直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

列出生成儿童摄影的SD模型的prompt提示词

回答

生成儿童摄影的稳定扩散(Stable Diffusion)模型的prompt提示词需要精心设计,以确保生成的图像既符合儿童摄影的特点,又能激发模型创作出温馨、有趣且适合儿童的画面。以下是一些可用于生成儿童摄影SD模型的prompt提示词示例:

  1. 温馨家庭时刻

    • "A heartwarming family portrait with children laughing and playing in a cozy living room."
  2. 户外探险

    • "Curious children exploring a lush green forest, filled with wonder and excitement."
  3. 生日派对

    • "A joyful birthday celebration with a smiling child surrounded by colorful balloons and cake."
  4. 校园生活

    • "Playful children at school, engaged in various activities, showcasing the spirit of learning and fun."
  5. 季节变换

    • "Children playing in a golden autumn park, with leaves crunching under their feet."
  6. 艺术创作

    • "A young artist at an easel, painting with vibrant colors, surrounded by art supplies."
  7. 运动与活力

    • "Energetic children participating in a soccer match, displaying teamwork and determination."
  8. 自然亲近

    • "Curious kids discovering the beauty of nature, interacting with animals in a serene meadow."
  9. 节日庆典

    • "A festive holiday scene with children dressed in traditional attire, celebrating with joy."
  10. 成长里程碑

    • "Capturing the milestones of a child's first steps, first day of school, and other memorable moments."
  11. 幻想世界

    • "Children embarking on a magical adventure in a fantastical land with whimsical creatures."
  12. 日常趣味

    • "A candid shot of children playing with their favorite toys, filled with laughter and innocence."
  13. 文化体验

    • "Children experiencing cultural traditions, learning and appreciating diversity."
  14. 亲子互动

    • "Tender moments between parents and children, sharing love and creating lasting memories."
  15. 睡前故事

    • "A cozy bedtime story session with a child cuddled up with their favorite stuffed animal."

使用这些提示词时,可以根据需要添加更多的细节和描述,以引导模型生成更符合预期的图像。此外,根据所使用的具体模型和版本,可能需要对提示词进行调整以获得最佳效果。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

【SD】最强手部识别,controlnet新预处理器dw openpose

接下来,设置模型和提示词。大模型:ghostmix_v20Bakedvae正向提示词:1girl,solo,long hair,looking at viewer,jewelry,earrings,indoors,bangs,dress,blush,plant,multicolored hair,upper body,shelf,pink eyes,window,potted plant,flower,closed mouth,from side,wavy hair,bare shoulders,sleeveless,pink hair,kitchen,breasts,blue dress,white hair,<lora:Colorful portraits_20230715165729-000018:1>负向提示词:EasyNegative,badhandsv5-neg,Subtitles,word一口气生成了八张图,选择一张合适的,然后使用差异随机种子进行一个细节微调。选择一张满意的发送到图生图。使用tile和脚本放大。好了,我们的图片就生成完毕了。以上,就是关于controlnet新预处理器dw openpose的讲解,它可以识别出以往我们无法预览的骨骼图。想要的话,可以添加我的公众号【白马与少年】,回复【SD】即可。-END-微信扫一扫关注该公众号

【SD】文生图怎么写提示词

接下来我们再增加一组反向提示词,可以告诉AI我们不要什么,在这里也是一组标准化提示词:NSFw,(最差质量:2),(低质量:2),(正常质量:2),(低质量:2),((单色)),((灰度)),皮肤斑点,痤疮,皮肤瑕疵,老年斑,(丑陋:1.331),(重复:1.331),(病态:1.21),(残缺:1.21),(变形:1.331),变异的手,(画得不好的手:1.5),模糊,(解剖不良:1.21),(比例不良:1.331),多余的四肢,(毁容:1.331),(缺胳膊:1.331),(多余的腿:1.331),(融合的手指:1.61051),(过多的手指:1.61051),(不清晰的眼睛:1.331),低质量,坏的手,缺手指,多余的手指,受伤的手,缺失的手指,(((多余的胳膊和腿))英文为:NSFw,(worst quality:2),(low quality:2),(normal quality:2),lowres,normal quality,((monochrome)),((grayscale)),skin spots,acnes,skin blemishes,age spot,(ugly:1.331),(duplicate:1.331),(morbid:1.21),(mutilated:1.21),(tranny:1.331),mutated hands,(poorly drawn hands:1.5),blurry,(bad anatomy:1.21),(badproportions:1.331),extra limbs,(disfigured:1.331),(missingarms:1.331),(extra legs:1.331),(fused fingers:1.61051),(toomany fingers:1.61051),(unclear eyes:1.331),lowers,bad hands,missing fingers,extra digit,bad hands,missing fingers,(((extraarms and legs)))这些正反向的提示词,我们可以通过点击这个按钮,取一个名字保存为模板。

