Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

是否可以理解为agent生成工作流的过程,是通过与agent进行自然语言实现的,而不用预设固定的规则和流程

Answer

Coze 是一个 AI 平台,它允许用户创建自己的 AI Bot。在 Coze 中,用户可以使用工作流来设计 Bot 的行为。工作流是由一系列大模型组件组成的,每个组件都可以执行特定的任务,例如解析用户输入、进行条件判断和生成回答等。

Coze 的工作流设计支持动态用户需求传入,这意味着用户可以通过自然语言来动态调用条件流程,而不是通过传统编程的固定条件匹配和调用。这种设计使得 Coze 的 Bot 更加灵活和智能,能够更好地满足用户的需求。

下面是一个 Coze 工作流的示例:

  1. 第一步是使用大模型组件解析用户输入的信息,以确定它是否满足提示词条件。
  2. 如果满足条件,则执行下一步。
  3. 如果不满足条件,则再次调用大模型组件,其提示词与 AI Bot 的提示词几乎相同。
  4. 最后,到达结束节点,生成回答。

通过这种方式,Coze 的 Bot 可以根据用户的输入动态调整其行为,以提供更准确和有用的回答。

Content generated by AI large model, please carefully verify (powered by aily)

References

Coze 全方位入门剖析 - 免费打造自己的 AI Agentn(国内版)

1.第二步是通过使用大模型的组件来解析用户输入的信息是否满足这个大模型的提示词条件,如下图,这里提一点的是,通过AI大模型组件的加持,我们可以实现我们传统编程实现不了的动态用户需求传入,意味着我们可以通过自然语言来动态调用我们的条件流程,而不是通过传统编程的固定条件匹配和调用。1.接下来是一个条件判断,其实就是通过上一步的大模型解析后的结果来选择条件执行:1.先来说不满足的情况,下一步又会调用一个大模型组件,其提示词其实是跟我们这个AI Bot的提示词是几乎一样的,因为目前Coze的工作流设计只能支持一个开始节点的输入和一个结束节点的输出,不能说不满足条件下就不附加结果变量来单独输出结果,所以这就是为什么我要在这里加多一个大模型组件的原因,如果不懂这个意思你看下一步的步骤就明白原因了:1.上一步的结果出来后,就直接到了我们的结束节点了,先给大家看看是什么样子的:这是具体的回答内容全内容:

Coze 全方位入门剖析 - 免费打造自己的 AI Agentn(国内版)

1.第二步是通过使用大模型的组件来解析用户输入的信息是否满足这个大模型的提示词条件,如下图,这里提一点的是,通过AI大模型组件的加持,我们可以实现我们传统编程实现不了的动态用户需求传入,意味着我们可以通过自然语言来动态调用我们的条件流程,而不是通过传统编程的固定条件匹配和调用。1.接下来是一个条件判断,其实就是通过上一步的大模型解析后的结果来选择条件执行:1.先来说不满足的情况,下一步又会调用一个大模型组件,其提示词其实是跟我们这个AI Bot的提示词是几乎一样的,因为目前Coze的工作流设计只能支持一个开始节点的输入和一个结束节点的输出,不能说不满足条件下就不附加结果变量来单独输出结果,所以这就是为什么我要在这里加多一个大模型组件的原因,如果不懂这个意思你看下一步的步骤就明白原因了:1.上一步的结果出来后,就直接到了我们的结束节点了,先给大家看看是什么样子的:这是具体的回答内容全内容:

