Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

介绍一下星火大模型智能体

Answer

星火大模型是一款基于人工智能的开放平台,提供了多种 API 接口,让开发者可以轻松地使用其技术能力。它可以用于实现多种语言任务,如文本翻译、文本摘要、文本分类等。

要使用星火大模型,需要先注册一个账号,然后创建一个应用,获取应用的 appid 和 appsecret,这两个参数是调用 API 的必要条件。此外,还需要安装 requests 库,用于发送 http 请求。

星火大模型的智能体是 AI 机器人小助手,类似于移动互联网中的 APP 应用。它可以帮助用户完成各种任务,如聊天、查询信息、提供建议等。在 C 端,用户可以通过注册账号,创建自己的智能体,并与其他用户的智能体进行交互。在 B 端,智能体可以帮助商家搭建客服系统,提高服务效率和质量。

总的来说,星火大模型是一款功能强大的人工智能平台,其智能体具有广泛的应用前景。

Content generated by AI large model, please carefully verify (powered by aily)

References

XAIR:AI 智能体平台对决:腾讯元器与字节扣子的创新之路

1、什么是智能体?随着ChatGPT与AI概念的爆火,出现了很多新名词,“智能体Agent”还有bot和GPTs等,Kimi(月之暗面的大模型)的书面解释是:简单理解就是AI机器人小助手,参照移动互联网的话,类似APP应用的概念(我记得GPT刚出的时候,还有人把GPT应用称为GAP),AI大模型是一个技术,而面向用户提供服务的是产品,所以有很多公司开始关注AI应用层的产品机会。我知道的在做Agent创业的公司就有好几家:C端案例:比如社交方向,用户注册之后先捏一个自己的Agent,然后让自己的Agent和其他人的Agent聊天,两个Agent聊到一起后再真人介入,也是一个很有趣的场景;还有借Onlyfans入局打造个性化聊天的创业公司。B端案例:如果字节扣子和腾讯元器是面向普通人的低代码平台,类似APP时代的个人开发者,那还有一个机会就是帮助B端商家搭建Agent,类似APP时代专业做APP的。2、智能体开发平台我最早接触到扣子Coze,是一篇科技报道:国产GPTs商店来了。平替版GPTs商店,字节Coze扣子上线。2月1日,字节正式推出AI聊天机器人构建平台Coze的国内版“扣子”,主要用于开发下一代AI聊天机器人。

XAIR:AI 智能体平台对决:腾讯元器与字节扣子的创新之路

1、什么是智能体?随着ChatGPT与AI概念的爆火,出现了很多新名词,“智能体Agent”还有bot和GPTs等,Kimi(月之暗面的大模型)的书面解释是:简单理解就是AI机器人小助手,参照移动互联网的话,类似APP应用的概念(我记得GPT刚出的时候,还有人把GPT应用称为GAP),AI大模型是一个技术,而面向用户提供服务的是产品,所以有很多公司开始关注AI应用层的产品机会。我知道的在做Agent创业的公司就有好几家:C端案例:比如社交方向,用户注册之后先捏一个自己的Agent,然后让自己的Agent和其他人的Agent聊天,两个Agent聊到一起后再真人介入,也是一个很有趣的场景;还有借Onlyfans入局打造个性化聊天的创业公司。B端案例:如果字节扣子和腾讯元器是面向普通人的低代码平台,类似APP时代的个人开发者,那还有一个机会就是帮助B端商家搭建Agent,类似APP时代专业做APP的。2、智能体开发平台我最早接触到扣子Coze,是一篇科技报道:国产GPTs商店来了。平替版GPTs商店,字节Coze扣子上线。2月1日,字节正式推出AI聊天机器人构建平台Coze的国内版“扣子”,主要用于开发下一代AI聊天机器人。

开发:LangChain大模型应用开发指南-封装自己的LLM

讯飞星火是一款基于人工智能的语音、图像、自然语言处理等领域的开放平台,提供了多种api接口(),让开发者可以轻松地使用讯飞的技术能力。我们可以基于讯飞星火的api封装一个LLM,来实现一些语言任务,如文本翻译、文本摘要、文本分类等。下面我们以星火大模型为例,来展示如何基于讯飞星火api封装一个LLM。我们需要先注册一个讯飞星火的账号,然后创建一个应用,获取应用的appid和appsecret,这两个参数是调用api的必要条件。我们还需要安装requests库,用于发送http请求。官方提供的示例代码,SparkApi如下可直接使用