【SD】真人转二次元?图生图如此强大

相比于文生图,图生图功能除了文本提词框以外还多了一个图片框的输入口,因此,我们还可以通过图片来给与AI创作的灵感。我们随便照一张照片,直接拖入进来。然后可以看到,在文本输入框的旁边有两个反推提示词的按钮:CLIP是可以通过图片反推出完整含义的句子;DeepBooru是可以反推出关键词组。上面的那一张图,我们通过两种反推方式得到的提示词分别为:CLIP——a young boy sitting on a bench with a toy train and a lego train set on the floor next to him,Adam Rex,detailed product photo,a stock photo,lyco art。(一个小男孩坐在长凳上,旁边的地板上放着一辆玩具火车和一辆乐高火车,亚当·雷克斯,详细的产品照片,一张库存照片,莱科艺术,)DeepBooru——shoes,solo,hat,orange_background,yellow_background,smile,socks,black_hair,sitting,sneakers。(鞋子,独奏,帽子,橙色背景,黄色背景,微笑,袜子,黑发,坐着,运动鞋)可以看到两种方式生成的提示词都有些瑕疵,比如第一组里面没有描述小孩的穿着,第二组里面没有描述小孩的性别和周围的物品,所以我们需要手动来补充提示词的信息。写好提示词之后,我们再调整一下宽度和高度,让这个红框刚好匹配我们的图片即可。