Others are asking
AIagent的发展方向
AI Agent 被认为是大模型未来的主要发展方向之一,其发展具有以下特点和阶段: 从原理上看,中间的“智能体”通常是 LLM 或大模型,为其增加了工具、记忆、行动、规划四个能力。目前行业里主要用到的是 langchain 框架,它通过代码或 prompt 的形式将 LLM 与 LLM 之间以及 LLM 与工具之间进行串接。 在人工智能的发展历程中,AI Agent 并非一蹴而就,其发展可分为几个阶段,并受到符号主义、连接主义、行为主义的影响。在人工智能的黎明时期,符号人工智能作为主导范式,以对符号逻辑的依赖著称,代表之作是基于知识的专家系统。其特点是基于逻辑和规则系统,使用符号来表示知识,通过符号操作进行推理。优点是推理过程明确、可解释性强,缺点是知识获取困难、缺乏常识、难以处理模糊性。时间为 20 世纪 50 70 年代。 近期出现的各类 AI 搜索引擎不断颠覆传统搜索引擎,如 perplexity.ai、metaso、360 搜索、ThinkAny 等。AI Agent 在辅助高效处理信息和简便信息表达方面表现出色,例如智能摘要能辅助快速筛选信息,自然语言描述可生成美观可用的图片。在工作流方面,每个人应根据自身情况找到适合的工具,如产品经理可使用 AI 进行用户画像、竞品调研、设计产品测试用例、绘制产品功能流程图等。关于 AI Agent 的未来,曾被认为异想天开的想法都可能成为现实,技术迭代会不断向前。
2025-02-15
AI Agent 或者 工作流, 落地的场景
以下是 AI Agent 或工作流的一些落地场景: Long horizon task 长期任务执行:Agent 能像称职的项目经理,分解大任务为小步骤,保持目标导向并适时调整策略。 多模态理解:Agent 能同时理解文字、图像、声音等多种交流方式,全方位感知世界和任务上下文。 记忆与行动:通过先进的记忆机制,Agent 能积累经验,记住对话、操作步骤和效果,行动更精准高效。 自适应学习:从每次交互中吸取经验,不断完善策略,实现“智慧成长”。 在技术层面,有两条技术路线:以自主决策为核心的 LLM 控制流和以工作流(Workflow)编排为重点的工具集成系统。Anthropic 提出的 MCP(Model Context Protocol)提供了通用接口协议,将外部资源抽象为“上下文提供者”,便于模型与外部世界交互。 工作流驱动的 Agent 搭建,简单情况分为 3 个步骤:规划,包括制定任务关键方法、总结目标与执行形式、分解子任务等;实施,在 Coze 上搭建框架并分步构建和测试功能;完善,全面评估并优化效果。 典型例子如利用 Kimi Chat 进行网页搜索和总结分析。 包括 Agent 自行规划任务执行的工作流路径,适用于简单或线性流程。 多 Agent 协作,如吴恩达通过开源项目 ChatDev 举例,让大语言模型扮演不同角色共同开发应用或复杂程序。 OpenAI 研究主管 Lilian Weng 提出 Agent 的基础架构为“Agent=LLM+规划+记忆+工具使用”,规划包括子目标分解、反思与改进。
2025-02-15
腾讯agent开发
AppAgent 是由腾讯开发的一种基于大型语言模型(LLM)的多模态 Agent 框架。 其主要特点和功能包括: 多模态代理:能够处理和理解多种类型的信息(如文本、图像、触控操作等)。 直观交互:通过模仿人类的直观动作(如点击和滑动屏幕)来与手机应用程序交互,能够在手机上执行各种任务,例如在社交媒体上发帖、帮用户撰写和发送邮件、使用地图、在线购物,甚至进行复杂的图像编辑等。 对于之后模仿数据的反利用也有不错的应用场景,例如互联网或 AI 或涉及到原型+UE 的工作都可以在基于模仿数据的基础上进行反推,进而让设计出的产品原型和 UE 交互更优解。 AppAgent 在 50 个任务上进行了广泛测试,涵盖了 10 种不同的应用程序。该项目由腾讯和德州大学达拉斯分校的研究团开发。 相关链接: 官方网站:https://appagentofficial.github.io 相关报道:https://x.com/xiaohuggg/status/1738083914193965528?s=20
2025-02-14
什么是Agent