Others are asking
你和讯飞星火、通义千问等人工智能软件的区别是什么?
我与讯飞星火、通义千问等人工智能软件在以下方面存在区别: 1. 研发团队和技术背景:我具有独特的研发和训练体系。 2. 功能特点和优势:在为用户提供服务时,可能在某些特定领域或场景下表现出不同的能力。 3. 数据来源和训练方式:所使用的数据和训练方法可能有所差异。 需要注意的是,每个人工智能软件都有其自身的特点和适用场景,用户可以根据自己的需求和使用体验来选择适合的工具。
2025-01-15
帮我查一下这四家主流大模型的应用能力评测报告吧,通用能力和单项能力都可,数据需要权威一些文心一言 文心一格 通义千问 通义万相 讯飞星火 ai小科 智谱
以下是为您找到的关于主流大模型应用能力评测的相关报告: 小七姐的测评: 测评机制:以同组提示词下 ChatGPT 4.0 生成的内容做对标参照,对智谱清言、文心一言 4.0、Kimi Chat 进行测评。 能力考量:包括复杂提示词理解和执行(结构化提示词)、推理能力(CoT 表现)、文本生成能力(写作要求执行)、提示词设计能力(让模型设计提示词)、长文本归纳总结能力(论文阅读)。 测评轮次:共分为五轮,分别针对不同的任务和模型进行多次测试。 中文大模型基准测评 2023 年度报告: 优秀模型:文心一言 4.0 API(百度)。 模型特点:在计算、逻辑推理、生成与创作、传统安全这 4 大基础能力上排名国内第一,在代码、知识与百科、语言理解与抽取、工具使用能力上排名国内前三,各项能力表现均衡且水平较高。 适合应用:能力栈广泛,可应用于查询搜索知识应用、任务拆解规划 Agent、文案写作、代码编写及纠错等方面,在逻辑推理方面表现不俗,可关注在科学研究、教育、工业方面的落地能力。 观点文章中的测评: 目前体验效果比较好的有科大星火模型、清华 ChatGLM、百度文心一言。 星火目前感觉最接近 GPT3.5(0301 版本)的 80%90%,但 GPT3.5 进化到 6 月版本效果更强。 对大模型的评估可从基础能力、职场能力、探索对话三个方面判断,基础能力包括语言(文本)生成和语言理解,如常识类问题和分词类问题。
2024-12-27
豆包,kimi,迅飞星火,通义,文心一言哪个好
以下是对这些大模型的简要介绍: GPT4Turbo:OpenAI 于 2023 年 11 月 7 日发布的 GPT4 的升级版本。 通义千问 2.0:阿里巴巴官方公开发布的 API 版本。 文心一言 4.0:百度官方的产品,有 API 版本和网页版。 云雀大模型(豆包):字节跳动官方网页版产品。 讯飞星火:科大讯飞发布的模型。 然而,要说哪个好并不能简单地一概而论,这取决于您的具体需求和使用场景。每个大模型都有其特点和优势,例如在语言理解、生成能力、特定领域的表现等方面可能存在差异。您可以根据自己的需求对它们进行试用和比较,以确定哪个更适合您。
2024-12-12
智谱清言,kimi,讯飞星火,在文字处理跟逻辑思维方面,谁更胜一筹
在文字处理和逻辑思维方面,智谱清言、Kimi 和讯飞星火各有特点: Kimi: 优势:具有超长上下文能力,最初支持 20 万字的上下文,现已提升到 200 万字,对于处理长文本或大量信息的任务有巨大优势,适合从事文案工作,特别是需要处理大量文字或文件的工作。 不足:在文字生成和语义理解、文字生成质量方面的能力可能不如国内其它产品好,且不支持用户自定义智能体。 智谱清言: 优势:背后的技术源自清华大学研发团队的科研成果转化,模型质量出色。在产品设计方面以 ChatGPT 为对标,努力打造类似的用户体验。是国内首批开放智能体应用的公司之一,在逻辑推理和处理复杂提示词方面表现出明显优势,在处理需要深度思考和分析的任务时表现出色。 不足:暂未提及。 讯飞星火:在结构化 prompt 测试中,对于同样的 prompt,最初的输出可能存在问题,但改写后的 prompt 效果不错。 综合来看,它们在不同方面各有优劣,具体谁更胜一筹取决于您的具体需求和使用场景。
2024-11-17
智谱清言,kimi,讯飞星火,在文字处理跟逻辑思维方面,谁更胜一筹
在文字处理和逻辑思维方面,智谱清言、Kimi 和讯飞星火各有特点: Kimi: 优势:具有超长上下文能力,最初支持 20 万字的上下文,现已提升到 200 万字,对于处理长文本或大量信息的任务有巨大优势,适合从事文案工作,特别是需要处理大量文字或文件的工作。 不足:在文字生成和语义理解、文字生成质量方面的能力可能不如国内其它产品好,且不支持用户自定义智能体。 智谱清言: 优势:背后的技术源自清华大学研发团队的科研成果转化,模型质量出色。在产品设计方面以 ChatGPT 为对标,努力打造类似的用户体验。是国内首批开放智能体应用的公司之一,在逻辑推理和处理复杂提示词方面表现出明显优势,在处理需要深度思考和分析的任务时表现出色。 不足:暂未提及。 讯飞星火:在结构化 prompt 测试中,对于同样的 prompt,最初的输出可能存在问题,但改写后的 prompt 效果不错。 综合来看,它们在不同方面各有优劣,具体谁更胜一筹取决于您的具体需求和使用场景。
