直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

大模型微调数据标注

回答

大模型微调数据标注是指在已有的大型语言模型基础上,通过对特定领域或任务的数据进行标注和微调,以提高模型在该领域或任务上的性能和准确性。以下是关于大模型微调数据标注的一些内容:

  1. 数据源对模型跨领域知识能力的影响:通过对不同数据源的数据集进行微调,可以分析数据源对模型跨领域知识能力的影响。研究表明,模型在头脑风暴、生成和总结等生成任务中表现出色,但在数学和编码方面表现不佳。
  2. 数据格式化:在微调模型时,需要对数据进行格式化,包括输入和输出的格式。输入通常以固定分隔符结尾,以通知模型提示的结束和完成的开始。输出应以空格开头,并以固定的停止序列结束,以通知模型完成的结束。
  3. 指令微调:在此阶段,模型被训练以理解并执行具体指令,如翻译文本,从而能够回答问题。这一阶段涉及的数据输入量相对于无监督学习阶段有所减少。
  4. 对齐过程:通过引入人类的评价标准(奖励函数)和处理特定的格式要求,进一步优化模型的输出以符合人类的期望。这包括处理文化、道德等方面的细节,以确保模型的输出更加贴近人类的价值观。
  5. 排序:为了提高模型的性能和准确性,需要对标注数据进行排序和筛选,以确保数据的质量和代表性。

总的来说,大模型微调数据标注是一个复杂的过程,需要对数据进行格式化、清洗、对齐、排序和筛选等处理,以提高模型的性能和准确性。同时,需要注意数据源对模型跨领域知识能力的影响,以及引入人类的评价标准和处理特定的格式要求,以确保模型的输出更加贴近人类的期望。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

弱智吧:大模型变聪明,有我一份贡献

该研究在不同数据源的数据集上对Yi系列模型(Young et al.,2024)和Qwen-72B(Bai et al.,2023)模型进行了微调,以分析数据源对模型跨领域知识能力的影响,并使用Belle-Eval上基于模型(即GPT-4)的自动评估来评估每个模型在各种任务上的性能。表2、表3分别显示了基于Yi-6B、Yi-34B在不同数据集上进行微调得到的不同模型的性能。模型在头脑风暴、生成和总结等生成任务中表现出色,在数学和编码方面表现不佳。下图4显示了CQIA和其他5个基线(即Yi-6B-Chat、Baichuan2-7B-Chat、ChatGLM2-6B、Qwen-7B-Chat和InternLM-7B-Chat)的逐对比较人类评估结果。结果表明,与强基线相比,CQIA-Subset实现了更高的人类偏好,至少超过60%的响应优于或与基线模型相当。这不仅归因于CQIA能够对人类问题或指令生成高质量的响应,还归因于其响应更符合现实世界的人类沟通模式,从而导致更高的人类偏好。该研究还在SafetyBench上评估了模型的安全性,结果如下表4所示:在COIG Subset数据上训练的模型性能如下表5所示:

微调(Fine-tuning)

要微调模型,您需要一组训练示例,每个训练示例都包含一个输入(“提示”)及其关联的输出(“完成”)。这与使用我们的基本模型明显不同,在基本模型中,您可能会在单个提示中输入详细说明或多个示例。每个提示都应以固定分隔符结尾,以在提示结束和完成开始时通知模型。通常效果很好的简单分隔符是nn###nn.分隔符不应出现在任何提示中的其他地方。由于我们的token化,每个完成都应该以空格开头,它用前面的空格token大多数单词。每次完成都应以固定的停止序列结束,以在完成结束时通知模型。停止序列可以是n、###或任何其他未出现在任何完成中的token。对于推理,您应该按照与创建训练数据集时相同的方式格式化提示,包括相同的分隔符。还指定相同的停止序列以正确截断完成。

学习笔记:【这就是 ChatGPT】了解原理让大语言模型 AI 成为你的打工人

大语言模型训练过程涉及几个关键步骤:无监督学习:这一阶段模型通过分析大量文本数据,学习到语言的基本结构和常识,具备文本补齐能力而非直接回答问题。模型将人类的知识通过向量化的方法转换,从而获得基础的语言模型。清洗出好的数据指令微调:在此阶段,模型被训练以理解并执行具体指令,如翻译文本,从而能够回答问题。这一阶段涉及的数据输入量相对于无监督学习阶段有所减少。输入内容包括3个部分,中间可能有分隔符* Instruct:请你翻译下面这段话* Input:一段英文* Output:一段中文对齐过程:通过引入人类的评价标准(奖励函数)和处理特定的格式要求,进一步优化模型的输出以符合人类的期望。这包括处理文化、道德等方面的细节,以确保模型的输出更加贴近人类的价值观。排序相信在这个过程中,OpenAI很有可能自己构建了一套强大的标注组织体系,高效,又能对抗标注人员能力强依赖。说起来人工标注符合scaling law。

其他人在问
在语音数据的标注中你有什么针对你行业(车载语音助手)的特殊标注规则