Agent(智能体)是一种能够在环境中自主感知、思考并采取行动以实现特定目标的实体。它可以是软件程序,也可以是硬件设备。 从产品角度来看,比如我们的 Agent 可以是一个历史新闻探索向导,具有知识渊博、温暖亲切、富有同情心的性格,主导新闻解析和历史背景分析。为使角色更生动,可设计背景故事,明确其起源、经历和动机,定义性格特点、说话方式和风格,以及设计对话风格和角色技能。 在结合大型语言模型(LLM)的情况下,LLM Agent 能够利用大型语言模型的自然语言处理能力,理解用户的输入,并在此基础上进行智能决策和行动。其组成部分包括规划(负责将复杂任务分解成可执行的子任务,并评估执行策略)、记忆(包括短期记忆用于存储对话上下文,长期记忆存储用户特征和业务数据)、工具(如 API 调用、插件扩展等辅助手段)和行动(将规划和记忆转换为具体输出,包括与外部环境的互动或工具调用)。 在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,还包括规划(子目标分解、反思完善)、记忆(短期记忆、长期记忆)和工具使用(调用外部 API 获取额外信息)等方面。
2025-02-14
什么是agent
Agent(智能体)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 从产品角度看,比如我们的 Agent 可以是一个历史新闻探索向导,具有知识渊博、温暖亲切、富有同情心的性格,主导新闻解析和历史背景分析,为使其角色更生动,可设计背景故事,明确角色背景和身份、性格和语气、互动方式、技能等。 在结合大型语言模型(LLM)的情况下,LLM Agent 是指结合大型语言模型和自主智能体特性的系统,能够利用大型语言模型的自然语言处理能力,理解用户输入,并进行智能决策和行动。其组成部分包括规划(负责将复杂任务分解成可执行的子任务,并评估执行策略)、记忆(包括短期记忆用于存储对话上下文,长期记忆存储用户特征和业务数据)、工具(如 API 调用、插件扩展等辅助手段)、行动(将规划和记忆转换为具体输出,包括与外部环境的互动或工具调用)。 在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,还包括规划(子目标分解、反思完善)、记忆(短期记忆、长期记忆)、工具使用(调用外部 API 获取额外信息)等方面。
2025-02-12
谷歌agent
谷歌在今年的 Next 与 I/O 大会上连续发布了自己的 Agent 战略,并将其置于公司的 AI Stack 之上,Agent 成为接下来 Google App 的衍生。例如,从客服 Agent 到员工 Agent 再到代码 Agent,以及最新的 Google Plan Search,能够自动化多步骤执行搜索任务。如找附近有折扣的理发店并完成预约,它能理解需求、自动分解任务,调用 Google Map 等工具完成请求。这得益于 Gemini 1.5 Pro 的推理能力已达 GPT4 水平。2024 年,Anthropic 的 Computer Use、智谱 AI 的 AutoGLM 以及 Google 的 Gemini 2.0 都展示了 AI Agent 的突破性进展。在应用场景方面,Google 的 Gemini 还涉及 GUI Agent 类,为 Agent 提供更强的视觉感知能力。
2025-02-12
什么是AI板块的“自然语言处理”
自然语言处理(NLP)是人工智能和语言学领域的分支学科。它包括让电脑对输入的语言进行认知和理解,将其转化为有意义的符号和关系,并根据目的进行处理。自然语言处理涵盖了多个方面和步骤,基本包括认知、理解、生成等部分。其旨在处理和运用自然语言,例如把计算机数据转化为自然语言。自然语言处理涉及多门学科,如概率论、统计学、逼近论、凸分析、计算复杂性理论等。在计算机科学中,为了让计算机能理解和处理自然语言这种复杂多样、具有语境依赖性和模糊性的信息,引入了 Token 化的概念,将复杂的文本数据分解成更小、更易于计算机处理的单元,如单词、短语或标点符号,从而更有效地进行语言处理和提取意义。
2025-01-04
我想用coze搭建一个智能体,关于自然语言课程的期末复习指南,要将我的教材导入扣子作为知识库,智能体支持用户提问,搜索知识点,结合知识库和互联网搜索的内容给出问答,需要使用多智能体或工作流,使用卡片功能进行显示,请给出我搭建这个智能体的步骤