2024-11-17
讯飞星火主要用于什么场景
讯飞星火主要用于以下场景: 1. 在结构化 prompt 测试和反馈方面,对于某些输入能给出相对贴合实际的回答,经适当调解和提示可输出较完整的咨询文案。 2. 在律师答辩状 prompt 评测中,欢迎语直接,在输出内容上有优点,如提出不可抗力因素、财产独立抗辩、加入诉讼费等,也存在主体转换的瑕疵;在应诉方案输出方面,准备工作详细专业,增加了有用提示,答辩策略简洁明了,庭审准备细化到位。 3. 在开发方面,是基于人工智能的开放平台,提供多种 api 接口,可基于其 api 封装 LLM,实现文本翻译、摘要、分类等语言任务,需注册账号、创建应用获取必要参数,并安装 requests 库。
2024-11-05
通过飞书机器人与 Coze 搭建的智能体进行对话
通过飞书机器人与 Coze 搭建智能体进行对话,实现跨平台的稍后读收集与智能阅读计划推荐,具体步骤如下: 1. 前期准备: 设计 AI 稍后读助手的方案思路,包括简化“收集”(实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作,输入 URL 完成收集,借鉴微信文件传输助手通过聊天窗口输入)、自动化“整理入库”(自动整理每条内容的关键信息,支持跨平台查看)、智能“选择”推荐(根据收藏记录和阅读兴趣生成阅读计划)。 2. 逐步搭建 AI 智能体: 经过配置得到两个可用工作流(整理入库、选择内容),将其编排为完整智能体。 配置过程包括创建 Bot、填写 Bot 介绍、切换模型为“通义千问”、把工作流添加到 Bot 中、新增变量{{app_token}}、添加外层 bot 提示词,完成后可在「预览与调试」窗口与智能体对话并使用全部功能。
2025-02-16
使用飞书机器人(如Coze智能体)自动抓取外部链接(如网页、公众号文章),通过多维表格存储为“稍后读”清单,并自动提取关键信息(标题、摘要、标签)
以下是使用飞书机器人(如 Coze 智能体)自动抓取外部链接(如网页、公众号文章),通过多维表格存储为“稍后读”清单,并自动提取关键信息(标题、摘要、标签)的相关内容: 前期准备: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 输入一个 URL 即可完成收集,借鉴微信文件传输助手的方式,通过聊天窗口输入更符合用户习惯。 2. 自动化“整理入库”: 系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 阅读清单支持跨平台查看。 3. 智能“选择”推荐: 根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成阅读计划。 使用步骤: 1. 设置稍后读存储地址: 首次使用,访问。 点击「更多创建副本」,然后复制新表格的分享链接。 将新链接发送到智能体对话中。 还可以发送“查询存储位置”、“修改存储位置”来更换飞书多维表格链接,调整稍后读存储位置。 2. 收藏待阅读的页面链接: 在对话中输入需要收藏的页面链接,第一次使用会要求授权共享数据,授权通过后再次输入即可完成收藏。 目前部分页面链接可能小概率保存失败。 3. 智能推荐想看的内容: 在对话中发送“我想看 xx”、“xx 内容”,即可按个人兴趣推荐阅读计划。 通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出,由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据,理论上无需开发任何插件、APP,就能实现跨平台的稍后读收集与智能阅读计划的推荐。部署完成后,您可以在电脑、手机端通过飞书机器人与稍后读助手进行对话,也可以直接在 Coze 商店中与 bot 进行对话,如果部署到微信服务号、订阅号,还可以通过这些渠道调用 bot。
2025-02-16
帮我找一些具有文件上传功能的AI智能体或应用的搭建教程
