Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

数字化和数智化的概念分别是什么

Answer

数字化是指将信息、数据等转化为数字形式,以便于存储、处理和传输。它强调的是将现实世界中的事物以数字方式进行表示和管理。

数智化则是在数字化的基础上,进一步融合了人工智能、大数据等技术,实现智能化的决策、分析和优化。数智化更注重利用数据和算法来提升业务的效率和价值。

在具身智能的背景下,数字化智能主要是在数字世界中形成的智能,其交互相对简单,可不符合物理规律。而具身智能则需要与物理世界进行交互,面临更多的挑战,如感知环境、理解和决策等。

随着技术的发展,人工智能有望实现通用,机器可能会具有自我意识和超级智能,从而引发对机器意识和数字生命形式的思考。在这种情况下,人与数字生命之间的合作和竞争基础将成为重要问题。

Content generated by AI large model, please carefully verify (powered by aily)

References

质朴发言:大模型时代下的具身智能|Z 沙龙第 5 期

一位机器人领域连续创业者兼投资人分享了他的看法:核心差异在于具身智能需要与物理世界进行交互。数字智能(大模型要解决的智能),是完全在数字世界中形成的智能。数字世界的交互比较简单(约束少),可以符合/不符合物理规律。你可以设计很多的数字世界来构建你所有可能形成的空间定义和范畴。具身智能,就是具有身体的智能,它与物理世界有交互。这种与物理世界的交互带来了一系列问题,例如,我们在学习电路时,会学习模拟电路和数字电路的区别。在数字电路中,你可以有零一变量,并可以直接定义它的所有边界,它是一个具体的数值。而在模拟中,它就变成了很多的波动信号,这个波动信号中需要做很多降噪处理。这可能是从数字智能转向具身智能时面临的最大问题。另一位投资人对具身智能的定义做了补充:首先,如果我们将与环境交互的能力拆分开来,核心能力包括:第一部分:感知环境第二部分:基于环境信息进行理解、决策、判断第三部分:执行操作

机器之心的进化 / 理解 AI 驱动的软件 2.0 智能革命

这意味着对于每一项任务,机器都将比人类做得更好;当计算机超过人类时,一些人认为,他们就可以继续变得更好。换句话说,如果我们让机器和我们一样聪明,没有理由不相信它们能让自己变得更聪明,在一个不断改进的机器之心进化的螺旋中,会导致超级智能的出现。从工具进化到数字生命按照上面的专家预测,机器应该具有自我意识和超级智能。到那时,我们对机器意识的概念将有一些重大的转变,我们将面对真正的数字生命形式(DILIs - Digital Lifeforms)。一旦你有了可以快速进化和自我意识的DILIs,围绕物种竞争会出现了一些有趣的问题。DILIs和人类之间的合作和竞争的基础是什么?如果你让一个有自我意识的DILIs能模拟疼痛,你是在折磨一个有感知的生命吗?