在车载语音助手这一行业的语音数据标注中,特殊标注规则如下: 1. 音素覆盖:在录音开始前构建基础的文本前端,具备简单的文本转音素(G2P)系统。录音文本要保持多样性,音素或音素组合尽可能覆盖全,统计音素序列中的 NGram,避免某些音素或组合出现频次过高或过少。 2. 场景定制:收集车载播报的常用话术、专业术语(如油量、胎压等)、音乐名或歌手名、地名和新闻播报。对业务有一定理解,并在一开始就和需求方紧密沟通。 3. 文本正确性:确保录音文本拼写无误,内容正确,删除脏话、不符合宗教信仰或政治不正确的语句。
2024-11-11
AI和人工标注相关
以下是关于 AI 和人工标注相关的内容: 在 Agent 相关比赛的赛道介绍中,涉及到多个与 AI 和人工标注相关的参考方向,包括: 1. 内容生成:AI 可自动编写文章并选择或生成相应图片。 2. 图像标注:AI 能识别和理解图片内容,并生成相应文字描述。 3. 图文匹配:为给定图片找到合适文字描述,或为给定文字找到匹配图片。 4. 数据可视化:将复杂数据用图表、信息图等方式可视化展示,使解读更直观简洁。 5. 设计辅助:例如生成 LOGO、海报设计等。 6. 自动化排版:根据文本内容与结构自动进行页面布局和美观排版。 7. 图文识别:借助 OCR 技术抓取图文内容后,AI 能够理解并处理。 8. 新闻和社交媒体:AI 可对大量新闻和社交媒体信息自动编辑和汇总,生成图文摘要。 9. 艺术创作:辅助绘画、音乐创作。 在 OpenAI O1 的训练中,可能采用的训练数据包括人工标注数据和合成数据。对于人工标注数据,会人工标注一批 COT 思考过程,形成<问题,思考过程(包括思考过程中出现的错误及错误修正过程),答案>,用这些数据 SFT 一下 o1 初始的模型,启动其输出模式。但人工标注存在难度大、成本高、可扩展性差的问题,优点是质量较高。之后可以采用合成数据的模式,如从人工标注的 COT 里截取片段,用 MCTS 树搜索方式补齐后续推理过程,或者对于有确定标准答案的逻辑问题,通过不断试错的模式搜索答案,这些正确或错误的答案都可用于训练 o1 模型。
2024-10-14
推荐分析PDF文档 提炼标注关键词的AI
以下是一些可以分析 PDF 文档、提炼标注关键词的 AI 产品或方法: 1. DeepL(网站):点击页面“翻译文件”按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件):安装插件后,点击插件底部“更多”按钮,选择“制作双语 BPUB 电子书”、“翻译本地 PDF 文件”、“翻译 THML / TXT 文件”、“翻译本地字幕文件”。 3. Calibre(电子书管理应用):下载并安装 calibre,并安装翻译插件“Ebook Translator”。 4. 谷歌翻译(网页):使用工具把 PDF 转成 Word,再点击谷歌翻译“Document”按钮,上传 Word 文档。 5. 百度翻译(网页):点击导航栏“文件翻译”,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 6. 彩云小译(App):下载后点击“文档翻译”,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方“切换成电子书”,轻触屏幕唤出翻译按钮。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-09-14
数据标注与Ai的大模型是怎样的环节
在 AI 领域中,数据标注与大模型有着密切的关系。 对于大模型而言: 1. 数据清洗:在训练前对数据预处理,移除或修正有偏见、歧视等不道德内容的数据。 2. 算法设计:减少偏见和不公平性,平衡数据集中不同群体的代表性。 3. 道德和伦理准则:制定明确准则指导开发和使用。 4. 透明度:对模型能力和局限性保持透明,告知用户可能的偏差和不确定性。 5. 用户反馈:允许用户反馈以识别和纠正不道德行为。 6. 持续监控:监控模型表现,确保输出符合道德和伦理标准。 7. 人工干预:在可能涉及道德伦理问题时引入人工审核和干预。 8. 教育和培训:对使用人员进行道德伦理方面的教育和培训。 在数据标注方面: 1. 数据清洗工作占据 AIGC 时代模型训练 70%80%的时间,必不可少,因为数据质量决定机器学习的上限。 2. 需筛除分辨率低、质量差、存在破损及与任务目标无关的数据,去除可能包含的水印、干扰文字等。 3. 数据标注分为自动标注和手动标注,自动标注主要依赖像 BLIP 和 Waifu Diffusion 1.4 这样的模型,手动标注依赖标注人员。例如使用 BLIP 可对数据进行自动标注 caption。 然而,在中国的 AI 创业生态中,存在一些问题: 1. 高质量的数据处理服务稀缺。 2. 数据获取门槛低,但高质量数据获取困难,中文互联网数据质量相对较低。 总之,确保 AI 大模型的道德和伦理性以及获取高质量的数据标注是复杂且持续的挑战。
2024-09-12
数据标注会涉及哪些方面?以及现在哪些类型、行业的数据更需要标注?