以下是使用 Coze 搭建一个关于自然语言课程期末复习指南智能体的步骤: 1. 访问 Coze 官网(https://www.coze.cn),注册并登录。 2. 点击页面左上角的⊕,通过【标准创建】填入智能体的基本信息。 3. 了解 Bot 开发调试界面: 人设与回复逻辑(左侧区域):设定智能体的对话风格、专业领域定位,配置回复的逻辑规则和限制条件,调整回复的语气和专业程度。 功能模块(中间区域): 技能配置: 插件:扩展智能体的专业能力,如计算器、日历等工具。 工作流:设置固定的处理流程和业务逻辑。 图像流:处理和生成图像的相关功能。 触发器:设置自动化响应条件。 知识库管理: 文本:存储文字类知识材料。 表格:结构化数据的存储和调用。 照片:图像素材库。 记忆系统: 变量:存储对话过程中的临时信息。 数据库:管理持久化的结构化数据。 长期记忆:保存重要的历史对话信息。 文件盒子:管理各类文档资料。 交互优化(底部区域): 开场白:设置初次对话的问候语。 用户问题建议:配置智能推荐的后续问题。 快捷指令:设置常用功能的快速访问。 背景图片:自定义对话界面的视觉效果。 预览与调试(右侧区域):实时测试智能体的各项功能,调试响应效果,优化交互体验。 4. 设定智能体的人设与回复逻辑后,为智能体配置对应的技能,以保证其可以按照预期完成目标任务。例如,以获取 AI 新闻的智能体为例,需要为它添加一个搜索新闻的接口来获取相关新闻。具体操作如下: 在智能体编排页面的技能区域,单击插件功能对应的+图标。 在添加插件页面,选择相关功能,然后单击新增。 修改人设与回复逻辑,指示智能体使用相应插件来搜索所需内容。 (可选)为智能体添加开场白,让用户更好地了解智能体的功能。开场白功能目前支持豆包、微信公众号(服务号)。 5. 配置好智能体后,在预览与调试区域中测试智能体是否符合预期。可单击清除图标清除对话记录。 6. 完成测试后,将智能体发布到社交渠道中使用。具体操作如下: 在智能体的编排页面右上角,单击发布。 在发布页面输入发布记录,并勾选发布渠道。 单击发布。 更多内容,请访问 Coze 官方文档: 英文版:https://www.coze.com/docs/welcome.html 中文版:https://www.coze.cn/docs/guides/welcome
2024-12-20
LlamaIndex 对比 langchain Extraction 哪个对提取自然语言中的格式化数据更好一些?
如果您需要从自然语言文本中提取格式化数据,LLamaIndex 可能是一个更好的选择,因为它提供了各种 Pydantic 程序,可以帮助您将输入的文本字符串转换为结构化的 Pydantic 对象。 然而,如果您的任务不涉及自然语言,或者您更熟悉 LangChain 的工作方式,那么 LangChain Extraction 也可能是一个不错的选择,因为它可以帮您提取非自然语言文本中的格式化数据。
2024-04-01
我现在是一家公司的实习生,目前参与的项目是AI法律大模型未来法官助手,这个系统的功能是提取案件中的信息,自动填写到预设好的要件中,比如犯罪嫌疑人的姓名、身份证号、出生日期、事发经过等等,我该如何去学习提示词
以下是关于如何学习提示词运用的建议: 1. 理解提示词的作用:提示词为模型提供上下文和指示,其质量直接影响模型输出质量。 2. 学习提示词的构建技巧: 明确任务目标,用简洁准确的语言描述。 给予足够的背景信息和示例,帮助模型理解语境。 使用清晰的指令,如“解释”“总结”“创作”等。 对特殊要求应给予明确指示,如输出格式、字数限制等。 3. 参考优秀案例:研究和学习已有的优秀提示词案例,在领域社区、Github 等资源中获取大量案例。 4. 实践、迭代、优化:多与语言模型互动,根据输出结果提高提示词质量,尝试各种变体,比较分析输出差异,持续优化提示词构建。 5. 活用提示工程工具:如 Anthropic 的 Constitutional AI 等,辅助构建和优化提示词。 6. 跟上前沿研究:提示工程是前沿研究领域,持续关注最新研究成果和方法论。 精心设计的提示词能最大限度发挥语言模型的潜力,多实践、多学习、多总结,终可掌握窍门。同时,在与大模型交互时,方法论不是关键,不断尝试和交互是最佳方法,无需严格遵循规则,未达成目的就锲而不舍地再尝试或更换模型。另外,用 Markdown 格式清晰表达问题有助于提高与模型交流的效率和精确性,其具有结构清晰、格式化强调、适用性广等优点。
2024-12-23
可以根据制度梳理流程的AI