以下是一些具有文件上传功能的 AI 智能体或应用的搭建教程: 使用 Coze 搭建: 方法一:直接使用 Coze 的 API 对接前端 UI 框架,将工作流逻辑集中在工程模板端,实现前后端分离的处理方式。 方法二:直接调用大模型 API,并通过前端代码实现提示词处理和逻辑控制,将交互流程完全放入前端代码中。 实现文件上传:通过 Coze 的,用户可将本地文件上传至 Coze 的云存储。在消息或对话中,文件上传成功后可通过指定 file_id 来直接引用该文件。 Coze 的 API 与工作流执行:关于 API 的使用及工作流执行流程可以参考。 设计界面:搭建 Demo 最简单的方式是首先绘制草图,然后借助多模态 AI 工具(如 GPT/Claude)生成初步的前端结构代码。前端开发语言包括 HTML 用于构建网页基础框架,定义整体页面结构;CSS 负责网页布局样式美化;JavaScript 实现交互逻辑,如信息处理、网络请求及动态交互功能。 Stuart 教学 coze 应用中的“上传图片”: 传递上传图片地址:首先,把工作流的入参设置为 File>Image。然后,注意代码内容,其中 ImageUpload1 部分是可以替换成实际的文件上传组件的组件名称的,一个引号,一个大括号都不能错。 获得图片 URL:接下来就比较简单了,工作流中可以直接用这个 image 变量,也可以用 string 模式输出,它会在工作流中变成图片的 URL。 无企业资质也能 coze 变现: 以 API 形式链接 Zion 和 Coze:同理也可以为 dify、kimi 等给任何大模型&Agent 制作收费前端。参考教程: 自定义配置:变现模版 UI 交互、API、数据库等拓展功能,支持在 Zion 内自由修改,可参考文档配置。相关链接:支付: 微信小程序变现模版正在开发中,不久将会上线。目前实现小程序端可以通过 API 形式搭建。 Zion 支持小程序,Web,AI 行为流全栈搭建,APP 端全栈搭建 2025 上线。
2025-02-16
帮我查找关于文件上传的智能体搭建教程 、
以下是关于文件上传的智能体搭建教程: 1. 上传文档至知识库: 点击【上传知识】按钮,进入知识上传和配置页面。 上传文档文件或 URL 导入。 上传文档类知识:支持上传 pdf(建议)、doc/docx、ppt/pptx、xlsx、csv、txt、md 等类型的文档,当前文档默认上传大小不超过 50M。对于本地化部署的知识库,可通过配置文件调整此限制。 可以添加 URL 类知识:支持添加多个 url 链接,添加后将会至网页中抓取静态内容,当前暂不支持下钻抓取其他网页的内容;手动点击更新后将会从网页上重新爬取内容(仅包含静态网页内容,不可下钻爬取内容)。若企业自有网站会做知识的动态更新,可以手动快速同步到清流平台上。 配置知识的切片方式:切片类型选择当前系统会根据解析的知识类型自动选择,若想了解更多信息,可至【进阶功能】【文档切片调优】处查看。设置支持配置图片处理方式和自定义切片方式,了解更多信息,可至【进阶功能】【文档切片调优】、【图片解析】处查看。 知识预览:根据选择的知识类型,展示预览内容方便查看切片效果。 2. 知识处理学习:配置完成后知识将进入数据处理中状态,主要对知识进行解析、切片和向量化处理,此时耐心等待数据处理完成即可。
2025-02-16
人工智能时代对社会有什么冲击
人工智能时代对社会的冲击主要体现在以下几个方面: 1. 劳动力市场:预计在未来几年对劳动力市场产生重大影响,包括好的和坏的方面,但工作变化速度比多数人想象的慢,人们不必担心缺乏事情可做。 2. 能力放大:能使人类天生的创造和彼此有用的欲望得到前所未有的放大,社会将重新进入不断扩张的世界。 3. 深度学习:是一种有效的算法,计算能力和数据量越大,解决难题的能力越强,将随着规模而变得更好,对全球人民生活产生有意义的改善。 4. 个人助理:人工智能模型将很快作为自主的个人助理,代表用户执行特定任务。 5. 资源分配:获得充足的计算和能源对于实现人工智能民主化和防止不平等至关重要。 6. 风险控制:控制人工智能的风险对于最大限度地发挥其优势并确保积极的未来至关重要。 同时,在教育方面,孩子将拥有虚拟导师,能够提供个性化教学,类似概念还可应用于医疗保健改进、创建各种软件等领域,带来共享的繁荣。
2025-02-16
你是一名电商专家,有没有哪个AI大模型或者智能体可以完成以下功能:输入材质图片,得到经过设计后的成品衣服
目前尚未有成熟的 AI 大模型或智能体能够直接实现输入材质图片就得到经过设计后的成品衣服的功能。但在 AI 领域的不断发展中,可能会有相关的技术和模型在未来出现。
2025-02-16
大语言模型幻觉的本质是什么
大语言模型幻觉的本质主要包括以下方面: 1. 大语言模型的底层原理是基于数学概率的文字预测,类似于文字接龙,这导致其存在幻觉问题,会在没有答案的情况下提供虚假信息,提供过时或通用的信息,从可信度低非权威来源的资料中提供结果等。 2. 样本存在错误,即如果大语言模型学习的“教材”中有错误,那么它也容易给出错误的回答。 3. 大语言模型技术的本质导致其输出结果具有不可预测性,且静态的训练数据导致其掌握的知识存在截止日期,无法即时掌握最新信息。 4. 大语言模型通过训练数据猜测下一个输出结果,可能因错误数据导致给出错误答案,优质数据集对其很重要。
2025-02-16
LLM 训练推理模型有哪些