数据标注涉及以下方面: 1. 从量到质的转变:早期大模型训练侧重依靠大量算力和大规模数据集提升性能,如今数据质量成为提高模型性能的关键瓶颈,更需注重提高数据质量和相关性。 2. 向知识密集型转变:多模态模型需处理多种类型数据,如文本、图像、声音等,这使数据标注过程更细致复杂,需要更高水平的理解和分析能力,不再是简单的劳动力作业。 3. 对标注方式的理解:大模型的数据标注不仅关注清晰的行业术语,还需要能被模型理解的标注方式,可能涉及更多上下文的理解和语义分析。 4. 对业务的理解:目前数据服务依赖于标注员对业务的理解,通用型数据需求减少,更多是公司内部独有的数据内容和词语,能承接大模型数据标注的服务商不多。 现在更需要标注的数据类型和行业包括: 1. 多模态模型相关的数据,如同时包含文本、图像、声音等多种类型的数据。 2. 公司内部独有的、与特定业务相关的数据。 在数据标注过程中,还需注意数据隐私与安全问题,如数据加密与计算效率的权衡等。
2024-09-12
数据标注主要有什么用
数据标注主要有以下作用: 在 AIGC 时代的模型训练中,数据标注是必不可少的环节。数据质量决定了机器学习的上限,而标注工作能筛除分辨率低、质量差、存在破损以及与任务目标无关的数据,去除可能包含的水印、干扰文字等,从而提高数据质量。 有助于提高训练数据的真实性、准确性、客观性和多样性。 在生成式人工智能技术研发过程中,数据标注的提供者应当制定清晰、具体、可操作的标注规则,开展质量评估,抽样核验标注内容的准确性,对标注人员进行必要培训,监督指导标注人员规范开展标注工作。 数据标注分为自动标注和手动标注。自动标注主要依赖像 BLIP 和 Waifu Diffusion 1.4 这样的模型,手动标注则依赖标注人员。例如使用 BLIP 可自动标注 caption。
2024-09-12
如何做大模型的云端部署与微调
做大模型的云端部署与微调,主要包括以下步骤: 1. 选择合适的部署方式: 本地环境部署。 云计算平台部署。 分布式部署。 模型压缩和量化。 公共云服务商部署。需根据自身的资源、安全和性能需求进行选择。 2. 准备训练所需的数据和计算资源: 确保有足够的训练数据覆盖目标应用场景。 准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础: 可以使用开源的预训练模型如 BERT、GPT 等。 也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练: 根据具体应用场景对预训练模型进行微调训练。 优化模型结构和训练过程以提高性能。 5. 部署和调试模型: 将训练好的模型部署到生产环境。 对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护: 大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 例如,对于 SDXL 的大模型,本地部署时要注意模型分为 base+refiner 以及配套的 VAE 模型,需将其放入对应文件夹,并在秋叶启动器中将 webUI 的版本升级到 1.5 以上。而对于 Llama3 的部署和微调,实操分两部分,包括本地部署并通过 webdemo 对话,以及使用特定数据集进行微调,具体流程为购买服务器、安装代码环境、下载通用模型和数据集、挑选微调框架、编写微调程序和验证结果。 总的来说,部署和微调大模型需要综合考虑多方面因素,根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。
2024-10-26
使用主模型及微调模型进行图像生成的过程是什么?
