直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

大模型微调数据标注

回答

大模型微调数据标注是指在已有的大型语言模型基础上,通过对特定领域或任务的数据进行标注和微调,以提高模型在该领域或任务上的性能和准确性。以下是关于大模型微调数据标注的一些内容:

  1. 数据源对模型跨领域知识能力的影响:通过对不同数据源的数据集进行微调,可以分析数据源对模型跨领域知识能力的影响。研究表明,模型在头脑风暴、生成和总结等生成任务中表现出色,但在数学和编码方面表现不佳。
  2. 数据格式化:在微调模型时,需要对数据进行格式化,包括输入和输出的格式。输入通常以固定分隔符结尾,以通知模型提示的结束和完成的开始。输出应以空格开头,并以固定的停止序列结束,以通知模型完成的结束。
  3. 指令微调:在此阶段,模型被训练以理解并执行具体指令,如翻译文本,从而能够回答问题。这一阶段涉及的数据输入量相对于无监督学习阶段有所减少。
  4. 对齐过程:通过引入人类的评价标准(奖励函数)和处理特定的格式要求,进一步优化模型的输出以符合人类的期望。这包括处理文化、道德等方面的细节,以确保模型的输出更加贴近人类的价值观。
  5. 排序:为了提高模型的性能和准确性,需要对标注数据进行排序和筛选,以确保数据的质量和代表性。

总的来说,大模型微调数据标注是一个复杂的过程,需要对数据进行格式化、清洗、对齐、排序和筛选等处理,以提高模型的性能和准确性。同时,需要注意数据源对模型跨领域知识能力的影响,以及引入人类的评价标准和处理特定的格式要求,以确保模型的输出更加贴近人类的期望。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

弱智吧:大模型变聪明,有我一份贡献

该研究在不同数据源的数据集上对Yi系列模型(Young et al.,2024)和Qwen-72B(Bai et al.,2023)模型进行了微调,以分析数据源对模型跨领域知识能力的影响,并使用Belle-Eval上基于模型(即GPT-4)的自动评估来评估每个模型在各种任务上的性能。表2、表3分别显示了基于Yi-6B、Yi-34B在不同数据集上进行微调得到的不同模型的性能。模型在头脑风暴、生成和总结等生成任务中表现出色,在数学和编码方面表现不佳。下图4显示了CQIA和其他5个基线(即Yi-6B-Chat、Baichuan2-7B-Chat、ChatGLM2-6B、Qwen-7B-Chat和InternLM-7B-Chat)的逐对比较人类评估结果。结果表明,与强基线相比,CQIA-Subset实现了更高的人类偏好,至少超过60%的响应优于或与基线模型相当。这不仅归因于CQIA能够对人类问题或指令生成高质量的响应,还归因于其响应更符合现实世界的人类沟通模式,从而导致更高的人类偏好。该研究还在SafetyBench上评估了模型的安全性,结果如下表4所示:在COIG Subset数据上训练的模型性能如下表5所示:

微调(Fine-tuning)

要微调模型,您需要一组训练示例,每个训练示例都包含一个输入(“提示”)及其关联的输出(“完成”)。这与使用我们的基本模型明显不同,在基本模型中,您可能会在单个提示中输入详细说明或多个示例。每个提示都应以固定分隔符结尾,以在提示结束和完成开始时通知模型。通常效果很好的简单分隔符是nn###nn.分隔符不应出现在任何提示中的其他地方。由于我们的token化,每个完成都应该以空格开头,它用前面的空格token大多数单词。每次完成都应以固定的停止序列结束,以在完成结束时通知模型。停止序列可以是n、###或任何其他未出现在任何完成中的token。对于推理,您应该按照与创建训练数据集时相同的方式格式化提示,包括相同的分隔符。还指定相同的停止序列以正确截断完成。

学习笔记:【这就是 ChatGPT】了解原理让大语言模型 AI 成为你的打工人

