Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

Perplexity AI如何?有什么独特之处?

Answer

Perplexity AI 是一家专注于开发新一代AI搜索引擎的公司,创立于 2022 年 8 月,由前 OpenAI 研究科学家 Aravind Srinivas 与 前 Meta 研究科学家 Denis Yarats(Perplexity CTO)等合伙人共同创办。它的搜索引擎采用了大型语言模型(LLM)技术,可以更好地理解和回答用户的自然语言查询。

优势

  • 理解能力强:Perplexity的LLM模型能够深入理解查询的语义,而不仅仅是匹配关键词,从而提供更准确和相关的结果。
  • 生成式回答:它可以生成通顺的自然语言回答,而不是简单返回网页链接和片段。这使得结果更易于理解和使用。
  • 个性化和上下文感知:Perplexity可以根据用户的历史查询和偏好来个性化结果,提供更加贴合需求的答复。

劣势

  • 训练成本高:训练大型LLM模型需要大量的计算资源和高质量的训练数据,成本可能较高。
  • 可解释性差:LLM的工作原理较为黑箱,很难解释为什么会给出某个结果,缺乏透明度。
  • 潜在的偏差和不当内容:由于训练数据的局限性,LLM可能会产生偏见或不当内容。

独特之处 Perplexity将LLM技术应用于搜索引擎领域,试图颠覆传统的基于关键词匹配的搜索范式,为用户提供更自然和智能的搜索体验。它还融合了个性化和上下文感知等功能,努力成为新一代的"智能助手"。

总的来说,Perplexity凭借LLM的强大语义理解能力,为搜索引擎带来了新的可能性,但也面临着一些技术和伦理挑战。

Content generated by AI large model, please carefully verify (powered by aily)