其他人在问
SD好的模型分享
以下是为您分享的关于 SD 模型的相关内容: 对于 SDXL 的 ControlNet 模型中的 Canny 硬边缘模型,有不同型号,如 4080ti 笔记本测试中,12G 显存下,sdxl base+refiner 模型,使用 diffusers 的 2.5Gfull 模型绘制 10241024 尺寸图片需 2 分 57 秒,320Mb 的 small 模型用时 34s,质量差距不大但时间优势明显。其他作者如 kohya 的用时 33 秒,更接近真实质感。sai 的 128lora 和 256lora 分别用时 39 秒和 1 分 08 秒,偏绘画感觉。t2i 的用时 34s,偏插画。关闭 refiner 能节省一半左右时间,平均 17 秒左右。 在 Depth 深度模型测试中,图形尺寸 6641024,diffusers 的 full 模型用时 2 分 48 秒,small 模型用时 23s,kohya 模型用时 42 秒,sai 模型用时 1 分 12 秒,sargezt 模型用时 1 分 52 秒。 用 Stable Diffusion 时,要先确定照片风格,如生成真人 AI 小姐姐可选用 chilloutmix 的大模型。部分常用大模型可在分享的链接中根据文件夹名称找到。文章第三部分会详细介绍模型下载位置和存放位置。 对于 ControlNet 中线条约束类的预处理器和模型,作者已整理好,如需获取可添加公众号【白马与少年】回复【SD】。同时作者还附上一张图帮助理解 ControlNet 模型的命名规则。
2024-11-17
sd模型
Stable Diffusion(SD)模型是由 Stability AI 和 LAION 等公司共同开发的生成式模型,参数量约 1B,可用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等任务。 文生图任务是将一段文本输入到 SD 模型中,经过一定迭代次数生成符合文本描述的图片。例如输入“天堂,巨大的,海滩”,模型生成美丽沙滩的图片。 图生图任务在输入文本基础上再输入一张图片,模型根据文本提示将输入图片重绘以更符合文本描述。比如在之前生成的沙滩图片上添加“海盗船”。 输入的文本信息需通过“桥梁”CLIP Text Encoder 模型转换为机器数学信息。该模型作为 SD 模型中的前置模块,将输入文本信息编码,生成 Text Embeddings 特征矩阵,用于控制图像生成。 CLIP 模型包含 Text Encoder 和 Image Encoder 两个模型,在 Stable Diffusion 中主要使用 Text Encoder 模型。它将输入的文本 Prompt 编码转换成 Text Embeddings(文本的语义信息),通过 UNet 网络中的 CrossAttention 模块嵌入 Stable Diffusion 中作为 Condition,对生成图像的内容进行控制与引导。目前 SD 模型使用的是中的 Text Encoder 模型。 CLIP ViTL/14 中的 Text Encoder 是只包含 Transformer 结构的模型,由 12 个 CLIPEncoderLayer 模块组成,模型参数大小是 123M,输出的 Text Embeddings 维度为 77x768。 以下是相关资源获取方式: SD 模型权重百度云网盘:关注 Rocky 的公众号 WeThinkIn,后台回复:SD 模型,即可获得包含多种模型权重的资源链接。 SD 保姆级训练资源百度云网盘:关注 Rocky 的公众号 WeThinkIn,后台回复:SDTrain,即可获得包含数据处理、模型微调训练及基于 SD 的 LoRA 模型训练代码等全套资源。 Stable Diffusion 中 VAE,UNet 和 CLIP 三大模型的可视化网络结构图下载:关注 Rocky 的公众号 WeThinkIn,后台回复:SD 网络结构,即可获得网络结构图资源链接。
2024-11-17
sd安装
以下是关于 SD 安装的详细步骤: 1. 系统要求:系统需为 Win10 或 Win11。 2. Win 系统查看配置: 查看电脑系统:在桌面上找到“我的电脑”,鼠标右键点击,点击“属性”,查看 Windows 规格。 查看电脑配置:检查自己的电脑配置能否带动 SD的显卡,显卡内存 4GB 以上。 打开任务管理器:同时按下 ctrl+shift+esc。 查看电脑运行内存,8GB 运行内存可以勉强运行 SD,推荐 16GB 以上运行内存。 查看电脑显卡内存(显存),4GB 显存可运行 SD,推荐 8GB 以上显存。 3. 配置达标跳转至对应安装教程页:。 4. 配置不够可选择云端部署(Mac 也推荐云端部署):。 5. 备选:SD 好难,先试试简单的无界 AI:。 补充说明: 如果在以上使用过程中发生错误,那么你可能需要部署一下使用环境,我们再次开启最傻瓜安装教学模式。 1. 安装 cuda_11.8.0_522.06_windows.exe。 2. 安装 VisualStudioSetup.exe,选择 C++的桌面开发安装。以上步骤,我们在安装 roop 的时候也做过,如果安装过 roop 的可以跳过。 3. 拷贝 ninja,打开 ninja 文件包,把里面的内容拷贝到秋叶包根目录。 4. 拷贝 python,打开 python 文件包,把里面的内容拷贝到秋叶包根目录替换。 5. 拷贝模型,SAM 和 GroundingDINO 的模型都在这了,放到对应的文件夹即可。 6. 重启,装好了,重启电脑,即可运行。 