Others are asking
负责动力制造公司智能制造数字化转型的整体策划,请帮我完善一下
对于动力制造公司智能制造数字化转型的整体策划,以下是一些完善的建议: 首先,进行全面的现状评估。包括对现有生产流程、设备设施、信息化系统等方面的详细调研,明确当前存在的问题和瓶颈。 其次,制定明确的转型目标。例如,提高生产效率、降低成本、提升产品质量、增强供应链的灵活性等,并且将这些目标进行量化和细化。 然后,规划技术架构。确定所需的数字化技术,如工业物联网、大数据分析、人工智能、云计算等,并设计它们之间的集成方案。 接着,优化生产流程。通过数字化手段对生产流程进行重新设计和优化,消除不必要的环节,提高生产的流畅性和效率。 再者,加强人才培养。培养具备数字化思维和技能的员工队伍,包括技术人员和管理人员。 最后,建立有效的评估和持续改进机制。定期对转型效果进行评估,根据评估结果调整策略和措施,以确保转型的持续推进和目标的实现。 希望以上建议能对您有所帮助。
2025-01-17
元宇宙推动教育的全面数字化转型
元宇宙对教育的全面数字化转型具有重要推动作用。 在当前的数字化时代,数字化正在重塑我们的生活,从依赖物理资源的稀缺经济转向以数字资源为基础的富足经济。AI 的发展进一步加强了这一趋势,而元宇宙代表着物理世界的数字化。 在教育领域,存在多种与元宇宙和数字化转型相关的情况和探索。例如: 1. 智慧课程培育建设和人工智能赋能教学创新工作坊,涉及多种工具推荐,如 Bot.360.com 多模型竞技选取最佳答案、用 heyGen 定制“数字分身”等。 2. 教育工作坊涵盖了 AI 助力教学设计、生成式 AI 对课件制作和微课生成的变革、学情分析与作业测评等多个方面。 3. 对于教师而言,面临着如 AI 教师是否会代替人类教师等问题,同时也有诸如 AI 导师一对一、人机协同教育生态等新的模式和理念。 总之,元宇宙和相关技术为教育的数字化转型带来了众多可能性,包括大规模自适应学习、工作场景模拟等,也促使教育不断探索新的模式和方法,以适应时代的发展。
2025-01-11
公司数字化转型对于客户服务增值有什么好处?如何平衡技术和个性化,人性化服务
公司数字化转型对客户服务增值的好处包括: 1. 个性化服务:利用 AI 分析客户行为数据,深入了解客户需求和偏好,为其提供定制化的产品推荐和服务,如电子商务网站根据用户购物历史和浏览习惯推荐相似产品,在线零售商利用客户购买数据推荐新产品或补充产品,从而提升客户体验和忠诚度。 2. 定制化沟通和推广:通过更具针对性的沟通和营销活动加强与客户的关系,提高忠诚度。根据客户偏好和行为数据定制营销活动,在客户支持和沟通中采用个性化方法,定期收集客户反馈并用于优化服务和产品,监控效果并不断优化推荐和营销策略。 3. 提升操作效率:Token 化在自然语言处理中应用,将大段文本分解成小块处理单元,便于管理和分析复杂文本数据,使 AI 模型快速识别关键信息,加速决策过程,提升业务响应速度。 4. 优化客户服务:Token 化使客户服务自动化成为可能,通过自动响应系统快速准确处理客户请求,极大提升客户满意度和品牌忠诚度。 5. 个性化营销:利用 Token 化分析用户行为和偏好,提供高度个性化的营销内容,增加销售转化率。 在平衡技术和个性化、人性化服务方面,可以采取以下措施: 1. 深入挖掘客户数据,同时注重保护客户隐私和数据安全。 2. 结合人工干预和监督,确保服务的人性化和温度。 3. 持续收集客户反馈,根据反馈调整技术应用和服务策略。 4. 培训员工,使其在运用技术的同时能够提供贴心的服务。
2024-10-16
企业数字化团队怎样协助业务方找AI落地场景?
企业数字化团队协助业务方找 AI 落地场景可以参考以下内容: 周鸿祎提出,推动 AI 与数字化业务全面融合是比较理想的情况。企业可以从列出的武器库中挑选合适的选项,如私有化通用大模型、办公大模型、营销大模型、定制数字人、AI 应用商店、360AI 大会员,甚至可以选择知识大模型、情报大模型、安全大模型,或者开发自己的大模型,并与业务融合。 360 改变了思路,从过去把大模型简单拼接在搜索结果右侧或浏览器里,转变为找到刚需和痛点的明星场景,用场景来引导模型,而非先打造模型再寻找场景。 Jusi 适用于各种企业和个人,包括初创公司、中小企业和项目经理。初创公司可借助其创建技术规格并寻找开发工作室;中小企业能借此扩大数字化业务、添加新功能;项目经理能简化并加速寻找合适开发合作伙伴的流程。