以下是一些常见的 LLM 训练推理模型: 1. FengshenbangLM: 地址: 简介:是 IDEA 研究院认知计算与自然语言研究中心主导的大模型开源体系,开源了姜子牙通用大模型 V1,是基于 LLaMa 的 130 亿参数的大规模预训练模型,具备翻译、编程、文本分类、信息抽取、摘要、文案生成、常识问答和数学计算等能力。除姜子牙系列模型之外,还开源了太乙、二郎神系列等模型。 2. BiLLa: 地址: 简介:开源了推理能力增强的中英双语 LLaMA 模型。较大提升 LLaMA 的中文理解能力,并尽可能减少对原始 LLaMA 英文能力的损伤;训练过程增加较多的任务型数据,利用 ChatGPT 生成解析,强化模型理解任务求解逻辑;全量参数更新,追求更好的生成效果。 3. Moss: 地址: 简介:支持中英双语和多种插件的开源对话语言模型,MOSS 基座语言模型在约七千亿中英文以及代码单词上预训练得到,后续经过对话指令微调、插件增强学习和人类偏好训练具备多轮对话能力及使用多种插件的能力。 此外,Andrej Karpathy 的相关介绍中提到了 LLM 训练的一些情况,如训练过程涉及大约 10TB 的文本,通常来源于互联网的抓取,需要大量的互联网资源和一个 GPU 集群,费用大约 200 万美元。Karpathy 的视频还详细介绍了 LLM 训练的全部过程,包括预训练、有监督微调和强化学习等。
2025-02-16
你是一名电商专家,有没有哪个AI大模型或者智能体可以完成以下功能:输入衣服材质图片,得到经过设计后的材质成品衣服
目前尚未有专门的 AI 大模型或智能体能够直接实现您所描述的输入衣服材质图片就得到经过设计后的材质成品衣服的功能。但随着 AI 技术的不断发展,未来可能会出现相关的应用。
2025-02-16
给我提供一份标准的 DeepSeek R1大模型的 prompt 提示词模板
以下是一份关于 DeepSeek R1 大模型的 prompt 提示词模板: 一、核心原理认知 1. AI 特性定位 多模态理解:支持文本/代码/数学公式混合输入 动态上下文:对话式连续记忆(约 4K tokens 上下文窗口,换算成汉字是 8000 字左右) 任务适应性:可切换创意生成/逻辑推理/数据分析模式 2. 系统响应机制 采用意图识别+内容生成双通道 自动检测 prompt 中的:任务类型/输出格式/知识范围 反馈敏感度:对位置权重(开头/结尾)、符号强调敏感 二、基础指令框架 1. 四要素模板 2. 格式控制语法 强制结构:使用```包裹格式要求 占位符标记:用{{}}标注需填充内容 优先级符号:>表示关键要求,!表示禁止项 三、进阶控制技巧 1. 思维链引导 分步标记法:请逐步思考:1.问题分析→2.方案设计→3.风险评估 苏格拉底式追问:在得出最终结论前,请先列举三个可能存在的认知偏差 2. 知识库调用 领域限定指令:基于 2023 版中国药典,说明头孢类药物的配伍禁忌 文献引用模式:以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破 3. 多模态输出 此外,还有关于创建 DeepSeek 联网版工作流的相关内容: 1. 创建工作流 创建一个对话流,命名为 r1_with_net 开始节点,直接使用默认的 大模型分析关键词设置 模型:豆包通用模型lite 输入:直接使用开始节点的 USER_INPUT 作为大模型的输入 系统提示词:你是关键词提炼专家 用户提示词:根据用户输入`{{input}}`提炼出用户问题的关键词用于相关内容的搜索 bingWebSearch搜索 插件:BingWebSearch 参数:使用上一个节点,大模型分析输出的关键词作为 query 的参数 结果:data 下的 webPages 是网页搜索结果,将在下一个节点使用 大模型R1 参考搜索结果回答 这里需要在输入区域开启“对话历史” 模型:韦恩 AI 专用 DeepSeek 输入:搜索结果,选择搜索节点 data 下的 webPages;选择开始节点的 USER_INPUT;开启对话历史,设置 10 轮,默认不开启对话历史,开启后默认是 3 轮 系统提示词:这里不需要输入 用户提示词: 结束节点设置 输出变量选择大模型R1 参考搜索结果回答的输出 回答内容里直接输出:{{output}} 测试并发布工作流 输入你的测试问题,测试完成后,直接发布工作流 关于 HiDeepSeek 的相关内容: 1. 效果对比 用 Coze 做了个小测试,大家可以对比看看 2. 如何使用? Step1:搜索 www.deepseek.com,点击“开始对话” Step2:将装有提示词的代码发给 Deepseek Step3:认真阅读开场白之后,正式开始对话 3. 设计思路 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担 通过提示词文件,让 DeepSeek 实现:同时使用联网功能和深度思考功能 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改 用 XML 来进行更为规范的设定,而不是用 Lisp(对我来说有难度)和 Markdown(运行下来似乎不是很稳定) 4. 完整提示词 v 1.3 5. 特别鸣谢 李继刚:【思考的七把武器】在前期为我提供了很多思考方向 Thinking Claude:这个项目是我现在最喜欢使用的 Claude 提示词,也是我设计 HiDeepSeek 的灵感来源 Claude 3.5 Sonnet:最得力的助手