关于【SD】无需 Lora,一键换脸插件 Roop 的安装: 安装时间比较长,要耐心等待。安装好之后,打开 SD 文件目录下的这个文件夹。在地址栏输入“cmd”,然后回车。在打开的 dos 界面里面,将“python m pip install insightface==0.7.3 user”粘贴进来,就会自动开始安装 insightface。如果这个阶段出现错误,建议去下载使用最新的秋叶 4.2 整合包(6 月 23 号更新),下载包我已经更新到了云盘里,后台回复【SD】就可以下载。安装完成后,重新打开我们的启动器,后台会继续下载一些模型,此时一定要保证全程科学上网。完成这些后,Roop 插件就可以正常使用了。这个插件主要适用于真实的人脸替换,所以对二次元之类的人物作用不大。我们选用一个真实系模型“realisticVisionV20”,关键词描述的是一个老人举着气球。得到了一张如下的照片。接下来启用 ROOP 插件,选择你想要替换的人物照片,面部修复选择“GFPGAN”。右边的参数数值越低,人物会越像,但是图像会很模糊;数值越高人物越不像,但是图像会很清晰。这个就取决于你的需求了,我使用 0.5 测试一下。最下面还有一个放大算法,可以使用一个模型放大你的图像,基本就相当于高清修复。设置好后,点击生成。可以看到,人脸部分的像素是偏低的,有点模糊。但是没有关系,我们可以将这张图发送到“图生图”,开一个比较小的重绘幅度。然后使用 controlnet 中的 tile 模型进行重绘。换脸完成。如果想要这个插件的话,可以添加公众号【白马与少年】,回复【SD】即可。推荐使用最新的秋叶整合包,出错概率最小,另外,科学上网很重要。特别提醒,此插件谨慎使用,切勿触犯法律。
2024-11-16
coze web sdk 的具体测试的案例
以下是关于 Coze Web SDK 具体测试的案例: 1. 提示词母体测试: 测试平台包括海外版 Coze 和国内版 Coze。 目的是测试提示词母体模板是否能按规定指令进行生成。 测试模型有 Claude3.5 Sonnet等。 进行了现实主义人物角色、虚幻主义人物角色等方面的测试。 测试感受是基线达到,国内外模型都能按要求生成拟人化提示词,但效果不一,Claude 生成质量最好。 2. 分步构建和测试 Agent 功能: 进入 Coze 后,点击「个人空间工作流创建工作流」打开弹窗。 根据弹窗要求自定义工作流信息,确认后完成新建。 左侧「选择节点」模块中,根据子任务需要实际用到插件、大模型、代码等。 编辑面板中的开始节点和结束节点分别对应分解子任务流程图中的原文输入和结果输出环节。 按照流程图在编辑面板中拖入对应的 LLM 大模型、插件、代码节点即可完成工作流框架搭建。
2024-11-15
有哪些好用的SD扩图
以下是一些关于 SD 扩图的好用方法和相关信息: 1. 高清修复: 原理是命令 AI 按照原来的内容重新画一幅,新生成的绘图和原来的绘图在细节上会有所不同。 适当降低重绘幅度可以更接近之前的绘图,如 0.2 0.3 能保留较多原有细节,但可能出现如手部等部分的问题,可通过反复抽卡、图生图局部重绘或生成多张图片后 PS 合成等办法解决。 由于渲染耗时较长,建议先采用低分辨率抽卡刷图,抽到喜欢的图后用随机种子固定再进行高清修复。 2. 图生图脚本功能: 文生图画好图后发送到图生图,点击下面的脚本,选择使用 SD 放大。 重绘幅度设置 0.3,放大倍率为 2,图块重叠的像素设置为 64。 这种方式需保持重绘幅度较低,否则可能出现新人物。 3. 超清无损放大器 StableSR: 可以算作“后期处理”的上位替代品,能在尽可能保留原图的情况下更精致地还原原图。 安装方式:在扩展面板中搜索 StableSR 直接安装,或将下载好的插件放在“……\\sdwebuiakiv4\\extensions”路径文件夹下,安装完成后重启 webUI 即可在脚本中找到。 4. 二维码相关的 SD 扩图: 与第二步相同的关键词和模型,按照特定参数设置,如原本图片尺寸为 1152x1152 ,需要增高高度可设置为(1152x1526)。 对于无法识别处理的情况,可采取提高 ControlNet 的权重、降低重绘幅度、将原始黑白二维码叠加并调节透明度、使劲抽卡等方法。
2024-11-15
SD软件使用
以下是关于 SD 软件使用的相关内容: 1. 软件安装: 系统要求:Win10 或 Win11。 Win 系统查看配置: 查看电脑系统:在桌面上找到“我的电脑”,鼠标右键点击,点击“属性”,查看 Windows 规格。 查看电脑配置:需要满足 3 个要求(推荐),电脑运行内存 8GB 以上,是英伟达(NVIDA)的显卡,显卡内存 4GB 以上。打开任务管理器(同时按下 ctrl+shift+esc),可查看电脑运行内存和显卡内存(显存)。8GB 运行内存可勉强运行 SD,推荐 16GB 以上运行内存;4GB 显存可运行 SD,推荐 8GB 以上显存。 安装方式:配置达标可跳转至对应安装教程页。 2. 制作二维码: 使用进行安装。如果使用的是 Colab Notebook,只需在启动时选择 ControlNet。 生成二维码:首先需要一个二维码。为增加成功机会,请使用符合以下条件的二维码。使用高容错设置或草料二维码。具体步骤为:第一步选择文字类型,输入二维码的文字;第 2 步将容错设置为 30%;第 3 步按生成;第 4 步将二维码下载为 PNG 文件。 3. 软件原理理解: 模型下载与放置:不会科学上网时,可在启动器界面直接下载模型,将下载的大模型放在根目录的【……\\models\\Stablediffusion】文件夹下,在左上角的模型列表中选择(看不到就点旁边的蓝色按钮刷新)。 VAE:相当于给模型增加提高饱和度的滤镜和局部细节微调,有的大模型自带 VAE,可在启动器里面下载,下载的 VAE 放在根目录的【……\\models\\VAE】文件夹。 Embedding:功能相当于提示词打包,可在 C 站通过右上角的筛选 Textual Inversion 找到,放在根目录下的 embeddings 文件夹里。 LORA:可以将人物或者物品接近完美地复刻进图像中,具有极大商用价值,但使用时需注意版权和法律问题。