2024-08-28
我做了一批数字化看板,想让AI来评分,哪个AI工具比较合适
以下是一些可能适用于为您的数字化看板评分的 AI 工具: 1. PlantUML:这是一个文本到 UML 的转换工具,能通过编写描述性文本自动生成序列图、用例图、类图等,有助于创建逻辑视图。 2. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 3. Archi:免费的开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图的创建。 4. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包含逻辑视图和部署视图。 需要注意的是,虽然这些工具可以辅助创建架构视图,但它们不都是基于 AI 的。AI 在绘图工具中的应用通常涉及智能推荐布局、自动生成图表代码或识别图表中的模式和关系。在选择工具时,您应该考虑您的具体需求,比如是否需要支持特定的建模语言、是否需要与特定的开发工具集成、是否偏好在线工具或桌面应用程序等。
2024-08-08
ai概念第一次是被谁提出来的,什么时候?
AI 概念首次被提出是在 1956 年的达特茅斯会议上。这次会议由时任达特茅斯学院的数学助理教授约翰·麦卡锡发起,邀请了包括马文·明斯基、克劳德·香农、艾伦·纽厄尔、赫伯特·西蒙等多位杰出科学家参与。约 47 位参与者就自动计算机、编程语言、神经网络、计算理论等多个前沿话题进行了深入讨论,并首次提出了“人工智能”(Artificial Intelligence)这一术语,为这个新兴领域正式命名。在此之前,艾伦·图灵和约翰·冯·诺依曼等人通过理论和实践为 AI 奠定了初步的理论基础。1943 年,心理学家麦卡洛克和数学家皮特斯提出了机器的神经元模型,为后续的神经网络奠定了基础。1950 年,图灵最早提出了图灵测试,作为判别机器是否具备智能的标准。此后近 70 年,AI 的发展起起落落。
2025-02-20
纯小白对于模型等等都没有任何概念能看懂吗
对于纯小白来说,理解模型等相关概念是有一定挑战的,但通过以下内容可以逐步入门: Tusiart 相关概念: 1. 首页包含模型、帖子、排行榜,其中发布了各种模型和生成的图片。不同模型有 checkpoint 和 lora 两种标签,有的还有 XL 标签属于 SDXL 新模型。点击可查看模型详细信息,下方是返图区。 2. 基础模型(checkpoint)是生图必需的,任何生图操作都要先选定。它与 lora 不同,lora 是低阶自适应模型,类似小插件,可有可无,但对细节控制有价值,旁边的数值是其权重。 3. ControlNet 可控制图片中特定图像,如人物姿态、生成特定文字等,属于高阶技能。 4. VAE 是编码器,类似滤镜,调整生图饱和度,一般选择 840000 这个。 5. Prompt 提示词是想要 AI 生成的内容,负向提示词是想要 AI 避免产生的内容。 6. 图生图是上传图片后,sd 根据图片、模型及输入信息重绘,重绘幅度越大,输出图与输入图差别越大。 AI 技术原理相关概念: 1. 生成式 AI 生成的内容称为 AIGC。 2. 相关技术名词: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习(有标签的训练数据,学习输入和输出映射关系,包括分类和回归)、无监督学习(学习数据无标签,算法自主发现规律,如聚类)、强化学习(从反馈学习,最大化奖励或最小化损失,类似训小狗)。 深度学习是一种参照人脑的方法,有神经网络和神经元,神经网络可用于多种学习。 生成式 AI 可生成文本、图片、音频、视频等。 LLM 是大语言模型,生成图像的扩散模型不是大语言模型,有的大语言模型如谷歌的 BERT 模型可用于语义理解。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它基于自注意力机制处理序列数据,比 RNN 更适合处理文本长距离依赖性。
2025-02-13
AI领域,传统机器学习,nlp,深度学习,大语言模型,rag,agent,请生成一张让普通人能看懂的AI领域概念图
