Coze 是一个 AI 平台,它允许用户创建自己的 AI Bot。在 Coze 中,用户可以使用工作流来设计 Bot 的行为。工作流是由一系列大模型组件组成的,每个组件都可以执行特定的任务,例如解析用户输入、进行条件判断和生成回答等。
Coze 的工作流设计支持动态用户需求传入,这意味着用户可以通过自然语言来动态调用条件流程,而不是通过传统编程的固定条件匹配和调用。这种设计使得 Coze 的 Bot 更加灵活和智能,能够更好地满足用户的需求。
下面是一个 Coze 工作流的示例:
通过这种方式,Coze 的 Bot 可以根据用户的输入动态调整其行为,以提供更准确和有用的回答。
1.第二步是通过使用大模型的组件来解析用户输入的信息是否满足这个大模型的提示词条件,如下图,这里提一点的是,通过AI大模型组件的加持,我们可以实现我们传统编程实现不了的动态用户需求传入,意味着我们可以通过自然语言来动态调用我们的条件流程,而不是通过传统编程的固定条件匹配和调用。1.接下来是一个条件判断,其实就是通过上一步的大模型解析后的结果来选择条件执行:1.先来说不满足的情况,下一步又会调用一个大模型组件,其提示词其实是跟我们这个AI Bot的提示词是几乎一样的,因为目前Coze的工作流设计只能支持一个开始节点的输入和一个结束节点的输出,不能说不满足条件下就不附加结果变量来单独输出结果,所以这就是为什么我要在这里加多一个大模型组件的原因,如果不懂这个意思你看下一步的步骤就明白原因了:1.上一步的结果出来后,就直接到了我们的结束节点了,先给大家看看是什么样子的:这是具体的回答内容全内容:
1.第二步是通过使用大模型的组件来解析用户输入的信息是否满足这个大模型的提示词条件,如下图,这里提一点的是,通过AI大模型组件的加持,我们可以实现我们传统编程实现不了的动态用户需求传入,意味着我们可以通过自然语言来动态调用我们的条件流程,而不是通过传统编程的固定条件匹配和调用。1.接下来是一个条件判断,其实就是通过上一步的大模型解析后的结果来选择条件执行:1.先来说不满足的情况,下一步又会调用一个大模型组件,其提示词其实是跟我们这个AI Bot的提示词是几乎一样的,因为目前Coze的工作流设计只能支持一个开始节点的输入和一个结束节点的输出,不能说不满足条件下就不附加结果变量来单独输出结果,所以这就是为什么我要在这里加多一个大模型组件的原因,如果不懂这个意思你看下一步的步骤就明白原因了:1.上一步的结果出来后,就直接到了我们的结束节点了,先给大家看看是什么样子的:这是具体的回答内容全内容: