Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

Ai 怎么做后端代码生成

Answer

AI 后端代码生成可以通过以下步骤实现:

  1. 配置工作流:在 IDE 底部单击“尝试 AI”,并输入自然语言设定代码逻辑,AI 将自动生成代码。也可以选中代码片段,通过快捷键唤起 AI,并输入自然语言让 AI 帮助修改代码。
  2. 补全代码:如果已经为 Code 节点配置好了输入参数,则编辑时支持自动补全参数。
  3. 调试代码:单击“测试代码”,在测试面板以 JSON 格式输入参数进行测试。支持使用 AI 自动生成模拟数据进行测试。
  4. 运行代码:设置输入参数后,单击“运行”,可以在输出区域查看运行结果。在页面底部单击“更新 Schema”,可将结果同步到 Code 节点的输出值。
Content generated by AI large model, please carefully verify (powered by aily)

References

使用工作流

你可以在IDE底部单击尝试AI,并输入自然语言设定代码逻辑,AI将自动生成代码。你也可以选中代码片段,通过快捷键(macOS为CommandI、Windows为Ctrl + I)唤起AI,并输入自然语言让AI帮助你修改代码。补全代码如果你已经为Code节点配置好了输入参数,则编辑时支持自动补全参数。调试代码单击测试代码,在测试面板以JSON格式输入参数进行测试。支持使用AI自动生成模拟数据进行测试。设置输入参数后,单击运行,你可以在输出区域查看运行结果。在页面底部单击更新Schema,可将结果同步到Code节点的输出值。