2024-11-13
一个 prompt 有 10 段文本内容,怎么标记不同段落的权重
当一个 prompt 有 10 段文本内容时,标记不同段落权重的方法如下: 使用双冒号“::”将提示分成不同部分,并在双冒号后面立即添加一个数字来指定该部分的相对权重。例如,“hot::2 dog”表示单词“hot”比“dog”重要度高出两倍。 在版本 1、2、3 中只接受整数作为权值,版本 4 能接受权值的小数位数。未指定权值时默认为 1。 负数权值可用于提示中以删除或排除不需要的元素,但所有权值的比必须是正数。 改变 tag 权重有多种方式: :数值从 0.1 到 100,低于 1 减弱,大于 1 加强。 括号,权重就重 1.1 倍;每加一层括号就反向减弱 1.1 倍。 小括号权重乘 1.1,如 a;中括号权重除以 1.1;小括号里面直接用冒号写权重也行;反斜杠可以让小括号的权重不生效当做一般字符串处理。 花括号写法,一个花括号权重为 1.05。 提示词其他常用语法:是画到一半的时候开始不画女孩。
2024-11-17
什么是prompt?
Prompt 是您给大模型的文本,用于引发相关输出,通常以问题或指示的形式出现。它可以是一套与大模型交互的语言模板,通过这个模板,您可以输出对大模型响应的指令,明确大模型应该做什么、完成什么任务以及如何处理具体任务,并最终获得期望的结果。大模型的本质是基于语言的概率模型,没有 Prompt 时,大模型随机给出答案,有了 Prompt 则相当于给了一个包含对模型要求、输入和输出限制的模板,让大模型在限制下得到概率最大的答案。此外,Prompt 是给到大模型输入的一段原始输入,能帮助模型更好地理解用户需求并按特定模式或规则进行响应。例如可以设定“假设你是一位医生,给出针对这种症状的建议”,后续对话会按此设定展开,还能在设定中要求模型按一定思路逻辑回答,如思维链(cot),也能让模型按特定格式(如 json)输出,使模型成为输出器。
2024-11-17
用 mj 做文生图,Prompt 模板
以下是使用 MJ 进行文生图的 Prompt 模板: 1. 定主题:明确您需要生成一张什么主题、什么风格、表达什么信息的图。 2. 选择基础模型 Checkpoint:按照主题,找内容贴近的 checkpoint。一般喜欢用模型大佬麦橘、墨幽的系列模型,如麦橘写实、麦橘男团、墨幽人造人等,效果较好。 3. 选择 lora:在想要生成的内容基础上,寻找内容重叠的 lora,以控制图片效果及质量。可多参考广场上好看的帖子中使用的 lora。 4. ControlNet:用于控制图片中特定的图像,如人物姿态、生成特定文字、艺术化二维码等,属于高阶技能,可后续学习。 5. 局部重绘:下篇再教。 6. 设置 VAE:无脑选择 840000 这个即可。 7. Prompt 提示词:用英文写想要 AI 生成的内容,使用单词和短语的组合,不用管语法,单词、短语之间用英文半角逗号隔开。 8. 负向提示词 Negative Prompt:用英文写想要 AI 避免产生的内容,同样不用管语法,只需单词和短语组合,中间用英文半角逗号隔开。 9. 采样算法:较复杂,一般选 DPM++ 2M Karras 较多。最稳妥的是留意 checkpoint 的详情页上模型作者是否有推荐采样器,使用推荐的采样器更有保障。 10. 采样次数:根据采样器特征,选 DPM++ 2M Karras 后,采样次数一般在 30 40 之间,多了意义不大且慢,少了出图效果差。 11. 尺寸:根据个人喜好和需求选择。 另外,使用 Stability AI 基于 Discord 的媒体生成和编辑工具进行文生图时: 1. 点击链接进入官方 DISCORD 服务器:https://discord.com/invite/stablediffusion 。 2. 进入 ARTISAN 频道,任意选择一个频道。 3. 输入/dream 会提示没有权限,点击链接,注册登录,填写信用卡信息以及地址,点击提交,会免费试用三天,三天后开始收费。 4. 输入/dream 提示词,这部分和 MJ 类似。 5. 和 MJ 手工输入参数不同,可选参数有五类: prompt:提示词,正常文字输入,必填项。 negative_prompt:负面提示词,填写负面提示词,选填项。 seed:种子值,可以自己填,选填项。 aspect:长宽比,选填项。 model:模型选择,SD3,Core 两种可选,选填项。 Images:张数,1 4 张,选填项。完成后选择其中一张。 在 MJ 应用篇儿童绘本制作、人物一致性方面: 1. 生成人物图片:确定人物形象,如“a little girl wearing a yellow floral skirt + 人物动作 + 风格词”,在 mj 中生成直到得到满意的人物图像。