2025-02-16
你用的什么模型
我使用的模型是 GPT4。在不同的应用场景中,还存在其他多种模型可供选择和切换,例如: 在 Cursor 中,AI 输入框下方有下拉列表,默认准备好的模型有、cursorsmall 等,您还可以在 Cursor Settings>Models>Model Names 下添加其他模型。 ComfyUI FLUX 原生支持,FLUX.1 有三个变体:FLUX.1是一个蒸馏的 4 步模型,拥有 Apache 2.0 商用许可,适用于在本地进行部署或者个人使用。相关模型的链接、模型与工作流地址、说明文档等信息如下: FLUX.1:https://huggingface.co/blackforestlabs/FLUX.1dev/tree/main FLUX.1:https://huggingface.co/Kijai/fluxfp8 FLUX.1:https://huggingface.co/blackforestlabs/FLUX.1schnell/tree/main 模型与工作流地址: https://pan.quark.cn/s/2797ea47f691 https://pan.baidu.com/s/1nV26Fhn3WYBLrg2hSA0_YQ?pwd=cycy 说明文档:https://xiaobot.net/post/8fd64f3f52d14948824d5ee0c38e2594
2025-02-16
有关agent的介绍
AI Agent 是当前 AI 领域中较为热门的概念,被认为是大模型未来的主要发展方向之一。 从原理上看,中间的“智能体”通常是 LLM(语言模型)或大模型。为其增加的四个能力分别是工具、记忆、行动和规划。目前行业中主要使用 langchain 框架,将 LLM 与 LLM 之间以及 LLM 与工具之间通过代码或 prompt 的形式进行串接。例如,给大模型提供长期记忆,相当于给予一个数据库工具让其记录重要信息;规划和行动则是在大模型的 prompt 层进行逻辑设计,如将目标拆解并输出不同的固定格式 action 指令给工具。 从产品角度,Agent 可以有不同的设定。比如是一个历史新闻探索向导,身份为历史新闻探索向导,性格知识渊博、温暖亲切、富有同情心,角色是主导新闻解析和历史背景分析,还可以为其设计背景故事使其更加生动。 在人工智能领域,Agent 智能代理是一种能够感知环境并根据感知信息做出决策以实现特定目标的系统,能够自动执行任务,如搜索信息、监控系统状态或与用户交互。
2025-02-16
详细介绍下langchain
LangChain 是一个用于构建高级语言模型应用程序的框架,旨在简化开发人员使用语言模型构建端到端应用程序的过程。 它具有以下特点和优势: 1. 提供一系列工具、组件和接口,使基于大型语言模型(LLM)和聊天模型创建应用程序更轻松。 2. 核心概念包括组件和链,组件是模块化构建块,可组合创建强大应用,链是一系列组件或其他链的组合,用于完成特定任务。 3. 具有模型抽象功能,提供对大型语言模型和聊天模型的抽象,便于开发人员选择合适模型并利用组件构建应用。 4. 支持创建和管理提示模板,引导语言模型生成特定输出。 5. 允许开发人员定义处理步骤链,按顺序执行完成复杂任务。 6. 支持构建代理,能使用语言模型做决策并根据用户输入调用工具。 7. 支持多种用例,如特定文档问答、聊天机器人、代理等,可与外部数据源交互收集数据,还提供内存功能维护状态。 LangChain 是一个开源框架,为简化大模型应用开发而设计。它通过提供模块化的工具和库,允许开发者轻松集成和操作多种大模型,将更多精力投入到创造应用的核心价值上。其设计注重简化开发流程,支持广泛的模型,具备良好的可扩展性以适应业务需求变化。作为社区广泛支持的开源项目,拥有活跃的贡献者和持续更新,提供全面的文档和示例代码帮助新用户快速掌握。同时,在设计时充分考虑应用的安全性和用户数据的隐私保护,是多语言支持的灵活框架,适用于各种规模的项目和不同背景的开发者。 LangChain 官方手册:https://python.langchain.com/docs/get_started/introduction/