Others are asking
前端代码生成
以下是关于前端代码生成的相关信息: GPTPilot: 是 AI 开发者伴侣,能从零开始构建整个应用程序,包括编写代码、配置开发环境、管理开发任务、调试代码等,开发者只需监督开发过程。 主要功能包括自动化编码,能生成各种类型的代码,如前端、后端和数据库代码;交互式开发,开发者指定应用类型后,它会提问澄清需求并创建产品和技术要求。 在代码生成质量不断完善的基础上,加上前端项目相关信息的配置页面和生成预览页面、后端代码生成,能面向更多使用者;增加适配更多框架,能面向更多应用平台。 Vercel 发布的前端代码生成平台 v0.dev: 通过语言描述生成界面代码,可直接预览和调整生成的代码,完成后能复制或在 Vercel 上面部署。 目前只能生成 React 和 HTML,由的能力组成,未用其他库,目前需要加入等待列表。 Cursor: 包含强大的自动完成功能,可预测下一次编辑,启用后始终打开,会跨多行建议对代码进行编辑,并能考虑到最近的更改。 可以看到最近的更改,预测下一步要做的事。 能一次建议多个编辑,节省时间。 不小心输入会修复错误。 会预测下一个光标位置,以便无缝导航代码。
2025-01-08
ai如何代码生成
以下是关于 AI 代码生成的相关内容: 使用工作流配置 Code 节点: 可以在 Code 节点内使用 IDE 工具,通过 AI 自动生成代码或编写自定义代码逻辑,处理输入参数并返回响应结果。 配置示例可参考。 该节点支持 JavaScript、Python 运行时。 JavaScript 支持 TypeScript,提供静态语言编码体验。内置了 dayjs(版本 1.8.36)和 lodash(版本 4.17.20)两个三方依赖库,运行时遵循列举的大多数 API,具体可用的 API 可在 IDE 内编码时参考代码提示。 Python 内置了 requests_async 和 numpy 两个三方依赖库,requests_async 依赖库与 requests 类似,但需要 await。Python 运行时暂不支持 Http.client 方式的请求。 在节点内的 Code 区域单击 Edit in IDE 可通过 IDE 编辑和调试代码。 使用 AI 生成代码:可以在 IDE 底部单击尝试 AI,并输入自然语言设定代码逻辑,AI 将自动生成代码。也可以选中代码片段,通过快捷键(macOS 为 CommandI、Windows 为 Ctrl+I)唤起 AI,并输入自然语言让 AI 帮助修改代码。 宝玉日报中的代码生成步骤: 步骤 1:生成设计方案,将需求抽象简化,分别用不同的 Prompt 生成多份设计方案进行对比,通过调整 Prompt 找到最优方案,避免限制 AI 的发挥空间。 步骤 2:生成代码,确定方案后,完善细节,将完整设计交给 AI 生成代码。如果生成结果有问题,通过调整 Prompt 或更换模型反复优化。总结来说,要像经理一样管理 AI“员工”,通过明确需求、方案对比、反复优化,提升代码质量与开发效率。相关链接: python 安装 FittenAI 编程助手: 这两年 AI 发展迅猛,编程助手能提供实时建议和解决方案,提升编程效率。 安装前需先安装 python 的运行环境: 安装:点击左上角的 FileSettingsPluginsMarketplace 注册(免费):安装完成后左侧会出现 Fitten Code 插件图标,注册登录后即可开始使用 智能补全:按下 Tab 键接受所有补全建议,按下 Ctrl+→键接收单个词补全建议 AI 问答:通过点击左上角工具栏中的 Fitten Code–开始新对话打开对话窗口进行对话 自动生成代码:Fitten Code 工具栏中选择"Fitten Code生成代码",然后在输入框中输入指令即可生成代码 代码转换:Fitten Code 可以实现代码的语义级翻译,并支持多种编程语言之间的互译。选中需要进行翻译的代码段,右键选择"Fitten Code–编辑代码",然后在输入框中输入需求即可完成转换 自动生成注释:Fitten Code 能够根据代码自动生成相关注释,通过分析代码逻辑和结构,为代码提供清晰易懂的解释和文档。
2025-01-03
无代码生成App
以下是一些无代码生成 App 的相关信息: 在 ProductHunt 2023 年度最佳产品榜单的无代码工具类别中: Bento(免费)是一个链接合集页面,内容丰富设计美观,能美化展示所有内容和链接,展示个性和品味。Linktree 在年底收购了 Bento。 PlyBeta 可使用无代码方式在 APP 中构建内部功能,适用于众多应用程序,为团队提供动力。 Dora AI 能用一次 prompt 生成网站,支持文字转网站、生成式 3D 互动、高级 AI 动画。 Albato 3.0(免费可用)能通过直观的构建器将应用程序集成到自动化工作流中。 Coze 是字节跳动推出的一站式 AI 开发平台,支持无代码生成 AIAgent,能简化 AI 开发过程,让用户无需编写代码创建、管理和部署 AI 工具。它有国内版和国际版,提供多样化模型选择和丰富的插件能力,还具备自动构建、定制 Prompt 等功能,其插件系统和记忆库功能强大。 GPTPilot 作为 AI 开发者伴侣,在代码生成质量不断完善的基础上结合图片理解和文档内容理解可实现无代码开发项目。它能自动编写代码、配置开发环境等,开发者可在一旁监督开发过程,还能通过交互式开发明确需求。
2024-12-14
代码生成原理
代码生成的原理如下: 在 Windows/Linux 上,Cmd K(也称为“Ctrl K”)允许在编辑器窗口中生成新代码或编辑现有代码。如果在按 Ctrl/Cmd K 时未选择任何代码,Cursor 将根据在提示栏中键入的提示生成新代码。 Cursor 能够看到您最近的更改,从而预测您下一步要做的事情。 大语言模型在代码生成方面是一个有效的应用场景,例如 Copilot。可以通过一些有效的提示词执行代码生成任务,例如编写简单的用户欢迎程序,或者提供有关数据库架构并要求生成有效的 MySQL 查询,甚至不需要指定要使用的编程语言。
2024-09-11
怎么用RAG增强代码生成的准确度