大语言模型训练过程涉及几个关键步骤:无监督学习:这一阶段模型通过分析大量文本数据,学习到语言的基本结构和常识,具备文本补齐能力而非直接回答问题。模型将人类的知识通过向量化的方法转换,从而获得基础的语言模型。清洗出好的数据指令微调:在此阶段,模型被训练以理解并执行具体指令,如翻译文本,从而能够回答问题。这一阶段涉及的数据输入量相对于无监督学习阶段有所减少。输入内容包括3个部分,中间可能有分隔符* Instruct:请你翻译下面这段话* Input:一段英文* Output:一段中文对齐过程:通过引入人类的评价标准(奖励函数)和处理特定的格式要求,进一步优化模型的输出以符合人类的期望。这包括处理文化、道德等方面的细节,以确保模型的输出更加贴近人类的价值观。排序相信在这个过程中,OpenAI很有可能自己构建了一套强大的标注组织体系,高效,又能对抗标注人员能力强依赖。说起来人工标注符合scaling law。

其他人在问
推荐分析PDF文档 提炼标注关键词的AI
以下是一些可以分析 PDF 文档、提炼标注关键词的 AI 产品或方法: 1. DeepL(网站):点击页面“翻译文件”按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件):安装插件后,点击插件底部“更多”按钮,选择“制作双语 BPUB 电子书”、“翻译本地 PDF 文件”、“翻译 THML / TXT 文件”、“翻译本地字幕文件”。 3. Calibre(电子书管理应用):下载并安装 calibre,并安装翻译插件“Ebook Translator”。 4. 谷歌翻译(网页):使用工具把 PDF 转成 Word,再点击谷歌翻译“Document”按钮,上传 Word 文档。 5. 百度翻译(网页):点击导航栏“文件翻译”,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 6. 彩云小译(App):下载后点击“文档翻译”,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方“切换成电子书”,轻触屏幕唤出翻译按钮。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-09-14
数据标注与Ai的大模型是怎样的环节
在 AI 领域中,数据标注与大模型有着密切的关系。 对于大模型而言: 1. 数据清洗:在训练前对数据预处理,移除或修正有偏见、歧视等不道德内容的数据。 2. 算法设计:减少偏见和不公平性,平衡数据集中不同群体的代表性。 3. 道德和伦理准则:制定明确准则指导开发和使用。 4. 透明度:对模型能力和局限性保持透明,告知用户可能的偏差和不确定性。 5. 用户反馈:允许用户反馈以识别和纠正不道德行为。 6. 持续监控:监控模型表现,确保输出符合道德和伦理标准。 7. 人工干预:在可能涉及道德伦理问题时引入人工审核和干预。 8. 教育和培训:对使用人员进行道德伦理方面的教育和培训。 在数据标注方面: 1. 数据清洗工作占据 AIGC 时代模型训练 70%80%的时间,必不可少,因为数据质量决定机器学习的上限。 2. 需筛除分辨率低、质量差、存在破损及与任务目标无关的数据,去除可能包含的水印、干扰文字等。 3. 数据标注分为自动标注和手动标注,自动标注主要依赖像 BLIP 和 Waifu Diffusion 1.4 这样的模型,手动标注依赖标注人员。例如使用 BLIP 可对数据进行自动标注 caption。 然而,在中国的 AI 创业生态中,存在一些问题: 1. 高质量的数据处理服务稀缺。 2. 数据获取门槛低,但高质量数据获取困难,中文互联网数据质量相对较低。 总之,确保 AI 大模型的道德和伦理性以及获取高质量的数据标注是复杂且持续的挑战。
2024-09-12
数据标注会涉及哪些方面?以及现在哪些类型、行业的数据更需要标注?