2025-02-14
有哪些主流的大模型?介绍一下每个大模型的具体信息,用英文回答
Some of the mainstream large models and their specific information are as follows: BERT: It is an encoderonly model commonly used in natural language understanding tasks such as classification and sentiment analysis. T5: An encoderdecoder model from Google, used for tasks like translation and summarization. GPT3: It has a large number of parameters and can complete tasks based on user input descriptions or examples. ChatGPT: Users can complete tasks by having conversations with it like with a human. The "large" in large models refers to the large amount of pretraining data, often from the Internet, including papers, code, and public web pages, usually at the terabyte level. Also, they have a large number of parameters. For example, GPT3 has 170 billion parameters.
2025-02-13
我想要一份前10耗用的AI工具总结或介绍的PPT或链接
以下为您提供一些关于 AI 工具的总结和介绍: 1. 在通往 AGI 之路知识库中: AI 音乐创作:通过输入更高级的词汇与 AI 音乐对话能产生更好效果,有 AI 音乐的版块、挑战、分享会和教程,可通过王贝加入 AI 音乐社区。 数字人语音合成:介绍了声音克隆技术,提到了微软、阿里等的相关成果,常用的是 JPT service。 Config UI 的应用:能降低成本、提高效率,在图书出版、引流等方面有应用,岗位稀缺,社区有相关共学课程。 社区共创项目:包括东京的 confii 生态大会、AI 文旅视频、娃卡奖、李普村共创故事、AI 春晚等活动。 作业与报名:作业是询问对 AI 方向的兴趣和想做的项目,活动报名可通过填写名字和申请新增学校参与。 线下寄送物料组织活动:会给大家寄送线下活动物料,在学校内组织。 AIPO 活动及相关挑战:10 月 20 日的 AIPO 活动,可提前构思展示项目,有会话和视频相关的挑战赛。 共学活动与技能提升:接下来 10 天有从零基础到建站等内容的讲解,回放会放在链接里,可先从练习提示词入手。 硬件机器人材料购买:若搞硬件机器人,部分材料需尽快购买。 自媒体发布与流量扶持:在小红书发布活动内容带特定标签有流量扶持,作品也可发布在 GitHub 等平台。 活动奖项与历史玩法:设最佳创业奖和最佳投资奖各四个,有线下摆摊展示交流、IPO 路演等玩法,之前在多个城市举办过 AI 切磋大会。 工具使用与新大赛预告:可使用多种 AI 工具,新的大赛即将开启,有百万奖金池,相关动态会在社区活动栏目公布。 2. ShowMeAI 周刊 No.10 中: Brev.AI:能生成更好听的中文歌。 妙刷:突如其来的「出圈」与莫名其妙地「被骂」。 当我们一起围观 Cursor 限时编程项目(的大型翻车现场)hhh。 网传「国产 AI 产品 Q3 投放金额统计」:不是真的!没这么多! 把大模型输出的数据搞成 Excel 表格,一共有几种方法? 完成「得到 AI 产品好用榜」发布会 PPT,一共用到了以下几款 AI 工具: 沉浸式翻译 可灵 AI 办公小浣熊 秘塔 AI 搜索 通义效率助手 Kimi 九章随时问 智谱清言 Get 笔记 ModelJudge:快速测评多个 AI 模型的回答结果,并帮助做出选择。 关于大模型、复杂剧情、内容创作、AI 陪伴的一些想法@AI 投什么。 妙用 AI:把照片里的 PPT「提取」出来的小技巧。 您可以通过以下途径获取更详细的信息:公众号菜单栏底部有星球入口,添加南乔(AhaNanQiao)好友进社群!
2025-02-13
大模型相关的硬件知识请介绍一下