以下是关于可以根据制度梳理流程的 AI 的相关信息: 基于 Agent 的创造者学习方向:以大语言模型为大脑,串联所有已有的工具和新造的 AI 工具,着重关注在创造能落地 AI 的 agent 应用。 Agent 工程(基础版)的迭代范式: 梳理流程:梳理工作流程 SOP,并拆解成多个单一「任务」和多个「任务执行流程」。 「任务」工具化:自动化每一个「任务」,形成一系列的小工具,让机器能完成每一个单一任务。 建立规划:串联工具,基于 agent 框架让 bot 来规划「任务执行流程」。 迭代优化:不停迭代优化「任务」工具和「任务执行流程」规划,造就能应对实际场景的 Agent。 关于 AI 在 DevOps 流程中的作用:AI 可以在 DevOps 中承担指定计划、拆分任务和调用工具的角色,但目前无法完全评定任务结果的正确性和质量。现阶段更靠谱的方式是让 AI 辅助完成部分任务(如画原型图、设计表结构、写自动化测试代码),但需要人类验证后才能进行下一步操作。完全依赖 AI 可能带来风险,如生产环境出错或被黑客恶意利用漏洞。 关于 ChatGPT 的记忆能力:ChatGPT 支持记忆功能,可通过摘要保存对话内容以延续角色和对话风格,但新开会话可能在高推理任务中效果更好。建议将角色设定和部分对话作为样例(fewshot)放入提示词中,以优化生成质量。 学习 GPT 的妙招:结合视频教程、文字转录和基础资料,通过 ChatGPT 讲解学习内容。更好的方式是角色反转,自己当老师,ChatGPT 当学生,通过提问互动和查漏补缺能有效提升学习效果。
2025-02-12
能生成流程图吗
生成流程图有以下几种方式: 1. 可视化拖拽: 代表产品有:(web 工具)、visio(本地软件)。 优点:直观。 缺点:需要花时间在布局上。 2. 语法渲染成图形: 代表语法:。 优点: 只用关注逻辑,文本即图形,方便直接嵌入在 markdown 文件中,比如在用 tyora、markdown 写文档时。 多样性,不同渲染引擎可渲染成多种样式。 缺点:有点抽象。 可以用 ChatGPT 来帮忙,通过自然语法转成图形语法,生成流程如下: 1. 确定制作目标。 2. 通过自然语法描述逻辑。 3. 在线校验测试是否成功。 此外,还有“超级微信机器人”可以通过 GPT4 tubro(128k)大模型、Dalle 3 绘画、智能 Bing&Google 搜索、谷歌搜图、GPT4v 识图、B站 等各大网站专用搜索、Generate MindMap 生成流程图来支撑其强大的能力,但使用微信机器人存在封号危险,且操作需依法合规,注意数据处理等问题。
2025-02-11
企业准备把钉钉迁移打企业微信,智能人事 审批流程 考勤打卡这些都能依靠企业微信达到吗
企业微信具备智能人事、审批流程和考勤打卡等功能。但具体能否完全满足您企业从钉钉迁移过来后的需求,还需要根据您企业的业务特点和具体要求进行评估和适配。一般来说,企业微信在这些方面提供了较为全面的解决方案,但在实际应用中可能会存在一些差异和需要调整的地方。
2025-02-10
你好,我想做一个用照片做视频的博主,请帮我构思一套详细的视频号起号的框架、流程、以及每一步骤的详细执行指导
很抱歉,目前没有关于用照片做视频的博主起号的相关内容。但我可以为您提供一个大致的框架和流程,以及每一步骤的简要执行指导供您参考: 框架: 1. 明确视频号定位:确定您的视频号是以何种风格、主题展示照片视频,例如旅行照片集、宠物照片故事等。 2. 内容策划:规划好要发布的照片系列,制定一个长期的内容计划。 3. 品牌塑造:包括起一个吸引人的账号名称、设计独特的头像和封面。 流程: 1. 账号注册与设置:选择一个易记且与主题相关的账号名,完善个人简介,突出您的特色和价值。 2. 素材准备:整理和筛选高质量的照片,并对其进行分类。 3. 视频制作:使用合适的软件将照片制作成精彩的视频,添加音乐、特效等元素增强吸引力。 4. 发布策略:选择合适的时间发布视频,保持一定的发布频率。 每一步骤的详细执行指导: 账号注册与设置: 账号名要简洁、有特色,能反映您的视频主题。 个人简介要清晰地介绍您的视频号定位、能为观众带来什么价值。 素材准备: 从大量照片中挑选出清晰、美观、有故事性的照片。 按照主题或时间顺序对照片进行分类,方便后续制作。 视频制作: 学习并熟练使用视频编辑软件,如剪映等。 选择适合照片风格的音乐,注意版权问题。 适当添加转场效果、文字说明等,提升视频的观赏性。 发布策略: 分析目标受众的活跃时间,例如晚上或周末。 初期可以每周发布 12 个视频,根据反馈逐渐调整频率。 希望以上内容对您有所帮助,祝您成功!
2025-02-08
一、学习内容 1. AI工具的操作:了解并掌握至少一种AI工具的基本操作,如智能代码、流程管理、智能报表、数据分析、图像识别、文字生成等。 2. AI工具在本职工作的应用:思考并提出AI工具如何帮助你更高效地完成本职工作,包括但不限于提高工作效率、优化工作流程、节约成本、提升交付质量等。 3. AI工具在非本职工作的潜力推演:探索AI工具如何在你的非本职工作领域发挥作用,比如在公司管理、团队领导、跨部门合作、团队发展以及市场研究等方面。提出这些工具如何被有效利用,以及它们可能带来的改
以下是关于学习 AI 的相关内容: 一、AI 工具的操作 要了解并掌握至少一种 AI 工具的基本操作,如智能代码、流程管理、智能报表、数据分析、图像识别、文字生成等。 二、AI 工具在本职工作的应用 思考并提出 AI 工具如何帮助更高效地完成本职工作,包括但不限于提高工作效率、优化工作流程、节约成本、提升交付质量等。 三、AI 工具在非本职工作的潜力推演 探索 AI 工具在非本职工作领域,如公司管理、团队领导、跨部门合作、团队发展以及市场研究等方面的作用,思考如何有效利用这些工具以及它们可能带来的改变。 四、学习路径 1. 对于不会代码的学习者: 20 分钟上手 Python+AI,在 AI 的帮助下可以完成很多基础的编程工作。若想深入,需体系化了解编程及 AI,至少熟悉 Python 基础,包括基本语法(如变量命名、缩进等)、数据类型(如字符串、整数、浮点数、列表、元组、字典等)、控制流(如条件语句、循环语句)、函数(定义和调用函数、参数和返回值、作用域和命名空间)、模块和包(导入模块、使用包)、面向对象编程(类和对象、属性和方法、继承和多态)、异常处理(理解异常、异常处理)、文件操作(文件读写、文件与路径操作)。 2. 新手学习 AI: 了解 AI 基本概念,建议阅读「」部分,熟悉术语和基础概念,浏览入门文章。 开始 AI 学习之旅,在「」中找到为初学者设计的课程,推荐李宏毅老师的课程,也可通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获证书。 选择感兴趣的模块深入学习,掌握提示词技巧。 实践和尝试,理论学习后通过实践巩固知识,在知识库分享实践作品和文章。 体验 AI 产品,如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人,了解其工作原理和交互方式。 五、工具推荐 1. Kimi 智能助手:ChatGPT 的国产平替,上手体验好,适合新手入门学习和体验 AI。不用科学网、不用付费、支持实时联网,是国内最早支持 20 万字无损上下文的 AI,对长文理解做得好,能一次搜索几十个数据来源,无广告,能定向指定搜索源(如小红书、学术搜索)。 PC 端: 移动端(Android/ios): 2. 飞书:汇集各类 AI 优质知识库、AI 工具使用实践的效率工具,助力人人成为效率高手。
2025-02-07
我想利用现有的20万条政务相关数据,基于qwen2.5 70B大模型构建自己的政务服务大模型,该如何做,请给出具体实现流程,谢谢!
以下是基于 qwen2.5 70B 大模型利用 20 万条政务相关数据构建政务服务大模型的大致流程: 1. 数据准备:对 20 万条政务相关数据进行清洗、预处理和标注,使其适合模型学习。 2. 模型选择与下载:选择 qwen2.5 70B 大模型,并按照相关说明进行下载。 3. 本地部署: 启动 OpenAI 兼容的 API 服务,根据硬件配置设置相关参数,如 tensorparallelsize(设置使用的 GPU 数量)、maxmodellen(定义最大输入序列长度)、maxnumbatchedtokens(设置 Chunked Prefill 的块大小)、maxnumseqs(限制并发处理的序列数量)。 遇到问题可参考相关内容。 4. 与模型交互:可以使用 Curl 或 Python 等方法与部署的模型进行交互,对于更高级的使用方式,可以探索如之类的框架。 5. 模型训练:模型训练是一个复杂且计算量极大的过程,需要大量的计算资源和时间。 需要注意的是,构建大模型是一个复杂的任务,需要具备一定的技术知识和经验。在实际操作中,可能会遇到各种问题,需要不断调试和优化。
2025-02-06