数据标注涉及以下方面: 1. 从量到质的转变:早期大模型训练侧重依靠大量算力和大规模数据集提升性能,如今数据质量成为提高模型性能的关键瓶颈,更需注重提高数据质量和相关性。 2. 向知识密集型转变:多模态模型需处理多种类型数据,如文本、图像、声音等,这使数据标注过程更细致复杂,需要更高水平的理解和分析能力,不再是简单的劳动力作业。 3. 对标注方式的理解:大模型的数据标注不仅关注清晰的行业术语,还需要能被模型理解的标注方式,可能涉及更多上下文的理解和语义分析。 4. 对业务的理解:目前数据服务依赖于标注员对业务的理解,通用型数据需求减少,更多是公司内部独有的数据内容和词语,能承接大模型数据标注的服务商不多。 现在更需要标注的数据类型和行业包括: 1. 多模态模型相关的数据,如同时包含文本、图像、声音等多种类型的数据。 2. 公司内部独有的、与特定业务相关的数据。 在数据标注过程中,还需注意数据隐私与安全问题,如数据加密与计算效率的权衡等。
2024-09-12
数据标注主要有什么用
数据标注主要有以下作用: 在 AIGC 时代的模型训练中,数据标注是必不可少的环节。数据质量决定了机器学习的上限,而标注工作能筛除分辨率低、质量差、存在破损以及与任务目标无关的数据,去除可能包含的水印、干扰文字等,从而提高数据质量。 有助于提高训练数据的真实性、准确性、客观性和多样性。 在生成式人工智能技术研发过程中,数据标注的提供者应当制定清晰、具体、可操作的标注规则,开展质量评估,抽样核验标注内容的准确性,对标注人员进行必要培训,监督指导标注人员规范开展标注工作。 数据标注分为自动标注和手动标注。自动标注主要依赖像 BLIP 和 Waifu Diffusion 1.4 这样的模型,手动标注则依赖标注人员。例如使用 BLIP 可自动标注 caption。
2024-09-12
在导入前,先对知识库文档内容进行标注处理,要怎么处理
在导入前对知识库文档内容进行标注处理,主要有以下要点: 为提升召回准确性,一方面在导入前,先对知识库文档内容进行标注处理,另一方面对于切割后的 chunk 进行标注,如标注 chunk 来源哪个文档的哪个段落。 对于本地 word 文件,每个章节都要按照固定的方式进行人工标注和处理,然后选择创建知识库自定义清洗数据。
2024-08-19
你觉得大模型标注的痛点是什么?
大模型在标注数据方面存在以下几个主要痛点: 1. 缺乏高质量的训练数据 相比英文数据,中文开源高质量数据较少,特别是通用领域的百科、问答、学术等数据 专业数据服务行业还处于起步阶段,可用于训练的经过加工、清洗、标注的高质量数据集较为匮乏 2. 数据标注人才短缺 能够进行专业数据标注的人才并不多,这成为制约大模型训练的瓶颈之一 企业需要与高校、研究机构等合作,共同解决数据标注人才的缺乏问题 3. 数据隐私和安全问题 由于训练数据的敏感性,企业往往只愿意将大模型的训练数据保留在本地,这与需要借助云端算力的矛盾 需要在数据隐私保护和算力需求之间寻求平衡 总的来说,高质量训练数据的获取、专业数据标注人才的培养,以及数据隐私安全的平衡,都是当前大模型在标注数据方面面临的主要挑战。这些问题需要产学研各方通力合作,共同解决。
2024-04-19
AI 增量训练和模型微调的区别
AI 增量训练和模型微调存在以下区别: 目的:增量训练通常是为了持续更新模型以适应新的数据和任务,而模型微调主要是为了使模型在特定的小领域数据集上针对特定任务达到更好的性能。 范围:增量训练可能涉及对模型的较大范围的更新,而微调往往集中在较小范围的参数调整。 方式:增量训练可能会对全量的模型参数进行训练,而微调存在全量微调(FFT)和参数高效微调(PEFT)两种技术路线,PEFT 只对部分模型参数进行训练,且目前在业界较为流行。 成本和效果:从成本和效果综合考虑,PEFT 是较好的微调方案。微调可以大幅提高模型在特定任务中的性能,但可能会使模型失去一些通用性。 数据使用:增量训练可能需要更多新的数据,而微调是在较小的、特定领域的数据集上进行。 如需了解更多关于微调的内容,可参考 OpenAI 官方微调教程:https://github.com/openai/openaicookbook/blob/main/examples/How_to_finetune_chat_models.ipynb
2024-09-13
模型微调都有哪些方式?