使用主模型及微调模型进行图像生成的过程通常包括以下步骤: 1. 对于像 Video LDM 这样的模型,首先训练一个 LDM(隐扩散模型)图像生成器。 2. 以 OpenAI 的文本到图像模型为例,在大量由图像和描述图像的文本组成的数据集上进行训练。训练时,先将字符串用分词器分解为离散的 token,通过最大化似然函数构建文本语言模型,然后对图像进行调整将其转换为描述生成器。 3. 为改进在图像生成数据集上的描述效果,对描述生成器进行微调。例如,OpenAI 构建小规模描述数据集来描述图像主对象,诱导模型偏向于描述主对象,此为“短合成描述”;或者创建更长、更丰富的文本数据集来描述图像内容。 4. 对于视频生成,如 Video LDM 向解码器添加额外的时间层,并使用用 3D 卷积构建的逐块时间判别器在视频数据上进行微调,同时编码器保持不变,以实现时间上一致的重建。类似于 Video LDM,Stable Video Diffusion(SVD)也是基于 LDM,在每一个空间卷积和注意力层之后插入时间层,并在整个模型层面上执行微调。 5. 在视频生成的微调过程中,长度为 T 的输入序列会被解释成用于基础图像模型的一批图像,然后再调整为用于时间层的视频格式。其中有 skip 连接通过学习到的融合参数导向时间层输出和空间输出的组合。在实践中,实现的时间混合层有时间注意力和基于 3D 卷积的残差模块等。但 LDM 的预训练自动编码器存在只能看见图像、永远看不见视频的问题,直接用于生成视频会产生闪动伪影和时间一致性差的情况,所以需要进行上述微调操作。
2024-10-19
推荐一下国内可以通过对话微调的预训练模型
以下是为您推荐的国内可以通过对话微调的预训练模型相关信息: 为优化 Llama2 的中文能力,可使用以下数据: 网络数据:互联网上公开的网络数据,包括百科、书籍、博客、新闻、公告、小说等高质量长文本数据。 :中文 Wikipedia 的数据。 :中文悟道开源的 200G 数据。 :Clue 开放的中文预训练数据,经过清洗后的高质量中文长文本数据。 竞赛数据集:近年来中文自然语言处理多任务竞赛数据集,约 150 个。 :MNBVC 中清洗出来的部分数据集。 社区提供预训练版本 Atom7B 和基于 Atom7B 进行对话微调的模型参数供开放下载,关于模型的进展详见社区官网 https://llama.family。 另外,关于会话补全(Chat completions): gpt3.5turbo 和 textdavinci003 两个模型能力相似,但前者价格只是后者的十分之一,在大部分情况下更推荐使用 gpt3.5turbo。 gpt3.5turbo 模型不支持微调。从 2023 年 3 月 1 日起,只能对基于 GPT3.5 的模型进行微调。有关如何使用微调模型的更多细节,请参阅微调指南。 从 2023 年 3 月 1 日起,OpenAI 会将您通过 API 发送的数据保留 30 天但不会使用这些数据来提升模型。 关于安仔:Coze 全方位入门剖析 免费打造自己的 AI Agent(国内版): 目前国内版暂时只支持使用“云雀大模型”作为对话引擎,其携带上下文轮数默认为 3 轮,可修改区间是 0 到 30,具体轮数可根据业务需求决定。 在 Bot 编排页面的“技能”区域,可为 Bot 配置所需技能。不懂插件时,可选择区域右上角的“优化”按钮让 AI Bot 根据提示词自动选择插件。也可自定义添加所需插件,点击插件区域的“+”号选择加入具体插件。 在 Bot 编排页面的“预览与调试”区域,可测试 Bot 是否按预期工作,可清除对话记录以开始新的测试,确保 Bot 能理解用户输入并给出正确回应。
2024-10-18
推荐一下个人可以使用的通过对话微调的模型
以下是一些个人可以使用的通过对话微调的模型相关信息: 会话补全(Chat completions): GPT3.5 系列中,gpt3.5turbo 和 textdavinci003 有相似能力,但 gpt3.5turbo 价格仅为 textdavinci003 的十分之一,在多数情况下更推荐使用 gpt3.5turbo。不过,gpt3.5turbo 不支持微调,从 2023 年 3 月 1 日起,只能对基于 GPT3.5 的模型进行微调。 微调(Finetuning): 案例研究: 客户支持聊天机器人:通常包含相关上下文、对话摘要及最近消息,可能需要几千个示例处理不同请求和客户问题,建议审查对话样本确保代理消息质量,可使用单独文本转换微调模型生成摘要。 基于技术属性列表的产品描述:将输入数据转换为自然语言很重要,确保完成基于所提供描述,若常查阅外部内容,自动添加此类内容可提高性能,若描述基于图像,提取图像文本描述可能有帮助。 模型(Models): GPT3.5 模型可理解和生成自然语言或代码,其中功能最强大、最具成本效益且针对聊天优化的型号是 gpt3.5turbo,建议使用它而非其他 GPT3.5 模型,因其成本更低。 