References

Others are asking
零基础学习ai
以下是为零基础学习 AI 提供的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 知识库提供了很多实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,还有一个案例供您参考:二师兄来自上海,是典型的 80 后,房地产行业从业二十年,计算机零基础。2024 年 2 月,他在七彩虹的售后群中,因老哥分享用 AI 绘画的心得,要了 SD 秋叶安装包,下载了教学视频,迈出了 AI 学习的第一步。之后他不断学习和实践,如在 3 月啃完 SD 的所有教程并开始炼丹,4 月与小伙伴探讨 AI 变现途径,5 月加入 Prompt battle 社群,开始 Midjourney 的学习。
2025-02-18
AI数据分析
以下是关于 AI 数据分析的相关内容: ChatGPT 助力数据分析: 本文重点介绍了 AI 与数据分析结合的应用,通过实际案例与相关技巧,描述了 ChatGPT 如何助力数据分析。 实现了两种方式支持多维数据分析: SQL 分析:分析平台自身使用情况,输入一句话可分析用户配置图表相关数据。用户描述想分析的内容,后台连接 DB,附带表结构信息让 AI 输出 SQL 语句,校验为 SELECT 类型后执行返回结果数据,再传给 GPT 分析,最后输出分析结论和建议并返回前端页面渲染图表。 个性化分析:平台支持上传数据,可提供数据信息辅助分析,前端解析文件后传给 GPT 分析,后续步骤与 SQL 分析一致。 分析完成后展示结果数据的图表和分析结论,图表支持折线图和柱状图可随意切换。 生成式 AI 季度数据报告 2024 月 1 3 月: 作者包括郎瀚威 Will、张蔚 WeitoAGI、江志桐 Clara 等。 报告涵盖总体流量概览、分类榜单、文字相关(个人生产力、营销、教育、社交)、创意相关(图像、视频)、音频大类、代码大类、Agent、B2B 垂类等方面。 涉及数据准备、分类标准图谱准备、赛道分析、竞争分析等内容。
2025-02-18
找一个能够生成音乐的AI。我给一个曲名(比如《生日快乐歌》),他就能给我生成不同风格的音乐供我下载。
以下为您推荐能够根据给定曲名生成不同风格音乐并供下载的 AI 工具: 1. Suno AI: 地址:https://www.suno.ai/ 简介:被誉为音乐界的 ChatGPT,能够根据简单提示创造出从歌词到人声和配器的完整音乐作品。 账号要求:需要拥有 Discord、谷歌或微软中的至少一个账号,并确保网络环境稳定。 订阅信息: 免费用户每天 50 积分,每首歌消耗 5 积分,每天可创作 10 首歌曲,每次点击生成两首歌曲。 Pro 用户每月 2500 点数(大约 500 首歌),按月每月 10 美元,按年每月 8 美元,每年 96 美元。 Premier 用户每月 10000 点数(大约 2000 首歌),按月每月 30 美元,按年每月 24 美元,每年 288 美元。 操作模式: 默认模式:包括关闭个性化、歌曲描述、乐器开关、模型选择 v3 等设置。 个性化模式:开启个性化定制,可填写歌词、曲风、标题等。 生成歌词:可使用大模型如 Kimi、GPT、文心一言等生成。 开始生成:填写好所需内容后点击 Create,等待 2 3 分钟即可。 下载:生成后可下载。 2. Udio:由前 Google DeepMind 工程师开发,通过文本提示快速生成符合用户音乐风格喜好的高质量音乐作品。地址:https://www.udio.com/ 3. YuE:支持从歌词生成 5 分钟高质量音乐(含人声与伴奏),多语言支持(中、英、日、韩),覆盖多种音乐风格与专业声乐技术。详细介绍:https://www.xiaohu.ai/c/xiaohuai/yue5
2025-02-18
什么是aigc
AIGC(人工智能生成内容)是一种利用人工智能技术生成各种类型内容的应用方式。它能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容,在内容创作、广告、媒体等领域有着广泛的应用。 具体来说,AIGC 包括以下方面: 1. 文字生成:使用大型语言模型(如 GPT 系列模型)生成文章、故事、对话等内容。 2. 图像生成:使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等。 3. 视频生成:使用 Runway、KLING 等模型生成动画、短视频等。 AIGC 作为一种强大的技术,能赋能诸多领域,但也存在多重潜在的合规风险。目前,我国对 AIGC 的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》等形成了共同监管的形势。 AIGC 主要分为语言文本生成、图像生成和音视频生成。语言文本生成利用马尔科夫链、RNN、LSTMs 和 Transformer 等模型生成文本,如 GPT4 和 Gemini Ultra。图像生成依赖于 GANs、VAEs 和 Stable Diffusion 等技术,应用于数据增强和艺术创作,代表项目有 Stable Diffusion 和 StyleGAN 2。