模型微调主要有以下方式: 1. 使用微调模型:当作业成功时,`fine_tuned_model`字段将填充模型名称。您现在可以将此模型指定为我们的`Completions API`的参数,并使用`Playground`向它发出请求。在您的工作首次完成后,您的模型可能需要几分钟时间才能准备好处理请求。如果对您的模型的完成请求超时,可能是因为您的模型仍在加载中。如果发生这种情况,请在几分钟后重试。您可以通过将模型名称作为`model`完成请求的参数传递来开始发出请求,包括`OpenAI`命令行界面、`cURL`、`Python`、`Node.js`等方式。您还可以继续使用所有其他完成参数,如`temperature`、`frequency_penalty`、`presence_penalty`等对这些请求进行微调模型。 2. 介绍:微调可让您从`API`提供的模型中获得更多收益,比如比即时设计更高质量的结果、能够训练比提示中更多的例子、由于更短的提示而节省了`Token`、更低的延迟请求。`GPT3`已经在来自开放互联网的大量文本上进行了预训练。当给出仅包含几个示例的提示时,它通常可以凭直觉判断出您要执行的任务并生成合理的完成,这通常称为“小样本学习”。微调通过训练比提示中更多的示例来改进小样本学习,让您在大量任务中取得更好的结果。对模型进行微调后,您将不再需要在提示中提供示例,这样可以节省成本并实现更低延迟的请求。在高层次上,微调涉及以下步骤:准备和上传训练数据、训练新的微调模型、使用您的微调模型。 3. 通义千问团队的微调方式:大规模预训练后,通义千问团队对模型进行精细的微调,以提升其智能水平,让其表现更接近人类。这个过程进一步提升了代码、数学、推理、指令遵循、多语言理解等能力。此外,模型学会对齐人类价值观,它也随之变得更加对人类有帮助、诚实以及安全。通义千问团队的微调过程遵循的原则是使训练尽可能规模化的同时并且尽可能减少人工标注。团队探索了如何采用多种自动方法以获取高质量、可靠、有创造力的指令和偏好数据,其中包括针对数学的的方法减少对齐税。不久后,通义千问团队将推出`Qwen2`的技术报告。
2024-09-11
在条件生成场景,怎么做微调比较好
在条件生成场景中,进行微调可以参考以下指南: 1. 在提示末尾使用分隔符,例如\n\n\n\n。当最终向模型发出请求时,也要附加此分隔符。 2. 在完成结束时使用结束 token,例如 END。在推理过程中将结束 token 添加为停止序列,例如 stop=。 3. 目标是至少约 500 个示例。 4. 确保提示+完成不超过 2048 个 token,包括分隔符。 5. 确保示例具有高质量并遵循相同的所需格式。 6. 确保用于微调的数据集在结构和任务类型上与模型将用于的数据集非常相似。 7. 使用较低的学习率和仅 1 2 个时期往往更适合这些用例。 此外,还有以下案例研究: 1. 基于技术属性列表的产品描述:将输入数据转换为自然语言很重要,这可能会带来卓越的性能。为了获得高性能,请确保完成是基于所提供的描述。如果经常查阅外部内容,则以自动方式添加此类内容将提高性能。如果描述基于图像,则使用算法提取图像的文本描述可能会有所帮助。由于完成只有一个句子长,可以在推理过程中用作停止序列。 2. 实体提取:这类似于语言转换任务。为了提高性能,最好按字母顺序或按照它们在原始文本中出现的相同顺序对不同的提取实体进行排序。这将有助于模型跟踪需要按顺序生成的所有实体。数据集可能如下所示,例如:多行分隔符效果最好,因为文本可能包含多行。理想情况下,输入提示的类型会高度多样化(新闻文章、维基百科页面、推文、法律文件),这反映了提取实体时可能遇到的文本。
2024-09-06
有没有关于微调的最佳实践
以下是关于微调的最佳实践: 一般最佳实践:使用更多高质量的示例进行微调效果更好。要微调一个比使用基本模型使用高质量提示更好地执行的模型,应提供至少几百个高质量的示例,最好由人类专家审查。从那里开始,性能往往会随着示例数量的每增加一倍而线性增加。增加示例的数量通常是提高性能的最佳和最可靠的方法。分类器是最容易上手的模型。对于分类问题,建议使用 ada,经过微调后,它通常只会比功能更强大的模型稍微差一点,同时速度更快,成本更低。 准备数据集:微调是一种强大的技术,可用于创建特定于您的用例的新模型。在微调您的模型之前,强烈建议阅读以下针对您的用例的最佳实践和具体指南。 具体指南:微调可以解决多种问题,最佳使用方式可能取决于您的具体用例。常见的微调用例和相应的指南包括: 如果您要对预先存在的数据集进行微调,而不是从头开始编写提示,请务必在可能的情况下手动检查您的数据是否存在令人反感或不准确的内容,或者如果数据集很大,请检查尽可能多的随机样本。