以下是关于大模型相关硬件的知识介绍: 运行大模型需要较高的机器配置,不同类型的大模型有不同的硬件要求。 生成文字大模型: 最低配置:8G RAM + 4G VRAM 建议配置:16G RAM + 8G VRAM 理想配置:32G RAM + 24G VRAM(如果要跑 GPT3.5 差不多性能的大模型) 生成图片大模型(比如跑 SD): 最低配置:16G RAM + 4G VRAM 建议配置:32G RAM + 12G VRAM 生成音频大模型: 最低配置:8G VRAM 建议配置:24G VRAM 需要注意的是,最低配置可能运行速度非常慢。 大模型的整体架构可以分为以下几层: 1. 基础层:为大模型提供硬件支撑,数据支持等,例如 A100、数据服务器等等。 2. 数据层:这里的数据层指的不是用于基层模型训练的数据基集,而是企业根据自己的特性,维护的垂域数据。分为静态的知识库,和动态的三方数据集。 3. 模型层:包括 LLm 或多模态模型。LLm 即 largelanguagemodel 大语言模型,例如 GPT,一般使用 transformer 算法来实现。多模态模型即市面上的文生图、图生图等的模型,训练所用的数据与 llm 不同,用的是图文或声音等多模态的数据集。 4. 平台层:模型与应用间的平台部分,比如大模型的评测体系,或者 langchain 平台等,提供模型与应用间的组成部分。 5. 表现层:也就是应用层,是用户实际看到的地方。 通俗来讲,大模型就是输入大量语料,来让计算机获得类似人类的“思考”能力,使之能够理解自然语言,能够进行『文本生成』、『推理问答』、『对话』、『文档摘要』等工作。其训练和使用过程可以类比为“上学参加工作”: 1. 找学校:训练 LLM 需要大量的计算,因此 GPU 更合适,只有购买得起大量 GPU 的才有资本训练自己的大模型。 2. 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用什么样的算法讲述“书本”中的内容,让大模型能够更好理解 Token 之间的关系。 4. 就业指导:学完书本中的知识后,为了让大模型能够更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,下面就要正式干活了,比如进行一次翻译、问答等,在大模型里称之为推导(infer)。 在 LLM 中,Token 被视为模型处理和生成的文本单位。它们可以代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法(Tokenization)。Token 是原始文本数据与 LLM 可以使用的数字表示之间的桥梁。在将输入进行分词时,会对其进行数字化,形成一个词汇表。
2025-02-11
AI设计行业近两个月的大事介绍
以下是 AI 设计行业近两个月的大事: Niji·journey 5 相关: 随着二次元绘画 AI 的不断发展和优化,其对二次元设计行业影响显著。它能降低设计成本、提高效率,为设计师提供灵感,但也可能导致市场对大量二次元美术设计师的需求降低,从业者需关注行业动态,提升技能和创新能力,注重作品原创性和创新性,学会有效利用工具,提高沟通协作能力。 2024 年 9 月: 9 月 12 日:李继刚再现神级 Prompt,玩法持续翻新;Mistral 发布首个多模态模型 Pixtral 12B。 9 月 13 日:商汤 Vimi 相机开放微博小程序;元象开源中国最大 MoE 大模型 XVERSEMoEA36B;OpenAI 发布 o1 模型。 9 月 14 日:人工智能生成合成内容标识办法(征求意见稿);Jina AI 发布 ReaderLM、Jina Embeddings V3。 9 月 18 日:DeepSeek 发文庆祝登上 LMSYS 榜单国产第一,几小时后 Qwen 新模型表示不服。 9 月 19 日:云栖大会;通义万相 AI 生视频上线;快手可灵 1.5 模型新增运动笔刷能力。 9 月 20 日:腾讯元器智能体对外发布;秘塔科技产品经理 JD 走红 AI 圈;阶跃跃问接入 Step2 万亿参数 MoE 语言大模型。 9 月 21 日:大模型测试基准研究组正式成立。 9 月 23 日:钉钉 365 会员上线。 9 月 24 日:讯飞星火 API 全新升级;豆包大模型全系列发布&更新。 9 月 25 日:Vidu API 正式开放,加速企业级视频创作;OpenAI 发布高级语音功能;西湖心辰开源 WestlakeOmni。 SD 模型相关: 提到了不同 AI 模型在设计中的效果差异,如有的模型能生成特定质感的图像。介绍了工作流的运用,包括线稿生成、背景与人物结合等,还提到不同工作流在物体和人像放大等方面的效果差异。解释了在训练模型时,图像以 64 的倍数上图的原因是模型步长训练单位的限制。指出 AI 对设计行业冲击较大,未来可能成为筛选设计师的标准之一。预告了后续关于 AI 视频制作、零基础模型训练、用 config UI 搭建应用等课程的时间和内容,介绍了活动预告与回顾,以及观看回放的途径。
2025-02-11