gpt3.5turbo:功能强大,针对聊天优化,成本低,会使用最新模型迭代更新,最大 Token 数 4096,训练数据截至 2021 年 9 月。 gpt3.5turbo0301:2023 年 3 月 1 日的快照,不会更新,仅在 2023 年 6 月 1 日结束的三个月内提供支持,最大 Token 数 4096,训练数据截至 2021 年 9 月。 textdavinci003:能完成任何语言任务,支持文本中插入补全,最大 Token 数 4097,训练数据截至 2021 年 6 月。 textdavinci002:与 textdavinci003 类似,使用监督微调而非强化学习训练,最大 Token 数 4097,训练数据截至 2021 年 6 月。 codedavinci002:针对代码完成任务优化,最大 Token 数 8001,训练数据截至 2021 年 6 月。 请注意,OpenAI 模型具有不确定性,相同输入可能产生不同输出,将温度设置为 0 可使输出大部分具有确定性,但可能仍有少量可变性。
2024-10-18
个人使用可以通过对话微调的大模型
大模型是指输入大量语料,使计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。可以用“上学参加工作”来类比大模型的训练和使用过程: 1. 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练。 2. 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:用合适的算法让大模型更好理解 Token 之间的关系。 4. 就业指导:为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:完成就业指导后,进行如翻译、问答等工作,在大模型里称为推导(infer)。 在 LLM 中,Token 被视为模型处理和生成的文本单位,能代表单个字符、单词、子单词等,具体取决于分词方法。将输入分词时会数字化形成词汇表。 个人动手实验方面: macOS 系统可采用 GGML 量化后的模型。有名的项目如 ggerganov/llama.cpp:Port of Facebook's LLaMA model in C/C++ ,首先编译,利用 Metal 的 GPU 用相应命令编译,然后去下载模型,还提供了 WebUI,启动 server 后默认监听 8080 端口,打开浏览器可对话。 Whisper 与 llama 类似,用 make 命令编译,去指定地址下载量化好的模型,转换音频,目前只接受 wav 格式,可用 ffmpeg 转化。 张梦飞的教程《用聊天记录克隆自己的 AI 分身》全程本地操作,目标是把微信聊天记录导出,用其微调模型,最终接入微信替你回复消息。
2024-10-18
国内能通过对话微调的语言大模型
以下是国内一些能通过对话微调的语言大模型: 教育领域:桃李(Taoli) 地址: 简介:在国际中文教育领域数据上进行了额外训练的模型,基于国际中文教育教材等构建资源库和问答数据集,并利用数据进行指令微调,让模型习得将知识应用到具体场景中的能力。 数学领域:chatglmmaths 地址: 简介:基于 chatglm6b 微调/LORA/PPO/推理的数学题解题大模型,样本为自动生成的整数/小数加减乘除运算,可 gpu/cpu 部署,开源了训练数据集等。 文化领域:Firefly 地址: 简介:中文对话式大语言模型,构造了许多与中华文化相关的数据,如对联、作诗、文言文翻译、散文、金庸小说等,以提升模型在这方面的表现。 金融领域: Cornucopia(聚宝盆) 地址: 简介:开源了经过中文金融知识指令精调/指令微调的 LLaMA7B 模型。通过中文金融公开数据+爬取的金融数据构建指令数据集,并在此基础上对 LLaMA 进行了指令微调,提高了 LLaMA 在金融领域的问答效果。基于相同的数据,后期还会利用 GPT3.5 API 构建高质量的数据集,另在中文知识图谱金融上进一步扩充高质量的指令数据集。 BBTFinCUGEApplications 地址: 简介:开源了中文金融领域开源语料库 BBTFinCorpus,中文金融领域知识增强型预训练语言模型 BBTFinT5 及中文金融领域自然语言处理评测基准 CFLEB。 XuanYuan(轩辕) 地址: 简介:国内首个开源的千亿级中文对话大模型,同时也是首个针对中文金融领域优化的千亿级开源对话大模型。在 BLOOM176B 的基础上针对中文通用领域和金融领域进行了针对性的预训练与微调,不仅可以应对通用领域的问题,也可以解答金融相关的各类问题,为用户提供准确、全面的金融信息和建议。
2024-10-18
利用gpt-4模型的AI工具有哪些