使用RAG(RetrievalAugmented Generation)方法可以有效增强代码生成的准确度。RAG结合了检索和生成的优势,使生成模型能够利用外部知识库或文档来提高生成结果的质量。以下是如何使用RAG来增强代码生成准确度的步骤: 1. 准备检索库 首先,需要一个包含相关代码片段、文档或知识库的检索库。这可以是公开的代码库(如GitHub)、项目文档、API文档或编程语言的官方文档。 2. 实施检索模型 使用一个检索模型来从库中找到与输入查询最相关的文档或代码片段。常用的检索模型包括BM25、TFIDF等,或者更先进的深度学习模型如DPR(Dense Passage Retrieval)。 ```python from transformers import DPRQuestionEncoder, DPRQuestionEncoderTokenizer, DPRContextEncoder, DPRContextEncoderTokenizer 加载检索模型和tokenizer question_encoder = DPRQuestionEncoder.from_pretrained question_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained context_encoder = DPRContextEncoder.from_pretrained context_tokenizer = DPRContextEncoderTokenizer.from_pretrained 编码查询 query = "How to sort a list in Python?" query_inputs = question_tokenizer query_embedding = question_encoder.pooler_output 编码文档(检索库中的代码片段或文档) contexts = context_embeddings = for context in contexts: context_inputs = context_tokenizer context_embedding = context_encoder.pooler_output context_embeddings.append ``` 3. 检索相关文档 计算查询和文档之间的相似度,检索最相关的文档。 ```python import torch 计算相似度(使用点积) similarities = 找到最相关的文档 most_relevant_index = torch.argmax most_relevant_context = contexts ``` 4. 结合生成模型 使用生成模型(如GPT3或其他代码生成模型),结合检索到的相关文档作为上下文,生成高质量的代码。 ```python from transformers import GPT2LMHeadModel, GPT2Tokenizer 加载生成模型和tokenizer generation_model = GPT2LMHeadModel.from_pretrained generation_tokenizer = GPT2Tokenizer.from_pretrained 将检索到的上下文和查询合并 input_text = f"{most_relevant_context}\n\n{query}" input_ids = generation_tokenizer.encode 生成代码 generated_outputs = generation_model.generate generated_code = generation_tokenizer.decode print ``` 5. 集成与优化 为了进一步优化RAG的代码生成性能,可以进行以下步骤: 多轮检索:如果第一次检索结果不理想,可以通过多轮检索获取更多相关信息。 细化检索库:不断更新和扩展检索库,确保其中包含最新、最相关的代码片段和文档。 微调生成模型:使用领域特定的数据微调生成模型,使其更适合特定的代码生成任务。 通过这些步骤,RAG方法能够有效地增强代码生成的准确度,提高生成结果的相关性和质量。
2024-05-29
我要学习AIGC ,零基础,刚接触,请给我制定一个系统的学习清单
以下是为您制定的零基础学习 AIGC 的系统学习清单: 1. 阅读彭博社对谷歌 CEO Sundar Pichai 的访谈,了解关于搜索未来、Gemini 构建、与微软和 OpenAI 竞争、美中在 AI 方面的竞争以及谷歌文化挑战等内容,同时关注 Google 对 AI 技术未来包括 AGI 的承诺和看法。 2. 查看 Elicit 发布的机器学习必读清单,系统学习机器学习基础、Transformer 与基础模型、训练与微调、推理与运行策略等方面,从基础概念入门到深度强化学习和反向传播等进阶内容,深入了解 Transformer 架构以及训练和精调语言模型的方法与策略,分析大语言模型如何处理复杂推理和解决问题的任务。 3. 学习提示工程基础,掌握三种高级提示工程技巧,包括思维链(CoT)提示、思维树(ToT)提示和思维图(GoT)提示。 4. 观看【AI 学习笔记】小白如何理解技术原理与建立框架的相关内容,了解什么是 AI 大模型及其原理,包括生成式 AI 生成的内容(AIGC)、相关技术名词(如 AI、机器学习、监督学习、无监督学习、强化学习、深度学习、生成式 AI、LLM 等)以及技术里程碑(如谷歌团队发表的《Attention is All You Need》论文提出的 Transformer 模型)。
2025-02-24
适合做人文社科类学术研究的AI助手或工具有哪些?
以下是一些适合做人文社科类学术研究的 AI 助手或工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,可提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,能精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,方便进行数据分析和可视化。 Knitro:用于数学建模和优化的软件,有助于复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 此外,如果您有医学课题需要修改意见,以下工具可供选择: 1. Scite.ai:创新平台,提供引用声明搜索、自定义仪表板和参考检查等工具,增强对科学文献的洞察。 2. Scholarcy:能从文档提取结构化数据,生成文章概要,包含关键概念、摘要等板块内容。 3. ChatGPT:强大的自然语言处理模型,可提供修改意见和帮助。 常见的文章润色工具包括: 1. Wordvice AI:集校对、改写转述和翻译等功能于一体,基于大型语言模型提供全面的英文论文润色服务。 2. ChatGPT:由 OpenAI 开发的大型语言模型,用于多方面写作辅助。 3. Quillbot:人工智能文本摘要和改写工具,可快速筛选和改写文献资料。 4. HyperWrite:基于 AI 的写作助手和大纲生成器,帮助写作前的头脑风暴和大纲规划。 5. Wordtune:AI 驱动的文本改写和润色工具,优化文章语言表达。 6. Smodin:提供 AI 驱动的论文撰写功能,生成符合要求的学术论文。 在使用这些工具时,要结合自己的写作风格和需求,选择最合适的辅助工具。同时,请注意这些内容由 AI 大模型生成,请仔细甄别。