以下是为您生成的 AI 领域概念图的相关解释: 人工智能(AI):一种目标,让机器展现智慧。 生成式人工智能(GenAI):一种目标,让机器产生复杂有结构的内容。 机器学习:一种手段,让机器自动从资料中找到公式,包括监督学习、无监督学习、强化学习。 监督学习:有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,如聚类。 强化学习:从反馈里学习,最大化奖励或最小化损失。 深度学习:一种更厉害的手段,参照人脑有神经网络和神经元(因为有很多层所以叫深度),神经网络可用于多种学习方式。 大语言模型(LLM):是一类具有大量参数的“深度学习”模型。对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 AIGC(Artificial Intelligence Generated Content):利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。 ChatGPT:一个应用实例,通过投喂大量资料预训练后,会通过聊天玩“文字接龙游戏”。它是美国 OpenAI 公司开发的一款基于大型语言模型(LLM)的对话机器人,能够根据用户的输入生成连贯且相关的文本回复。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,比 RNN 更适合处理文本的长距离依赖性。
2025-02-11
以知识图谱的形式生成一张涉及大模型概念的知识图谱
以下是一张涉及大模型概念的知识图谱: 大模型 Embedding 技术 句子和文档嵌入 Doc2Vec:扩展了 Word2Vec,能够为整个文档生成统一的向量表示。 Average Word Embeddings:将一段文本中所有单词的嵌入取平均作为整体的文本表示。 Transformers Sentence Embeddings:如 BERT 的标记对应的向量,或者专门针对句子级别的模型如 SentenceBERT。 实体/概念嵌入 Knowledge Graph Embeddings:如 TransE、DistMult、ComplEx 等,用于将知识图谱中的实体和关系嵌入到低维向量空间中。 其他类型 图像 Embeddings:使用卷积神经网络(CNN)进行图像特征提取,得到的特征向量即为图像嵌入。 音频 Embeddings:在语音识别和声纹识别中,将声音信号转化为有意义的向量表示。 用户/物品 Embeddings:在推荐系统中,将用户行为或物品属性映射到低维空间以进行协同过滤或基于内容的推荐。 图 Embeddings:用于学习图结构的表示学习方法,将图中的节点和边映射到低维向量空间中。通过学习图嵌入,可以将复杂的图结构转化为向量表示,以捕捉节点之间的结构和关联关系。这些方法可以通过 DeepWalk、Node2Vec、GraphSAGE 等算法来实现。图嵌入在图分析、社交网络分析、推荐系统等领域中广泛应用,用于发现社区结构、节点相似性、信息传播等图属性。 关键技术标准 机器学习标准:规范机器学习的训练数据、数据预处理、模型表达和格式、模型效果评价等,包括自监督学习、无监督学习、半监督学习、深度学习和强化学习等标准。 知识图谱标准:规范知识图谱的描述、构建、运维、共享、管理和应用,包括知识表示与建模、知识获取与存储、知识融合与可视化、知识计算与管理、知识图谱质量评价与互联互通、知识图谱交付与应用、知识图谱系统架构与性能要求等标准。 大模型标准:规范大模型训练、推理、部署等环节的技术要求,包括大模型通用技术要求、评测指标与方法、服务能力成熟度评估、生成内容评价等标准。 自然语言处理标准:规范自然语言处理中语言信息提取、文本处理、语义处理等方面的技术要求和评测方法,包括语法分析、语义理解、语义表达、机器翻译、自动摘要、自动问答和语言大模型等标准。 智能语音标准:规范前端处理、语音处理、语音接口和数据资源等技术要求和评测方法,包括深度合成的鉴伪方法、全双工交互、通用语音大模型等标准。 计算机视觉标准:规范图像获取、图像/视频处理、图像内容分析、三维计算机视觉、计算摄影学和跨媒体融合等技术要求和评价方法,包括功能、性能和可维护性等标准。 