Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI硬件

Answer

以下是关于 AI 硬件的相关信息:

  • 扣子 AI 工坊将于 3 月 1 日在深圳举办硬件专场活动。活动亮点包括硬件实验室、硬件场景分享会、开发者体验营、硬件厂商需求墙等。分享嘉宾有曾德钧、刘琰、颜伟志等。可扫描二维码报名,报名时间为即日起至 2025 年 2 月 26 日,现场有礼品。
  • Will's GenAI 硬件榜 2024 年 8 月发布,榜单受众为 GenAI 硬件创始人、投资人、从业者等,以北美市场的销量、影响力为主,本次更新完善了相关数据和分类榜,更多榜单可通过链接访问。
  • 峰瑞报告中提到,在 ToP 领域,峰瑞投资的冰鲸科技是一家 AI 智能硬件公司,推出了集成端侧 GPU 的旗舰产品 ZimaCube。ToB 方面,AI 应用进入企业内部可从“独立业务模块”和“通用技能模块”切入。
Content generated by AI large model, please carefully verify (powered by aily)

References

3月1日扣子AI工坊-硬件专场

硬件接入AI成本高、延迟高、能力弱?智能体与硬件的标准化连接难以实现?无需担心扣子推出全套硬件方案,强强联合,轻松实现1+1>2!将DeepSeek最新模型接入AI硬件在真实世界与AI畅聊定义硬件专属智能体……3月1日,我们在深圳,邀你一起探索AI硬件的更多可能!✨扫码报名✨和扣子官方现场交流、在实验室体验智能硬件、现场体验硬件全链路开发过程……更多活动,等你线下共同解锁![heading1]🌟活动亮点[content]1.硬件实验室现场设置智能硬件展示,来看有哪些脑洞大开的产品?1.硬件场景分享会扣子硬件场景最佳实践+2025年硬件解决方案分享1.开发者体验营开发者现场开发AI硬件!现场提供硬件开发板,可以即刻上手60分钟内完成“唤醒-交互-响应”全链路开发,40分钟作品现场展示解说。展示作品的开发者可以获得扣子周边礼物!1.硬件厂商需求墙与硬件厂商、开发者、扣子官方同学现场交流![heading1]👥分享嘉宾(排名不分先后)[content]曾德钧猫王妙播音响创始人/设计师刘琰机智云联合创始人兼CTO颜伟志扣子开放体系技术负责人🙋活动报名扫描下方二维码进行活动报名,现场还有拍立得、音响、扣子周边等礼品等你拿!报名时间:即日起至2025年2月26日报名二维码

Will's GenAI硬件榜 2024年8月

欢迎阅览由郎瀚威Will发起的GenAI硬件榜单。GenAI硬件的定义:利用了GenAI技术,主要是LLM,包括在音频生成,翻译,视觉采集并解读,和硬件结合,以可穿戴为主,逐步渗透的新品类硬件,以Meta雷朋眼镜为代表。比较大的GenAI硬件,如AI PC,AI手机本期暂未收录。本期以可穿戴,AI助理相关硬件为起点。榜单受众:GenAI硬件创始人,投资人,从业者等。榜单标的:以北美市场的视角,销量,影响力为主。榜单初心:随着Meta眼镜的成功,GenAI硬件爆发在即,本榜单每月从多角度围观这一现象。旨在给创业者提供参考。本次更新(9.19):1)更新亚马逊销量,独立站流量,新品发布,融资信息,排序标准以媒体综合指数改为Tiktok热度2)完善挂件,戒指,眼镜等分类榜数据[heading1]GenAI硬件榜(2024年8月)[content]总共15个重要榜单,更多榜单文末点击“阅读原文”免费访问或直接访问飞书https://zw73xyquvv.feishu.cn/wiki/IqcqwTDiYiKttNktBg3cg8HgnLhhttps://zw73xyquvv.feishu.cn/wiki/IqcqwTDiYiKttNktBg3cg8HgnLh数据来源:google,tiktok,twitter,亚马逊对于榜单内容有疑问想交流的GenAI硬件创始人,或者想合作转载内容的公众号博主,请加微信,或者在本文末留言。目录:1、GenAI硬件北美公开销量榜2、GenAI硬件亚马逊销量榜