音视频生成利用扩散模型、GANs 和 Video Diffusion 等,广泛应用于娱乐和语音生成,代表项目有 Sora 和 WaveNet。此外,AIGC 还可应用于音乐生成、游戏开发和医疗保健等领域,展现出广泛的应用前景。 例如 AI 文本续写,文字转图像的 AI 图、AI 主持人等,都属于 AIGC 的应用。类似的名词缩写还有 UGC(普通用户生产),PGC(专业用户生产)等。能进行 AIGC 的产品项目也很多,能进行 AIGC 的媒介也很多,包括且不限于: 1. 语言文字类:OpenAI 的 GPT,Google 的 Bard,百度的文心一言,还有一种国内大佬下场要做的的 LLM 都是语言类的。 2. 语音声音类:Google 的 WaveNet,微软的 Deep Nerual Network,百度的 DeepSpeech 等,还有合成 AI 孙燕姿大火的开源模型 Sovits。 3. 图片美术类:早期有 GEN 等图片识别/生成技术,去年大热的扩散模型又带火了我们比较熟悉的、生成质量无敌的 Midjourney,先驱者谷歌的 Disco Diffusion,一直在排队测试的 OpenAI 的 Dalle·2,以及 stability ai 和 runaway 共同推出的 Stable Diffusion。
2025-02-18
多维表格AI接入分享课程有回放么
多维表格 AI 接入分享课程有回放。例如,在“1204|微信超级 AI 知识助手教学(上)—智谱共学营智能纪要”中提到直播有回放。在“飞书多维表格 AI 共学解锁更强大的豆包 2024 年 12 月 21 日”中,王大仙表示分享有回放,可顺着搭建流程使用。
2025-02-18
我的毕业论文是AIGC的陶寺遗址空间可视分析技术研究,请问有何思路
对于您的毕业论文主题“AIGC 的陶寺遗址空间可视分析技术研究”,以下是一些可能的思路供您参考: 首先,深入了解陶寺遗址的相关背景和特点,包括其历史、文化、地理等方面的信息,这将为后续的分析提供基础。 其次,研究 AIGC 技术在空间可视分析方面的应用现状和前沿成果,了解相关的算法、模型和工具。 然后,考虑如何收集和整理陶寺遗址的空间数据,例如通过实地测量、卫星图像、考古记录等方式获取数据,并对数据进行预处理和清洗。 接着,运用合适的 AIGC 技术和算法,对陶寺遗址的空间数据进行可视化呈现,例如创建三维模型、绘制地图、生成动态图像等,以直观展示遗址的空间特征和关系。 在可视化的基础上,进行深入的分析,例如探究遗址的布局规律、空间结构、功能分区等,挖掘潜在的历史和文化信息。 最后,对研究结果进行评估和验证,确保其准确性和可靠性,并提出进一步的改进和优化方向。 希望这些思路能对您有所帮助,祝您顺利完成毕业论文!
2025-02-18
perplexity
Perplexity 是一个与自然语言处理相关的指标。 首先,文章提到作者因项目需要关注 transformer 相关进展,并计划从算法(包括 NLP、CV、多模态下的 transformer 网络结构)、训练(transformer 的分布式训练)、部署(transformer 的 tvm 量化与推理)五个方面介绍 transformer,本系列的第一篇侧重介绍 NLP 中常用的 perplexity 指标的含义。 文中会先从熟悉的 entropy 指标开始,逐步介绍针对自然语言的改进版 Ngram Entropy 指标,最后介绍 perplexity 指标。 关于 perplexity 指标是否越低越好,在 XLNet 论文中提到越低的 perplexity 可能会损害下游任务的精度,而在 RoBERTa 论文中则指出对于像 RoBERTa 这样 encoderonly 结果的网络,perplexity 越低在 NLU 任务表现就越好。因此,perplexity 是不错的引领性指标,但最终的判别标准还是得结合下游任务表现一起考察。 总的来说,Perplexity、CrossEntropy、Bits Per Character 都是围绕熵来刻画语言模型的信息量和复杂度。最后作者强烈推荐阅读《Evaluation Metrics for Language Modeling》,并表示自己刚上手 transformer 相关内容,难免有错,欢迎指正。如果想了解更多关于 transformer 的知识,可以关注作者。
2025-01-22
perplexity.ai这个东西是什么东西