垫图 URL + “In the forest,a little girl wearing a yellow floral skirt is playing happily,super high details,HDsmooth,by Jon Burgerman,s 400 ar 3:4 niji 5 style expressive iw 2”,iw 取值范围,不填写默认 iw = 1,iw 值越大越接近垫的图像,反之更接近提示词。为确保人物一致性,取 iw 2 。 2. 合成人物和场景,垫图并重新生成:使用 PS 或者 Canva 将人物和场景合成到一张图,若色调不和谐(若画面和谐或 PS 技术足够,也可不用图生图),将合成后的图作为垫图(iw 2),mj 重新生图,如“prompt:垫图 url + Little girl wearing a yellow floral skirt,and her friend brown bear,taking shelter in the cave,rainstorm,super high details,HDsmooth,by Jon Burgerman,s 400 ar 3:4 niji 5 style expressive iw 2”。 3. 绘本展示。
2024-11-15
文生图的 Prompt 模板
以下是关于文生图的 Prompt 模板的相关内容: 通常描述逻辑包括人物及主体特征(如服饰、发型发色、五官、表情、动作),场景特征(如室内室外、大场景、小细节),环境光照(如白天黑夜、特定时段、光、天空),画幅视角(如距离、人物比例、观察视角、镜头类型),画质(如高画质、高分辨率),画风(如插画、二次元、写实)。通过这些详细的提示词,能更精确地控制 Stable Diffusion 的绘图。 对于新手,有功能型辅助网站帮助书写提示词,如 http://www.atoolbox.net/ ,可通过选项卡方式快速填写关键词信息;https://ai.dawnmark.cn/ ,每种参数有缩略图参考,方便直观选择提示词。还可以去 C 站(https://civitai.com/)抄作业,复制每一张图的详细参数并粘贴到正向提示词栏,然后点击生成按钮下的第一个按键,不过要注意图像作者使用的大模型和 LORA,不然即使参数一样,生成的图也会不同,也可只取其中较好的描述词使用。 在 Tusiart 中,文生图的操作流程如下: 定主题:确定要生成的图的主题、风格和表达的信息。 选择基础模型 Checkpoint:找内容贴近主题的 checkpoint,如麦橘、墨幽的系列模型。 选择 lora:寻找内容重叠的 lora 控制图片效果及质量。 ControlNet:控制图片中特定的图像,如人物姿态、特定文字、艺术化二维码等。 设置 VAE:无脑选择 840000 。 Prompt 提示词:用英文写需求,单词和短语组合,用英文半角逗号隔开,不用管语法和长句。 负向提示词 Negative Prompt:用英文写要避免的内容,单词和短语组合,用英文半角逗号隔开。 采样算法:如选 DPM++ 2M Karras,留意 checkpoint 详情页上模型作者推荐的采样器。 采样次数:根据采样器特征,如选 DPM++ 2M Karras 采样次数在 30 40 之间。 尺寸:根据喜好和需求选择。 在一些提示词中,括号和“:1.2”等是用来增加权重的,权重越高在画面中体现越充分,提示词的先后顺序也会影响权重。同时还有反向提示词,告诉 AI 不要的内容。
2024-11-15
关于儿童绘本的Prompt
以下是关于儿童绘本的 Prompt 相关内容: 对于儿童故事读物,通常需要具备以下特点: 1. 语言简单易懂,使用简洁的语言和短句子,便于孩子理解和跟随故事情节。 2. 具有丰富的想象力,充满奇幻和想象,带有魔法、奇妙的生物和奇异的世界,激发孩子的创造力和想象力。 3. 包含教育意义,常包含道德教训或生活启示,帮助孩子理解基本价值观。 4. 拥有生动的角色,包括可爱的动物、勇敢的英雄、善良的公主等,以有趣的人物形象吸引孩子注意力。 5. 经常使用重复的句子或韵律感强的语言,增强记忆力和语言的音乐感。 6. 具备互动性,许多儿童故事设计为互动式,鼓励孩子参与情节发展。 7. 有明确的情节结构,故事情节简单明了,有清晰的开始、发展和结局,方便孩子跟随和理解。 8. 配有丰富的插图和图画,增强视觉吸引力,帮助孩子更好地理解和记忆故事内容。 在让 LLM 生成故事时,需要限定生成的内容主题、风格、适合人群等的 prompt,例如生成「漫画小书虫📚🐛」的相关故事,并按照格式返回文本内容,以方便后续对数据解析、配图。 此外,小七姐在 K12 领域应用中提到儿童 PBL 项目 Prompt,原始设计思路包括: 1. 作为家长,获取 10 个生活中可能的 PBL 项目主题。 2. 对感兴趣的主题进一步拓展 5 个相关主题。 3. 选择主题后,设计包含目标、项目周期、项目阶段和任务、项目评估的 PBL 项目。 4. 根据反馈优化项目。 5. 设计测试评估孩子在项目中的知识与能力、提升可能、学习风格和兴趣点。 6. 根据孩子的真实反馈设计个性化学习方案。 7. 明确家长在项目中承担的角色和提供的支持。 8. 写一封信吸引孩子参与家长设计的学习项目。 例如为一位特别喜欢识认汽车品牌、喜欢交通工具、挖掘机等工程机械车的 3 岁小朋友设计一个包含能练习中、英文的 PBL 项目式学习任务,包含项目目标、项目周期、项目阶段和任务、项目评估。 在提示简介中,提示是给 Claude 的用于引发相关输出的文本,通常以问题或指示的形式出现,Claude 回答的文本被称为“响应”,有时也被称为“输出”或“完成”。
2024-11-15
prompt是什么