2024-09-06
如何部署并微调BERT模型
部署并微调 BERT 模型的步骤如下: 1. 选择合适的部署方式: 本地环境部署。 云计算平台部署。 分布式部署。 模型压缩和量化。 公共云服务商部署。根据自身的资源、安全和性能需求选择合适的部署方式。 2. 准备训练所需的数据和计算资源: 确保有足够的训练数据覆盖目标应用场景。 准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础: 可以使用开源的预训练模型如 BERT 等作为基础。 4. 针对目标任务进行模型微调训练: 根据具体应用场景对预训练模型进行微调训练。 优化模型结构和训练过程以提高性能。 5. 部署和调试模型: 将训练好的模型部署到生产环境。 对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护:大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 总的来说,部署和微调 BERT 模型需要综合考虑多方面因素,包括部署方式、数据准备、模型训练、部署调试以及安全性等。需要根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。
2024-09-03
怎么对大模型进行微调
大模型的微调可以从以下几个方面来理解和操作: 一、大模型的基本概念 通俗来讲,大模型就是输入大量语料,来让计算机获得类似人类的“思考”能力,使之能够理解自然语言,能够进行“文本生成”、“推理问答”、“对话”、“文档摘要”等工作。 可以用“上学参加工作”这件事来类比大模型的训练、使用过程: 1. 找学校:训练大模型需要大量的计算,因此 GPU 更合适,只有购买得起大量 GPU 的才有资本训练自己的大模型。 2. 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用合适的算法讲述“书本”中的内容,让大模型能够更好理解 Token 之间的关系。 4. 就业指导:学完书本中的知识后,为了让大模型能够更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,下面就要正式干活了,比如进行一次翻译、问答等。 二、微调的技术路线 从参数规模的角度,大模型的微调分成两条技术路线: 1. 全量微调 FFT(Full Fine Tuning):对全量的模型参数,进行全量的训练。 2. PEFT(ParameterEfficient Fine Tuning):只对部分模型参数进行训练。 从成本和效果的角度综合考虑,PEFT 是目前业界比较流行的微调方案。 OpenAI 官方微调教程: 微调是在较小的、特定领域的数据集上继续大模型的训练过程。这可以通过调整模型本身的参数,而不是像提示工程和 RAG 那样仅仅更改提示,来大幅提高模型在特定任务中的性能。把微调想象成把通用工具打磨成精密仪器。 三、微调的好处和操作方式 微调有两大好处: 1. 提高模型在特定任务中的性能。微调意味着可以输入更多的示例。可以在数以百万计的代币上进行微调,而根据上下文的大小,少量学习提示仅限于数以万计的代币。经过微调的模型可能会失去一些通用性,但对于其特定任务而言,应该期待它有更好的表现。 解决不当行为的方法是通过某种对话,助手给出了错误的响应。接受这个错误响应,并要求某人提供正确的答案。然后,用正确的答案覆盖错误的响应,并将其作为示例加入到训练数据中。下次进行微调时,模型就会在这种情况下得到改进。这是一个迭代过程,由于微调的成本较低,可以每周或每天进行这样的操作。通常,公司会在微调阶段而不是预训练阶段更频繁地进行迭代。
2024-08-30
国内外好用的图生视频模型