Perplexity AI 是一家专注于开发新一代 AI 搜索引擎的公司,创立于 2022 年 8 月,由前 OpenAI 研究科学家 Aravind Srinivas 与前 Meta 研究科学家 Denis Yarats(Perplexity CTO)等合伙人共同创办。 其优势包括: 1. 理解能力强:能够深入理解查询的语义,而非仅仅匹配关键词,提供更准确和相关的结果。 2. 生成式回答:可以生成通顺的自然语言回答,而非简单返回网页链接和片段,使结果更易于理解和使用。 3. 个性化和上下文感知:能根据用户的历史查询和偏好个性化结果,提供更贴合需求的答复。 劣势有: 1. 训练成本高:训练大型 LLM 模型需要大量计算资源和高质量训练数据,成本较高。 2. 可解释性差:LLM 的工作原理较为黑箱,难以解释为何给出某个结果,缺乏透明度。 3. 潜在的偏差和不当内容:由于训练数据的局限性,可能产生偏见或不当内容。 独特之处在于将 LLM 技术应用于搜索引擎领域,试图颠覆传统基于关键词匹配的搜索范式,为用户提供更自然和智能的搜索体验,还融合了个性化和上下文感知等功能,努力成为新一代的“智能助手”。 此外,Perplexity AI 还是一款人工智能教育应用程序,允许用户将问题格式化为线程以便消化信息,可作为 Web 应用程序、Android 应用程序和 IOS 应用程序使用。有趣的是,其创始人曾在 Google AI 工作。
2024-11-28
perplexity公司
Perplexity 是一家专注于开发新一代 AI 搜索引擎的公司,创立于 2022 年 8 月,由前 OpenAI 研究科学家 Aravind Srinivas 与前 Meta 研究科学家 Denis Yarats(Perplexity CTO)等合伙人共同创办。 其优势包括: 1. 理解能力强:能够深入理解查询的语义,而非仅仅匹配关键词,提供更准确和相关的结果。 2. 生成式回答:可以生成通顺的自然语言回答,而非简单返回网页链接和片段,使结果更易于理解和使用。 3. 个性化和上下文感知:能根据用户的历史查询和偏好个性化结果,提供更贴合需求的答复。 劣势有: 1. 训练成本高:训练大型 LLM 模型需要大量计算资源和高质量训练数据,成本较高。 2. 可解释性差:LLM 的工作原理较为黑箱,难以解释为何给出某个结果,缺乏透明度。 3. 潜在的偏差和不当内容:由于训练数据的局限性,可能产生偏见或不当内容。 独特之处在于将 LLM 技术应用于搜索引擎领域,试图颠覆传统基于关键词匹配的搜索范式,为用户提供更自然和智能的搜索体验,还融合了个性化和上下文感知等功能,努力成为新一代的“智能助手”。 在成立的 18 个月内,Perplexity 达到了 10 亿美元估值。但它与其他由 LLM 驱动的服务一样面临着幻觉问题等挑战,同时人工智能驱动的搜索也存在可靠性问题。
2024-11-14
我想找一个类似perplexity的AI工具
以下是一些类似 Perplexity 的 AI 工具: 1. ChatGPT Plus:用户可开启 web browsing 功能实现联网。 2. Bing Copilot:作为 AI 助手,旨在简化在线查询和浏览活动。 3. You.com 和 Neeva AI:搜索引擎,提供基于人工智能的定制搜索体验,并保持用户数据的私密性。 此外,在移动设备上,美图秀秀(https://apps.apple.com/us/app/meituphotoeditoraiart/id416048305)、SNOW(https://apps.apple.com/us/app/snowaiprofile/id1022267439)和 Adobe Express(https://apps.apple.com/us/app/adobeexpressaiphotovideo/id1051937863)也是相关的应用。Perplexity AI 是一款人工智能教育应用程序,可作为 Web 应用程序、Android 应用程序和 IOS 应用程序使用,其创始人曾在 Google AI 工作,于 2022 年 8 月创立该公司。它专注于提供简明、实时和准确的查询答案,并引用来源,在访问时长方面略胜于 ChatGPT,用户参与度很高。
2024-08-31
Perplexity的网站进不去
以下是关于 Perplexity 的一些信息: Perplexity 是一款聊天机器人式的搜索引擎,允许用户用自然语言提问,使用生成式 AI 技术从各种来源收集信息并给出答案。以 Perplexity.AI 为例,我们可以利用其强大的搜索功能来获取信息。首先,访问该网站并使用其搜索功能。为了获得更专业和深入的搜索结果,可以启用 Pro 功能(搜索框右边的开关),该功能每天都会提供一定次数的免费使用。如果您经常使用,可以考虑开通会员服务以享受更多便利。但目前您提到 Perplexity 的网站进不去,可能是由于网络故障、服务器维护等原因导致的,您可以稍后再尝试访问。
2024-08-13
perplexity
Perplexity 是一款基于给搜索引擎加上 LLM 以带来更优信息检索体验的思路而开发的产品,其目标是取代 Google 搜索。该思路的技术实现并不复杂,贾扬清大佬用不到 500 行 Python 代码就实现了一个基础版。作者最近在 Coze 上体验手搓 AI Bot,也顺手搓了一个极简版的 Perplexity,只写了 36 行“粘合剂”代码和 41 行提示词。此外,Claude 官方文档中提到了处理幻觉的方法,包括允许 Claude 说“我不知道”、告诉 Claude 只有在非常确信回答正确时才回答问题、让 Claude 在回答问题之前“逐步思考”、在回答之前给 Claude 留出思考的空间、让 Claude 在长篇文档中找到相关引文并使用这些引用来回答等。
2024-06-21