以下是一些利用 GPT4 模型的 AI 工具: 1. Kickresume 的 AI 简历写作器:使用 GPT4 语言模型自动生成简历,能为简历摘要、工作经验和教育等专业部分编写内容,并保持一致语调。 2. Rezi:受到超过 200 万用户信任的领先 AI 简历构建平台,使用先进的 AI 技术自动化创建可雇佣简历的各个方面,包括写作、编辑、格式化和优化。 3. Huntr 的 AI 简历构建器:提供免费的简历模板,以及 AI 生成的总结/技能/成就生成器和 AI 驱动的简历工作匹配。 更多 AI 简历产品,还可以查看这里:https://www.waytoagi.com/category/79 。您可以根据自己的需要选择最适合的工具。 此外,在生成式人工智能领域,GPT4 有以下突破点: 1. 赋予模型使用工具的能力,如 OpenAI 推出的 ChatGPT 插件测试版,允许与多种工具交互。 2. 在计划和解决问题方面具有一定能力,能通过玩游戏或模拟环境快速学习和从经验中学习。 3. 在许多任务上达到人类水平的表现,对人类的理解有所提升。 4. 但也存在一些限制,如架构中的自回归特性导致缺乏规划能力等。
2024-11-12
SD大模型无法加载
SD 大模型无法加载可能有以下原因及解决方法: 1. LORA 方面: LORA 可以提炼图片特征,文件通常有几十上百兆,承载信息量远大于 Embedding。下载的 LORA 放在根目录的【……\\models\\Lora】文件夹下,使用时点击红色小书,找到 LORA 选项卡加载。 使用 LORA 时要注意看作者使用的大模型,一般需配套使用,还可能需要加入特定触发词,如盲盒 LORA 需加入“full body, chibi”等提示词。 2. Hypernetworks 方面: Hypernetworks 主要针对画风训练,文件下载后放在根目录的【…\\models\\hypernetworks】,使用时点击红色小书,找到 Hypernetworks 选项卡加载。 3. 模型下载与安装方面: 常用的模型下载网站有:。 下载模型后需放置在指定目录,大模型(Ckpt)放入【models\\Stablediffusion】,VAE 模型放入【models\\Stablediffusion】或【models\\VAE】目录(有的大模型自带 VAE 则无需再加),Lora/LoHA/LoCon 模型放入【extensions\\sdwebuiadditionalnetworks\\models\\lora】或【models/Lora】目录,Embedding 模型放入【embeddings】目录。模型类型可通过检测。 不会科学上网时,可在启动器界面直接下载模型,将下载的大模型放在根目录的【……\\models\\Stablediffusion】,在左上角模型列表中选择(看不到就点旁边蓝色按钮刷新)。 旁边的 VAE 相当于给模型增加提高饱和度的滤镜和局部细节微调,可在启动器里下载,放在根目录的【……\\models\\VAE】。 Embedding 功能相当于提示词打包,下载 Embedding 可在 C 站通过右上角筛选 Textual Inversion 找到,放在根目录下的【embeddings】文件夹里。 由于无法确定您大模型无法加载的具体原因,您可以根据上述内容逐一排查。
2024-11-12
有什么特别好的AI识别图片的大模型API
以下是一些关于 AI 识别图片的大模型 API 相关的信息: 学习笔记《【这就是 ChatGPT】了解原理让大语言模型 AI 成为你的打工人》中提到,对于识别印刷体图片,会先将图片变成黑白、调整大小为固定尺寸,然后与数据库中的内容进行对比得出结论。但这种基于规则的方法存在多种局限,而神经网络专门处理未知规则的情况,在图片识别中具有优势。 搭建 OneAPI 可以汇聚整合多种大模型接口,方便后续更换使用各种大模型。 0 基础手搓的“AI 拍立得”概念旨在简化操作流程,提升效率。用户可以选择拍摄场景类型并立即拍照,AI 会自动识别和分析照片中的内容信息,依据预设场景规则迅速生成符合情境的反馈。其实现场景包括图片转成文本和图片转绘图片等。例如,图片转成文本时,大模型会根据选择的场景生成与内容相关的文字描述或解说文本。
2024-11-11
多轮对话训练中你如何训练模型掌握情感需求
在多轮对话训练中,让模型掌握情感需求可以通过以下几种方式: 1. 利用相关数据集进行训练,例如: Guanaco:地址为,是一个使用 SelfInstruct 的主要包含中日英德的多语言指令微调数据集。 chatgptcorpus:地址为,开源了由 ChatGPT3.5 生成的 300 万自问自答数据,包括多个领域,可用于训练大模型。 SmileConv:地址为,数据集通过 ChatGPT 改写真实的心理互助 QA 为多轮的心理健康支持多轮对话,含有 56k 个多轮对话,其对话主题、词汇和篇章语义更加丰富多样,更符合长程多轮对话的应用场景。 2. 在创建提示时采用结构化模式,为模型提供一些情感需求的示例,如: |输入|输出| ||| |一部制作精良且有趣的电影|积极的| |10 分钟后我睡着了|消极的| |电影还行|中性的| 然后单击页面右侧的提交按钮。该模型现在可为输入文本提供情绪。还可以保存新设计的提示。 3. 在多轮次对话中,定期总结关键信息,重申对话的目标和指令,有助于模型刷新记忆,确保准确把握对话的进展和要点。 4. 进行意图识别和分类,特别关注在单一模型或情境中处理多个小逻辑分支的情况。例如在客户服务场景中,快速确定用户提出咨询、投诉、建议等多种类型请求的意图,并分类到相应处理流程中。