以下是一些国内外好用的图生视频模型: 可灵(国内,免费) 网址:https://klingai.kuaishou.com/ 支持文生视频、图生视频。 支持图生视频首尾帧功能。 提示词可使用中文。 文生视频支持正向提示词、反向提示词、运镜控制、时长选择(5s、10s),支持 16:9、9:16、1:1 尺寸。 图生视频除了不可运镜控制以外,其他跟文生视频基本相同。 默认生成 5s 的视频。 ETNA(国内) 网址:https://etna.7volcanoes.com/ 由七火山科技开发的文生视频 AI 模型。 可以根据用户简短的文本描述生成相应的视频内容。 生成的视频长度在 8 15 秒,画质可达到 4K,最高 38402160,画面细腻逼真,帧率 60fps。 文生视频,支持中文,时空理解。 关于可灵的文生视频效果,测试者 Austin 周安鑫进行了以下测试: 1. 场景识别:包括室内和室外,如客厅的沙发、液晶电视、漂亮的波斯猫、超现实主义的蜿蜒河流、茂密森林、灿烂花海、碧绿草坪等。 2. 物体识别:涵盖静态和动态物体,如水晶球、跳动的火焰、翱翔的飞鸟、闪烁的流星、飞溅的水珠等。 3. 人物识别:包括面部和姿态,如一个人笑容灿烂、一个人惊恐愤怒,一位芭蕾舞女孩在冰面上跳舞等。 4. 动作识别:包含基本和复杂动作,如短跑运动员快速奔跑、赛车手驾驶跑车激烈漂移等。 5. 事件检测:有简单和复杂事件,如一位帅哥在喝水、外星文明和地球进行星际大战等。 6. 环境变化:涉及光线和天气,如奇幻的极光舞动变幻、城市写字楼灯光忽明忽暗、闪电交加、乌云密布、台风、大雨等。 7. 多对象场景:包括单一和多对象场景,如 1 个飞行员驾驶战斗机翱翔太空、海军指挥航母战斗群展开激烈战斗等。 8. 特殊场景:有遮挡和非标准场景,如城市大雾遮挡摩天大楼、一边是神秘海底世界,一边是梦幻糖果屋。 9. 细节检测:包含小物体和微表情,如崭新的苹果电脑屏幕上播放电影、瞳孔收缩、脸颊泛红、嘴唇微微颤抖。
2024-09-19
你自己使用的是什么模型
以下是关于模型的相关信息: 新的 gpt3.5turbo 模型针对会话进行了优化,原始的 GPT3.5 模型针对文本补全进行了优化。 用于创建嵌入和编辑文本的端点有自己的一组专用模型。 在 AI 输入框下方有一个下拉列表,允许选择要使用的模型。默认情况下,Cursor 已准备好使用的模型包括:GPT4o、GPT4、Claude 3.5 Sonnet、cursorsmall。其中,cursorsmall 是 Cursor 的自定义模型,不如 GPT4 智能,但速度更快,用户可无限制访问。您可以在 Cursor Settings > Models > Model Names 下添加其他模型。 谷歌一直在测试自己的人工智能 Bard,由各种基础模型驱动,最近是名为 PaLM 2 的模型。 Anthropic 发布了 Claude 2,其最值得注意的是有非常大的上下文窗口,与其他大型语言模型相比,不太可能恶意行事。
2024-09-19
推荐下好用的具备图像OCR能力的大模型
目前在具备图像 OCR 能力的大模型方面,一些较为知名和好用的包括百度的文心大模型、阿里云的通义大模型等。但大模型的性能和适用场景可能会因具体需求和使用场景的不同而有所差异。您可以根据自己的具体需求进一步评估和选择。
2024-09-19
AI 大模型命名 带有-instruct的含义
AI 大模型中带有“instruct”通常与指令微调相关。在大模型的训练过程中,指令微调是其中一个重要阶段。此阶段模型被训练以理解并执行具体指令,例如翻译文本等,从而能够回答问题。指令微调阶段输入的内容通常包括三个部分,如“Instruct:请你翻译下面这段话”“Input:一段英文”“Output:一段中文”。通过指令微调,模型能够更好地按照人类的期望和具体要求进行输出。
2024-09-19
你是基于哪个AI大模型的
我是 WaytoAGI 专属问答机器人,基于 Aily 和云雀大模型。 Aily 是飞书团队旗下的企业级 AI 应用开发平台,提供了简单、安全且高效的环境,帮助企业轻松构建和发布 AI 应用,推动业务创新和效率提升。 云雀是由字节跳动研发的语言模型,通过便捷的自然语言交互,能够高效地完成互动对话、信息获取、协助创作等任务。 此外,还有一些免费的大模型接口,如阿里的通义千问大模型接口,可创建 API key。智谱 AI(ChatGLM)、科大讯飞(SparkDesk)也有免费接口,但国内的大模型大多限制一定免费额度的 Token。 谷歌的 Gemini 大模型(gemini 1.5)、海外版 Coze 的 GPT4 模型是免费且能图片识别,但需要给服务器挂梯子。想使用的话,可参考张梦飞同学写的教程。 在深入了解 AI 运作原理和众多落地产品后,重新思考 AI 大模型引发的变革。此前曾有疑问,大模型与智能语音技能的 NLU 存在差异。语音技能 NLU 是通过一系列规则、分词策略等训练而成,运作逻辑规律可观测,具有 ifelse 式逻辑性。而大模型凭借海量数据在向量空间中学习知识的关联性形成,运作逻辑难以观测,脱离了 ifelse 的层面。
2024-09-19
如果我需要一名助手帮我运营跨境电商的线上店铺,我需要一些精准的关键词就可以训练模型吗?