Prompt 是您给 AI(如 Claude)的文本,用于引发相关输出,通常以问题或指示的形式出现。例如:“Why is the sky blue?” 它是一段指令,用于指挥 AI 生成您所需要的内容,每个单独的提示词叫 tag(关键词)。支持的语言为英语,emoji 也可以用。语法规则包括用英文半角符号逗号分隔 tag,改变 tag 权重有两种写法,还可以进行 tag 的步数控制。此外,prompt 是给到大模型输入的一段原始输入,能够帮助模型更好地理解用户的需求并按照特定的模式或规则进行响应。比如可以设定“假设你是一位医生,给出针对这种症状的建议”,然后后续对话会按照这个设定展开,还能在 prompt 的设定中要求模型按照一定的思路逻辑回答,如思维链(cot),也能让模型按照特定格式(如 json)输出,将模型变成输出器。
2024-11-14
列出最常用的20个AI咒语
以下为您列出一些常用的 AI 咒语示例: 1. 人物表情: 高兴的:young girl,smiling,front view,ar 16:9 生气的:young girl,angry,front view,ar 16:9 哭泣的:young girl,crying,front view,ar 16:9 2. 人物风格: 写实人物:A couple taking street snaps in a 90s Hong Kongstyle street,Eye level view,Waist shot,detailed face,detailed eyes,beautiful,ar 3:4 丙烯酸绘画:acrylic painting,illustration,futurism,NFT art,Fluorescent color,Laser color,A cute girl who looks up and smiles,Combination of 2d and 3d,solid color background,cel shading,Tindal effect,Nonphotorealistic rendering,Transparency,Color Slant,animation,blender,geometry art 轻质感 3D 3. 人物服装: 中国清代宫廷刺绣旗袍:1 girl,she was wearing a Chinese dress,wide sleeves gradient red x embroidered chiffon fabric,qing dynasty palace embroidery,canary and white roses element,embroidered hosta,x diamondencrusted craftsmanship,elegant,fairy air,digital rendering,super lifelike,super detailed,luxury,movie lighting,super clear details,super clear materials,closeup,complex textures,octane rendering,Zbrush,8K,Vray super lifelike,ar 9:16
2024-09-26
waytoAGI是什么,现在你要给学校老师介绍,列出相关的数据
WaytoAGI 是由一群热爱 AI 的狂热爱好者、专家共同建设的开源 AI 知识库。它诞生于 2023 年 4 月 26 日,在没有任何推广的情况下,一年时间已有超过 70 万用户和超千万次的访问量。 其知识库内容丰富,覆盖 AI 绘画、AI 视频、AI 智能体等多个版块,不仅有最新的 AI 教程、工具和一线实战案例,还有开放共享的 AI 知识体系,倡导共学共创等形式,孵化了如 AI 春晚、离谱村等大型共创项目。 WaytoAGI 不仅是一个普通的 AI 技术社区,更是一个汇聚 AI 行业顶尖创作者和 KOL 的思想交流平台,社区制作的优质作品多次登上央视首页,广受好评。社群的口号是“让更多的人因 AI 而强大”,有很多学社和共学共建的活动。您打开“waytoagi.com”就可以找到社群。
2024-09-18
请列出COZE智能体工作流搭建的知识库
搭建 COZE 智能体工作流通常分为以下步骤: 1. 规划: 制定任务的关键方法。 总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施: 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善: 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。 此外,在搭建整理入库工作流时,首先新建工作流「url2table」,然后根据弹窗要求自定义工作流信息,并进行工作流全局流程设置。但关于调试飞书多维表格插件的使用方式,由于篇幅原因不在此详述。
2024-09-17
国内外的智能体平台都有哪些?尽可能罗列出来
国内外的智能体平台有: 国内:Dify.AI、字节扣子、腾讯元器。 需要注意的是,个人比较常用的国内智能体平台是字节扣子,相关文章主要对比了字节扣子和腾讯元器。智能体相当于个人的数字员工,可以不断提效,帮助实现制定的目标,这和现实中老板给员工下达任务有相似之处。
2024-08-31
如果要创建一个和你一样的ai,你可以把技术栈给我罗列出来吗,从数据库到后端到前端分别用到了哪些技术