2024-11-11
在车载语音多轮对话训练中你如何训练模型掌握情感需求
目前知识库中暂时没有关于在车载语音多轮对话训练中如何训练模型掌握情感需求的相关内容。但一般来说,要训练模型掌握情感需求,可以从以下几个方面考虑: 1. 数据收集:收集包含丰富情感表达的车载语音对话数据,包括不同情感状态下的语音样本和对应的文本描述。 2. 特征提取:从语音和文本数据中提取能够反映情感的特征,如语音的语调、语速、音量,文本中的词汇、句式、语义等。 3. 模型选择:选择适合处理情感分析任务的模型架构,如基于深度学习的循环神经网络(RNN)、长短时记忆网络(LSTM)或门控循环单元(GRU)等。 4. 情感标注:对收集的数据进行准确的情感标注,以便模型学习不同情感的模式。 5. 多模态融合:结合语音和文本等多模态信息,提高情感识别的准确性。 6. 优化算法:采用合适的优化算法来训练模型,调整模型的参数,以提高模型的性能。 7. 模型评估:使用合适的评估指标来评估模型在情感需求掌握方面的性能,并根据评估结果进行调整和改进。
2024-11-11
你是基于哪个大模型搭建的
我是基于谷歌开源可商用的大语言模型 Gemma 搭建的。 Gemma 是一系列轻量级的最先进开源模型,由 Google DeepMind 和 Google 的其他团队开发,其灵感来自于 Gemini,名称反映了拉丁语中“宝石”的意思。此次开源的 Gemma 重点包括共两个尺寸的模型权重:Gemma 2B 和 Gemma 7B,每种尺寸都提供了预训练和指令调优的版本。模型地址为: 。 在基于大模型构建模型应用方面,需要注意以下要点: 1. 不做工程化终究会让模型应用变得无法维护。 2. 根据项目需求选择一个合适的开发框架是非常关键的。 3. 了解业务背后的深层次需求,确保模型能够解决实际问题。根据了解到的业务需求设定流程环节。 4. 在每个环节中,精心设计提示词以引导模型提供准确和有用的回复。 5. 确保应用在提供服务的同时,遵守安全和伦理标准。 6. 通过不断的测试和迭代,优化模型性能和用户体验。 7. 成功部署应用后,还需要持续的维护和更新以适应不断变化的需求。 此外,Embedding(嵌入)是一个浮点数的向量(列表),两个向量之间的距离度量它们的相关性,小的距离表示高相关性,大的距离表示低相关性。Embedding 共有词、句子、文档、图像等分类。在大模型中具有重要价值,实战中可从数据集中获取 Embedding 结果,并保存为 csv 文件。进阶到企业级应用开发的大模型技术还会涉及到利用开源的 Embedding 模型、向量数据库去做检索增强生成(RAG),以及购买 GPU 服务器去基于开源大模型搭建企业级大模型项目。OpenAI 官网文档链接:https://platform.openai.com/docs/introduction
2024-11-09
现有能分析EXCEL数据的AI
目前能够分析 Excel 数据的 AI 工具和插件主要有以下几种: 1. Excel Labs:这是一个 Excel 插件,新增了基于 OpenAI 技术的生成式 AI 功能,可在 Excel 中直接利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了多种办公软件,用户通过聊天形式告知需求,Copilot 会自动完成如数据分析、格式创建等任务。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 随着技术的不断发展,未来可能会有更多 AI 功能被集成到 Excel 中,进一步提高工作效率和数据处理的智能化水平。 此外,ChatGPT 也可以助力数据分析,其流程为:SQL 分析时,用户描述想分析的内容,后台连接数据库,附带表结构信息让 AI 输出 SQL 语句,校验为 SELECT 类型后执行并将结果数据传给 GPT 进行学习和分析,最后输出分析结论和建议,与结果数据一起返回前端页面渲染图表、展示分析结论;个性化分析时,用户上传文件并描述辅助信息,前端解析后传给 GPT 分析数据,后续步骤与 SQL 分析一致。
2024-11-11
分析90万行数据,用什么AI