训练模型来协助运营跨境电商线上店铺,仅依靠一些精准的关键词通常是不够的。模型的训练需要多方面的数据和信息,包括但不限于产品的详细描述、客户的评价和反馈、市场趋势、竞争对手的情况等。精准的关键词可以作为其中的一部分输入,但不足以全面有效地训练模型以达到理想的辅助运营效果。
2024-09-19
AI数据分析案例,工具,玩法,技巧推荐?
以下是为您推荐的 AI 数据分析相关内容: ChatGPT 助力数据分析: 实现方式:支持多维数据分析,包括 SQL 分析(分析平台自身使用情况)和个性化分析(上传数据自定义分析)。 结果展示:分析完成后展示结果数据的图表(折线图和柱状图可随意切换)和分析结论。 案例详情: 其他案例: 开发场景: 工作场景:
2024-09-19
有代码基础和数学基础,帮我制定一份AI的学习计划,主要方向是数据分析、计算机视觉和AIGC
以下是一份针对您有代码基础和数学基础,以数据分析、计算机视觉和 AIGC 为主要方向的 AI 学习计划: 一、基础知识学习 1. 深入学习 AI 相关的基本概念,包括但不限于: AI(人工智能):了解其定义、发展历程和应用领域。 机器学习:掌握监督学习、无监督学习和强化学习的原理和应用。 深度学习:理解神经网络和神经元的工作原理。 2. 学习相关数学知识,如线性代数、概率论、统计学等,为后续的学习打下坚实基础。 二、数据分析方向 1. 学习数据分析的基本流程和方法,包括数据收集、清洗、预处理和可视化。 2. 掌握常见的数据分析工具和库,如 Python 的 Pandas、NumPy、Matplotlib 等。 3. 学习数据挖掘和机器学习算法在数据分析中的应用,如分类、回归、聚类等。 三、计算机视觉方向 1. 学习计算机视觉的基本概念和原理,如图像处理、特征提取、目标检测等。 2. 掌握深度学习框架,如 TensorFlow、PyTorch 等,并学习使用它们进行计算机视觉任务的开发。 3. 实践常见的计算机视觉项目,如人脸识别、图像分类、目标跟踪等。 四、AIGC 方向 1. 了解 AIGC 的发展现状和应用场景。 2. 学习生成式模型,如生成对抗网络(GAN)、变分自编码器(VAE)等。 3. 实践 AIGC 相关的项目,如文本生成、图像生成等。 五、学习资源推荐 1. 在线课程:Coursera 上的《机器学习》《深度学习专项课程》等。 2. 书籍:《机器学习》(周志华)、《深度学习》(伊恩·古德费洛等)。 3. 开源项目:在 GitHub 上寻找相关的优秀开源项目进行学习和实践。 4. 视频资源: :某知识 up 主老石谈芯专访安克创新 CEO 阳萌的视频,一共两期,内容硬核,值得观看。 六、实践与项目经验积累 积极参与实际项目,将所学知识应用到实际中,不断提升自己的能力。 请注意,学习是一个持续的过程,需要不断地实践和总结,祝您学习顺利!