生物特征识别标准:规范生物特征样本处理、生物特征数据协议、设备或系统等技术要求,包括生物特征数据交换格式、接口协议等标准。 国内大模型 通用模型:如文心一言、讯飞星火等,处理自然语言。 垂直模型:专注特定领域如小语种交流、临床医学、AI 蛋白质结构预测等。 大模型的体验 以‘为什么我爸妈结婚的时候没有邀请我参加婚礼’和‘今天我坐在凳子上’为例,体验了 Kimi、通义千问、豆包等大模型的回答和续写能力,发现回复有差异,且大模型基于统计模型预测生成内容。 大语言模型的工作原理 包括训练数据、算力、模型参数,在训练数据一致情况下,模型参数越大能力越强,参数用 b 链形容大小。 Transformer 架构:Transformer 是大语言模型训练架构,17 年出现用于翻译,具备自我注意力机制能理解上下文和文本关联,其工作原理是单词预测,通过嵌入、位置编码、自注意力机制生成内容,模型调教中有控制输出的 temperature。 大模型幻觉:大模型通过训练数据猜测下一个输出结果,可能因错误数据导致给出错误答案,优质数据集对其很重要。 Prompt 的分类和法则 分为 system prompt、user prompt 和 assistant prompt。 写好 prompt 的法则包括清晰说明、指定角色、使用分隔符、提供样本等,核心是与模型好好沟通。 Fine tuning 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG 概念:未对 RAG 的具体内容进行详细阐述,仅提出了这个概念。
2025-02-11
请给出10个 有关 AI 的概念的 知识点 并用150字 进行介绍
以下是 10 个有关 AI 的概念知识点及介绍: 1. 人工智能(AI):目标是让机器展现智慧,是一个广泛的领域。 2. 生成式人工智能(GenAI):旨在让机器产生复杂有结构的内容。 3. 机器学习:使机器能自动从资料中找到公式的手段。 4. 深度学习:基于类神经网络,具有大量参数的更强大手段。 5. 大语言模型(LLMs):具有大量参数的深度学习模型。 6. ChatGPT:基于大型语言模型的对话机器人,能根据输入生成文本回复。 7. AIGC:利用人工智能技术生成包括文本、图像等多种内容的新型生产方式。 8. 统计学基础:包含均值、中位数、方差等统计概念,是 AI 的重要基础。 9. 监督学习:如线性回归、决策树等常用算法。 10. 无监督学习:如聚类、降维等算法。
2025-02-08
提供几篇讲解AI 相关的基本概念、知识框架的文章
以下是为您提供的讲解 AI 相关的基本概念、知识框架的文章: 1. 新手学习 AI 方面: 建议阅读「」部分,熟悉 AI 的术语和基础概念,了解人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程按照自己的节奏学习,并获得证书。 2. 书籍推荐方面: 《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga;Richard B.Lvry;George R.Mangun):世界权威的认知神经科学教材,认知神经科学之父经典力作,系统了解认知神经科学的发展历史、细胞机制与认知、神经解剖与发展、研究方法、感觉知觉、物体识别、运动控制、学习与记忆、情绪、语言、大脑半球特异化、注意与意识、认知控制、社会认知和进化的观点等。 《神经科学原理》(作者:Eric R.Kandel;James H.Schwartz):让您系统神经元的细胞和分子生物学、突触传递、认知的神经基础、感觉、运动、神经信息的加工、发育及行为的出现、语言、思想、感动与学习。 《神经生物学:从神经元到脑》(作者:John G.Nicholls 等著):神经生物学领域内的一本世界级名著,涵盖了神经科学的方方面面,系统介绍了神经生物徐的基本概念、神经系统的功能及细胞和分子机制。 3. 相关文章方面: 《》:这是公众号琢磨事翻译的领英工程师的一篇文章,分享了在领英开发 AI 驱动产品的经验,重点探讨了生成式 AI 的相关内容。 《麻省理工科技评论》发布的《》:万字长文探讨了人工智能的定义和发展,详细阐述了人工智能的基本概念、技术背景及其在各个领域的应用,分析了当前的技术挑战和未来的发展方向,还讨论了人工智能对社会、经济和伦理的影响。
2025-02-06