以下是一些可用于分析 90 万行数据的 AI 工具和方法: 1. Excel 相关的 AI 工具和插件: Excel Labs:是一个 Excel 插件,新增了基于 OpenAI 技术的生成式 AI 功能,可用于数据分析和决策支持。 Microsoft 365 Copilot:整合了多种办公软件,能通过聊天形式完成用户提出的数据分析等任务。 Formula Bot:提供数据分析聊天机器人和公式生成器功能,支持自然语言交互进行数据分析和生成 Excel 公式。 Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,能进行公式生成、文本生成、情感分析、语言翻译等任务。 2. ChatGPT 也可助力数据分析,例如通过 SQL 分析平台自身使用情况,或进行个性化分析,分析完成后可展示结果数据的图表和分析结论,图表支持折线图和柱状图切换。 需要注意的是,随着技术发展,未来可能会有更多更适合的 AI 功能和工具出现。同时,在使用这些工具时,要确保数据的安全性和合规性。
2024-11-10
什么工具能进行AI数据表格处理
以下是一些能够进行 AI 数据表格处理的工具: 1. Excel Labs:这是一个 Excel 插件,新增了基于 OpenAI 技术的生成式 AI 功能,可在 Excel 中直接利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了多种办公软件,用户通过聊天形式告知需求,Copilot 自动完成任务,包括 Excel 中的数据分析和格式创建等。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 此外,以下是一些 AI 相关的产品数据表格排行: |AI 产品数据表格_排行|AI 产品数据表格_产品名|AI 产品数据表格_分类|AI 产品数据表格_4 月访问量(万 Visit)|相对 3 月变化| |||||| |1||表格|175|0.036| |2|Highcharts|表格|127|0.257| |3|Numerous.ai|表格|73.4|0.911| |4|Coefficient|表格|69|0.213| |5|GPTExcel|表格|37|1.139| |6|Rows AI|表格|34|0.115| |7|SheetGod|表格|26|0.016| |8|AI Excel Bot|表格|25.3|0.103| |9|OpenAI in Spreadsheet|表格|17|0.091| |10|GPT Workspace|表格|17|0.189|
2024-11-10
表格数据分析
以下是关于表格数据分析的相关内容: ChatGPT 助力数据分析: 第一个用户提示:限定 SELECT SQL,要求不要用 SELECT 查询全部列,仅回复一条 SELECT SQL 语句,至少查询两列(数据项、数据值),不能直接查询长类型字段,可用 count/substring 等函数处理。 系统提示是表结构信息,对难以理解的字段可告知 GPT 其意义,若有多个表可分开描述。 需校验 GPT 生成的 SQL,不通过直接返回提示“抱歉,不支持此类请求”,通过再执行 SQL 查询数据。 数据分析的用户提示:提示数据分析,限定返回的 JSON 格式(conclusion、keyMap、title),keyMap 用于数据 key 的映射以渲染图表,根据结果数据的维度选择不同的 prompt 传递给 GPT,且结果数据 tableData 已通过 SQL 查询,不能让 GPT 再次生成,以免耗时。 生成式 AI 季度数据报告 2024 月 1 3 月: 数据来源:Similarweb、Visit,单位:万,变化公式:3 月/2 月 1 100%。 包括数据分析(446 万)、天花板潜力(1000 亿美元)、对标公司(oracle)、总体趋势(快速增长,88.19%)、月平均增速(70 万 PV/月)、原生产品占比(高)、竞争情况(Top1、Top3 占比,马太效应、网络效应强弱,大厂是否入局及占比,技术门槛)、Top1 公司(非大厂)的相关信息等。 还提供了 23 年 12 月至 24 年 3 月月访问量排行榜及变化情况、赛道月访问总量及构成、23 年 4 月访问量 Top10 等数据。 58 数据分析 161 万: 包含名称、二级分类、三级分类、网址、2 月至 11 月的数据及 11/5 月的变化计算等信息,如帆软数据、RATH、rows.com、亚信科技数智产品、神策数据等。
2024-11-10
AI做数据分析的能力怎么样
AI 在数据分析方面具有一定的能力和优势: ChatGPT 助力数据分析:通过实际案例与相关技巧,实现了两种方式支持多维数据分析,包括 SQL 分析和个性化分析。分析完成后可展示结果数据的图表和分析结论,图表支持折线图和柱状图的随意切换。 提升认知能力:大脑需要不断学习和训练,认清“思维陷阱”,如确认偏误、锚定效应等,锻炼逻辑思维,掌握数据分析能力,避免被误导。 对于 AI PM 来说:掌握算法知识具有必要性,包括理解产品核心技术、与技术团队有效沟通、评估技术可行性、把握产品发展方向、提升产品竞争力以及提升数据分析能力。 总之,AI 在数据分析领域有其独特的价值和应用场景,但也需要结合人类的专业知识和判断来确保分析结果的准确性和可靠性。
2024-11-06