2024-09-18
waytoAGI是什么,现在你要给学校老师介绍,列出相关的数据
WaytoAGI 是由一群热爱 AI 的狂热爱好者、专家共同建设的开源 AI 知识库。它诞生于 2023 年 4 月 26 日,在没有任何推广的情况下,一年时间已有超过 70 万用户和超千万次的访问量。 其知识库内容丰富,覆盖 AI 绘画、AI 视频、AI 智能体等多个版块,不仅有最新的 AI 教程、工具和一线实战案例,还有开放共享的 AI 知识体系,倡导共学共创等形式,孵化了如 AI 春晚、离谱村等大型共创项目。 WaytoAGI 不仅是一个普通的 AI 技术社区,更是一个汇聚 AI 行业顶尖创作者和 KOL 的思想交流平台,社区制作的优质作品多次登上央视首页,广受好评。社群的口号是“让更多的人因 AI 而强大”,有很多学社和共学共建的活动。您打开“waytoagi.com”就可以找到社群。
2024-09-18
根据一句话文生视频给出关键词数据的工具
以下是一些根据一句话文生视频给出关键词数据的工具及相关信息: 在 SD 中,图生图功能除文本提词框外还有图片输入口,可通过图片反推提示词,如 CLIP 能反推出完整含义的句子,DeepBooru 能反推出关键词组,但生成的提示词可能存在瑕疵,需手动补充。 Morphstudio 中,文生视频的提示词指令为:/video。 文字生成视频的 AI 产品有:Pika 擅长动画制作且支持视频编辑;SVD 是 Stable Diffusion 的插件;Runway 是老牌收费工具,提供实时涂抹修改视频功能;Kaiber 能将原视频转换成各种风格;Sora 由 OpenAI 开发,可生成长达 1 分钟以上的视频。更多相关网站可查看。但请注意内容由 AI 大模型生成,请仔细甄别。
2024-09-16
数据集
数据集是用于让大模型重新学习新知识的重要元素。以下为您介绍一些相关的数据集及获取方式: 在 Llama3 部署和微调教程中,微调 Llama3 时需要使用数据集。其获取及简单原理可参考文档: LLM 开源中文大语言模型及数据集集合中的一些数据集: AlpacaCoT:地址:,统一了丰富的 IFT 数据、多种训练效率方法以及多种 LLM 层面上的接口,打造方便研究人员上手的 LLMIFT 研究平台。 pCLUE:地址:,基于提示的大规模预训练数据集,用于多任务学习和零样本学习。包括 120 万训练数据,73 个 Prompt,9 个任务。 fireflytrain1.1M:地址:,包含 23 个常见的中文数据集,对于每个任务,由人工书写若干种指令模板,保证数据的高质量与丰富度,数据量为 115 万。 BELLEdata1.5M:地址:,通过 selfinstruct 生成,使用了中文种子任务,以及 openai 的 textdavinci003 接口,涉及 175 个种子任务。 中文数据集中的命名实体识别相关数据集: NER: ,数据来源为 98 年人民日报,标注形式为 BIO,共有 23061 条语料。 ,标注形式为 BMEO,共有 2000 条语料。 ,CLUENER2020 数据集,是在清华大学开源的文本分类数据集 THUCTC 基础上,选出部分数据进行细粒度命名实体标注,原数据来源于 Sina News RSS。数据包含 10 个标签类别,训练集共有 10748 条语料,验证集共有 1343 条语料。
2024-09-15
蛟龙16pro配置(处理器R7-7745HX,显卡RTX4060 8G,硬盘512GPCIE4.0SSD)可以用于审计人员本地化部署大模型用于数据分析工作吗
蛟龙 16pro 的配置(处理器 R77745HX,显卡 RTX4060 8G,硬盘 512G PCIE4.0 SSD)对于审计人员本地化部署大模型用于数据分析工作来说,可能存在一定的局限性。 处理器 R77745HX 具有一定的计算能力,但在处理大规模数据和复杂的模型运算时,其性能可能不够强劲。 显卡 RTX4060 8G 对于一些较为复杂的图形处理和计算任务能够提供一定的支持,但对于大规模的深度学习模型训练和数据分析,可能会显得不足。 512G 的 PCIE4.0 SSD 硬盘容量相对较小,在存储大量数据时可能会很快耗尽空间。 综上所述,该配置在一定程度上可以用于简单的数据分析任务,但对于较为复杂和大规模的大模型本地化部署及数据分析工作,可能需要更强大的硬件配置,例如更高性能的处理器、更大容量和更高性能的显卡,以及更大的存储空间。
2024-09-14