2025-02-24
当前DEEPSEEK发展壮大情况下,个人应具备AI方面什么能力避免被时代淘汰,如何提升这些能力,细化具体可执行的步奏
在 DEEPSEEK 发展壮大的情况下,个人为避免被时代淘汰,应具备以下 AI 方面的能力并通过以下具体可执行的步骤来提升: 1. 善用工具: 历史表明,使用工具的人通常表现更优,人类发展就是工具演化的过程。 不会用 AI 工具自动化重复性任务,可能面临被淘汰,应适应这种转变。 因自动化效率提升,可腾出时间进行高层次思考。 具体步骤:积极学习和掌握 AI 工具的使用方法,将重复性工作交给工具处理,培养利用工具提升效率的习惯。 2. 抽象与整合: “大语言模型”压缩了大量知识,可快速回放,无需直接学习所有知识细节,要在更高层次学习并抽象更多细节。 AI 能使人类更易学习技能或知识,技术进步使“整合”而非专业化成为可能,人们在更高层次工作,为 AI 提供方向并作选择。 具体步骤:锻炼高层次的思维能力,学会从复杂信息中提炼关键要点,不断提升整合能力,将精力集中于制定“策略”,把执行细节交给自动化系统。
2025-02-24
生成式AI相关知识
生成式 AI 相关知识如下: GenAI 是生成式 AI 的一种,全称 Generative AI,是基于深度学习技术和机器学习算法,从已有数据中学习并生成新数据或内容的 AI 应用。其通过大规模数据集训练深度神经网络模型,能为游戏、娱乐和产品设计等提供解决方案,典型的 GenAI 包括 OpenAI 推出的 ChatGPT、GPT4、DALLE 以及百度的文心一言、阿里云的通义千问等。但在数据处理中存在未经授权收集信息、提供虚假信息、侵害个人隐私等潜在合规风险。 AIGC 指利用 GenAI 创建的内容,包括图像、视频、音频、文本和三维模型等。其工具使用机器学习算法,通常基于自然语言处理,分析大型文本数据集并学习生成新内容。国内主要在《网络安全法》《数据安全法》《个人信息保护法》框架下,由《互联网信息服务算法推荐管理规定》《互联网信息服务深度合成管理规定》《生成式人工智能服务管理暂行办法》《科技伦理审查办法(试行)》共同监管。 AIGC 主要分为语言文本生成、图像生成和音视频生成,分别利用不同的模型和技术,应用于多个领域,但也可能引发内生风险、数据隐私问题和知识产权风险,相关法律和规定对其有一定要求,但部分问题仍需更多法律明确,且需加强监管和伦理约束。 此外,台湾大学李宏毅教授的生成式 AI 课程介绍了其基本概念、发展历程、技术架构和应用场景等内容,共 12 讲,每讲约 2 小时。通过学习该课程,可掌握生成式 AI 的基本概念和常见技术,能够使用相关框架搭建简单的生成式模型,了解其发展现状和未来趋势。课程包括生成式 AI 的定义和分类、生成式模型、生成式对话、预训练语言模型、生成式 AI 的挑战与展望等内容,并提供了教材、参考书籍、在线课程、开源项目等学习资源和学习方法。
2025-02-24
openai
OpenAI 相关信息如下: 模型: OpenAI API 由多种具有不同功能和价位的模型提供支持,还可通过微调针对特定用例对原始基本模型进行有限定制。 具体模型包括:GPT4 Beta(一组改进 GPT3.5 的模型,可理解和生成自然语言或代码)、GPT3.5(一组改进 GPT3 的模型,可理解并生成自然语言或代码)、DALL·E Beta(可在给定自然语言提示的情况下生成和编辑图像的模型)、Whisper Beta(可将音频转换为文本的模型)、Embeddings(可将文本转换为数字形式的模型)、Codex Limited Beta(一组可理解和生成代码的模型,包括将自然语言转换为代码)、Moderation(可检测文本是否敏感或不安全的微调模型)、GPT3(一组可理解和生成自然语言的模型)。 通用人工智能(AGI)计划: 有网络上传播的关于 OpenAI 计划在 2027 年前实现通用人工智能(AGI)的计划的相关文档,内容为各种报道和推文的拼凑猜测。 文档提到 OpenAI 于 2022 年 8 月开始训练一个拥有 125 万亿参数的多模态模型,第一阶段被称为 Arrakis 或 Q,该模型于 2023 年 12 月完成训练,但因高昂推理成本发布被取消,原计划 2025 年发布的 GPT5 取消,Gobi(GPT4.5)被重新命名为 GPT5。 技术栈: 从 GPT、DALL·E 到 Sora,OpenAI 成功跑通了 AGI 的所有技术栈。加州大学伯克利分校计算机科学 PHD、知乎作者 SIY.Z 从技术实现、商业和技术趋势上分析了原因,并尝试预测了 OpenAI 下一步的进展。
2025-02-24
如何在拼多多接入AI客服
在网站上接入 AI 客服通常可以按照以下步骤进行: 1. 创建大模型问答应用:通过百炼创建一个大模型应用,并获取调用大模型应用 API 的相关凭证。 2. 搭建示例网站:通过函数计算,快速搭建一个网站,模拟您的企业官网或者其他站点。 3. 引入 AI 助手:通过修改几行代码,实现在网站中引入一个 AI 助手。 4. 增加私有知识:准备一些私有知识,让 AI 助手能回答原本无法准确回答的问题,帮助更好地应对客户咨询。 另外,基于 COW 框架实现 ChatBot 时需要注意: COW 是基于大模型搭建的 Chat 机器人框架,将多模型塞进自己的微信里实现方案。 基于相关教程,可实现打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等)以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入。本文只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等。 可选择多种模型,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等。 支持多种消息类型,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。 有多部署方法,如本地运行、服务器运行、Docker 的方式。
2025-02-24