如果要创建一个类似我的 AI ,以下是从数据库到后端到前端可能用到的技术栈: 前端:推荐使用 React.js 或 Vue.js 框架,它们适合构建动态的用户界面,且有丰富的组件库支持多媒体内容展示。 后端:采用 Node.js 加上 Express.js ,能使用 JavaScript 同时开发前端和后端,简化开发过程,Node.js 的非阻塞 IO 特性适合处理实时通讯需求。 数据库:选择 MongoDB ,对于可能需要存储的文档形式数据(如离谱生物档案和相关事件),它在存储此类灵活数据方面表现良好。 语音处理:可以考虑使用 Google Cloud SpeechtoText 和 TexttoSpeech API 来实现语音与文本的相互转换,以支持语音对话。
2024-08-25
帮我把关于agent的知识全部列出来
以下是关于 Agent 的一些知识: 什么是 Agent:Agent 是执行特定任务的 AI 实体,可以迭代运行并拥有复杂的工作流程,可以自我对话,无需人类驱动每一部分的交互。 Agent 的组成:LLM(核心大脑)、Memory(记忆)、Planning Skills(任务规划)以及 Tool Use(工具使用)。 Agent 的案例:斯坦福 25 人小镇。 Agent 构建平台: Coze:新一代的一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot。 Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 文心智能体:百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据自身需求打造大模型时代的产品能力。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行设计良好的工作流。 斑头雁:一个 2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景。 钉钉 AI 超级助理:依托于钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能。
2024-05-13
可以给我一个有关摄影技巧的prompt吗,最好加点剧情向的内容
以下为您提供一些有关摄影技巧的 prompt: 1. Match Cut:通过相似的元素将两个不同场景或时间段的画面无缝连接,以增强视觉连贯性和叙事效果。例如,在《2001 太空漫游》中,一个古代人类扔起的骨头与太空站的转换就是一个经典的 Match Cut。 2. Cutaway:在主要场景之外展示的辅助画面,通常用于补充或增强叙事细节,与 Cut In 的区别在于,Cut In 深入或递进。Cutaway 常用于展示角色的回忆、幻想或提供额外背景信息,增强故事的层次感。 3. Dolly zoom:通过同时移动摄像机和调整镜头焦距,主体不动但背景巨幅变化,用以增强紧张感。这种拍摄技巧也被称为“Vertigo 效果”,因为它最早出现在希区柯克的电影《迷魂记》中。 4. Dutch shot:通过倾斜摄影机来创造画面的不平衡,用于表现角色内心的紧张或混乱。这种拍摄技法常用于恐怖电影或心理剧中,以增强不安的氛围。 另外,还有一个示例:人物细节为穿着一件羊毛大衣和一件纽扣衬衫、头戴棕色贝雷帽且戴着眼镜,环境细节是金色的灯光和背景中的巴黎街道和城市,摄影技术采用景深、35 毫米电影胶片。
2024-09-25
人工智能在电影制作和人像摄影领域的发展前景
以下是关于人工智能在电影制作和人像摄影领域的发展前景的相关信息: 在电影制作方面,艺术家亚历山大·雷本(Alexander Reben)利用人工智能生成的图像创作雕塑,并将其转化为 3D 模型。他认为人工智能如 Sora 可作为 3D 雕塑创作的起点,还提到将视频转化为 3D 模型的前景,这暗示着推动 AI 系统超越初始范围。 在整体发展上,我们已经使用先进的人工智能来推荐电视节目和电影。导航也利用人工智能规划最快路线或智能预测交通拥堵。智能手机以各种方式使用先进的人工智能。虽然这些设备曾有风险,但如今带来了巨大益处。相关白皮书阐述了在支持创新的同时提供框架以识别和解决风险,采取适度和支持创新的监管框架,不针对特定技术,而是关注 AI 的应用环境,因为特定的 AI 技术在不同应用中的风险差异巨大。 在人像摄影领域,目前没有直接相关的具体内容提及。
2024-09-23
你是一个摄影师,需要批量p图,有没免费的ai工具推荐
以下为您推荐一些免费的 AI 工具用于批量 P 图: 对于在线 SD 工具网站,有。 关于 AI 去水印工具,有以下不错的选项: AVAide Watermark Remover:在线工具,使用 AI 技术从图片中去除水印,支持多种图片格式,操作简单,还提供去除文本、对象、人物、日期和贴纸等功能。 Vmake:提供 AI 去除图片水印功能,可上传最多 10 张图片,适合快速去除水印,尤其是在社交媒体上分享图片的用户。 AI 改图神器:提供 AI 智能图片修复去水印功能,可一键去除图片中的多余物体、人物或水印,支持直接粘贴图像或上传手机图像,操作方便。 这些工具各有特点,您可以根据具体需求选择最适合的工具。但请注意,内容由 AI 大模型生成,请仔细甄别。
2024-09-09
现在你是一个摄影师,需要批量把数十张展览现场图片调整成一个色调的,有没有很合适的ai工具推荐?
目前在 AI 领域,有一些工具可以帮助您批量调整数十张展览现场图片的色调。例如,Adobe Sensei 利用人工智能技术能够实现高效的批量图片色调处理。另外,Luminar AI 也是一款不错的选择,它具有智能的色调调整功能,可以根据您的需求快速统一图片色调。
2024-09-09