息的最终答案。 4. VCoT:解决了一个输出多模态的问题,通过以生成图片的“标题”以及识别核心关注点作为图像生成的启动过程,通过递归的方式填充图像信息,从而实现输出多模态。 此外,在将 DoT 扩展到预训练的扩散语言模型 Plaid 1B 并在更复杂的推理任务上进行评估时,自回归模型和扩散模型在使用 CoT 或 DoT 进行微调时都显示出显著提高的性能。在微调 Plaid 1B 时,也探索了几种替代方案。 在强化学习驱动的合成数据生成与模型优化流程中,也涉及到 CoT 的相关应用和优化,如初始 CoT 生成、CoT 存储等。
2025-04-12
本地部署大模型,如何微调建立本地知识库
以下是关于本地部署大模型并微调建立本地知识库的详细步骤: 一、使用 AnythingLLM 进行本地知识库搭建 1. 安装 AnythingLLM 安装地址:https://useanything.com/download 安装完成后进入配置页面,主要分为三步: 第一步:选择大模型 第二步:选择文本嵌入模型 第三步:选择向量数据库 2. 构建本地知识库 在 AnythingLLM 中创建自己独有的 Workspace 与其他项目数据隔离。 上传文档并在工作空间中进行文本嵌入。 选择对话模式,提供了 Chat 模式(大模型根据训练数据和上传文档数据综合给出答案)和 Query 模式(大模型仅依靠文档中的数据给出答案)。 二、张梦飞的全本地部署教程 1. 部署大语言模型 下载并安装 Ollama 点击进入,根据电脑系统,下载 Ollama:https://ollama.com/download 下载完成后,双击打开,点击“Install” 安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成:http://127.0.0.1:11434/ 下载 qwen2:0.5b 模型 如果是 Windows 电脑,点击 win+R,输入 cmd,点击回车;如果是 Mac 电脑,按下 Command(⌘)+Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。 复制相关命令行,粘贴进入,点击回车。 三、智能纪要中的相关内容 在智能纪要中,许键介绍了模型 API 调用方法与知识库创建,包括获取 API key 位置及调用设置,详细讲解了创建 Rag 应用(知识库)流程,如上传非结构化文件、数据解析、切分段落等操作,并回答了诸多问题。同时还涉及工作流创建、模型能力及相关问题的探讨,以及通义千问相关应用及明天课程安排交流等内容。 总之,本地部署大模型并建立本地知识库需要按照上述步骤进行操作和配置,同时不断实践和探索,以达到理想的效果。
2025-04-10
如何做 deepseek 微调
要进行 DeepSeek 微调,以下是一些相关的知识和步骤: 1. 模型蒸馏微调:会带着大家复现模型的蒸馏和微调,并讲解相关知识。用 Deepseek RE Zero 蒸馏出带思考的数据,基于 Deepseek V3 微调,进行冷启动,再做强化学习,还从非公布模型提取微调数据,加上人类偏好,最终形成 R1。 2. 本地部署介绍:如果拥有云服务器,可以进行本地部署,了解满血版本地部署的实际情况。 3. 免费额度说明:在 freely.aliyun.com 可领取 500 元免费额度,但有使用限制,不能部署满血版和较大的增流模型。 4. 平台服务差异:了解 DLC、DSW 和 EAS 等模型部署平台服务的差别。 5. 对于微调的全过程,建议阅读 Unsloth 笔记本和 HuggingFace 的《如何微调开放式 LLMs》,也可以使用《如何在一小时内阅读论文》作为指南。 6. 更加完善的训练说明,可直接阅读官方论文:DeepSeekAI《DeepSeekR1:Incentivizing Reasoning Capability in LLMs via Reinforcement Learning》https://arxiv.org/html/2501.12948
2025-04-08
怎么本地部署ai模型,并进行微调
以下是本地部署 AI 模型并进行微调的主要步骤: 1. 选择合适的部署方式:包括本地环境部署、云计算平台部署、分布式部署、模型压缩和量化、公共云服务商部署等,根据自身的资源、安全和性能需求进行选择。 2. 准备训练所需的数据和计算资源:确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础:可以使用开源的预训练模型如 BERT、GPT 等,也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练:根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 5. 部署和调试模型:将训练好的模型部署到生产环境,对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护:大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 此外,关于本地部署还有以下相关内容: 如果拥有云服务器如何进行本地部署,以及满血版本地部署的实际情况。 在 freely.aliyun.com 可领取 500 元免费额度,但有使用限制,不能部署满血版和较大的增流模型。 介绍了 DLC、DSW 和 EAS 等模型部署平台服务的差别。 会带着大家复现模型的蒸馏和微调,并讲解相关知识。 PaaS 平台支持多机分布式部署,满足推理性能要求,使用独占资源和专有网络,能一站式完成模型蒸馏。 登录 Pad 控制台,通过 model gallery 进行部署,如 Deepseek R1 模型,可选择 SG 浪或 Vim 推理框架,根据资源出价,部署后可在模型在线服务 EAS 查看状态。 介绍了模型 API 的调用方法,包括查找位置、获取 token 等,强调使用后要及时停止或删除服务以避免持续付费。 总的来说,部署和训练自己的 AI 模型需要综合考虑多方面因素,包括部署方式、数据准备、模型训练、部署调试以及安全性等。需要根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。
2025-03-27