展望2025,AI行业有哪些创新机会? | 峰瑞报告

在ToP领域,峰瑞投资的冰鲸科技,是一家AI智能硬件公司,为全球创作者和专业玩家设计创新的私有云产品。除了提供面向音视频素材管理和小型工作室协作的高效解决方案外,冰鲸科技还推出了集成端侧GPU的旗舰产品——ZimaCube。(欢迎阅读《[从1980年以来的硅谷PC创新,看AI硬件的时代机遇》](https://mp.weixin.qq.com/s?__biz=MzIzMDAzMTgzOA==&mid=2650859726&idx=1&sn=0d800e6b720da51a8dbb83e2ece6d59f&scene=21#wechat_redirect))2、ToB——从“独立业务模块”和“通用技能模块”切入当前,AI应用如果要成功进入企业内部,必须充分考虑企业现有组织流程和管理架构的复杂性。AI应用或许可以选择两个切入点,一是纵向的独立业务模块,即针对企业特定场景或明确业务需求的解决方案,能够以“模块化”方式快速部署,独立运行,并为某一业务环节提供即时价值。二是横向的通用技能模块,即适用多个部门的通用专业技能模块,这种策略不仅能够快速融入企业的运作体系,满足企业的多种需求,还能降低实施和推广的难度。2024年7月,美国投资机构A16z发布了一篇文章《“Salesforce之死”:为什么AI将改变下一代销售技术》,深入探讨了人工智能在变革企业销售技术中的潜力。文章配图列举了一些可用的AI应用产品,其中大多数符合前述“独立业务模块”和“通用技能模块”的特点。需要注意的是,ToB和ToP也存在一定交集,在GPT-4o的帮助下,我们梳理了两者的核心区别:

Others are asking
比较适合语音克隆的有哪些AI
以下是一些适合语音克隆的 AI: :能将书面内容转化为引人入胜的音频,并实现无缝分发。 :提供专业音频、语音、声音和音乐的扩展服务。 (被 Spotify 收购):提供完全表达的 AI 生成语音,带来引人入胜的逼真表演。 :利用合成媒体生成和检测,带来无限可能。 :一键使您的内容多语言化,触及更多人群。 :生成听起来真实的 AI 声音。 :为游戏、电影和元宇宙提供 AI 语音演员。 :为内容创作者提供语音克隆服务。 :超逼真的文本转语音引擎。 :使用单一 AI 驱动的 API 进行音频转录和理解。 :听起来像真人的新声音。 :从真实人的声音创建逼真的合成语音的文本转语音技术。 :生成听起来完全像你的音频内容。 此外,还有以下相关信息: DubbingX2.0.3 中的海螺 AI 配音可以进行语音克隆,操作时需上传语音、命名声音、选择语言,原音频若有背景音乐最好在剪影中去除以保证生成的音色模型效果好且纯净。去除原音频背景杂音可通过打开剪映,按以下步骤操作:打开剪映,点击开始创作,导入原始音频或视频。 StepAudio:130B 语音文本多模态模型开源,集成语音识别、语义理解、对话生成、语音克隆、音频编辑、语音合成等功能,成本低质量高的语音克隆,支持“蒸馏”技术简化为更轻量版。
2025-03-31
钉钉AI怎么样
钉钉在 AI 方面有一定的应用和功能: 1. 钉钉会议管理功能:利用自然语言处理、数据分析等技术,对会议进行管理,包括会议安排、签到、记录等,以提高会议效率。例如自动记录会议内容,生成会议纪要,方便参会人员回顾。 2. 可以通过自建应用接入 AI 相关能力: 创建应用:进入,登录后点击创建应用,填写相关信息,添加“机器人”能力,配置机器人信息后发布,点击“点击调试”会自动创建测试群聊,还可进行版本管理与发布。 项目配置:点击凭证与基础信息获取 Client ID 和 Client Secret 两个参数,参考项目,将相关配置加入项目根目录的 config.json 文件,并设置 channel_type:"dingtalk",运行项目前需安装依赖。 使用:与机器人私聊或将机器人拉入企业群中均可开启对话。
2025-03-31
AI发展史
AI(人工智能)的发展历程如下: 1. 起源阶段(1943 年):心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续的神经网络奠定基础。 2. 1950 年:计算机先驱图灵最早提出图灵测试,作为判别机器是否具备智能的标准。 3. 1956 年:在美国达特茅斯学院,马文·明斯基和约翰·麦凯西等人共同发起召开达特茅斯会议,人工智能一词被正式提出,并作为一门学科确立下来。 此后近 70 年,AI 的发展起起落落。 AI 技术发展历程还包括: 1. 早期阶段(1950s 1960s):专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 当前 AI 前沿技术点有: 1. 大模型:如 GPT、PaLM 等。 2. 多模态 AI:视觉 语言模型如 CLIP、Stable Diffusion,以及多模态融合。 3. 自监督学习:自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习:元学习、一次学习、提示学习等。 5. 可解释 AI:模型可解释性、因果推理、符号推理等。 6. 机器人学:强化学习、运动规划、人机交互等。 7. 量子 AI:量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。
2025-03-31
ai agent 案例
以下是一些关于 AI Agent 的案例和相关信息: Agentic Workflows 是强大的工具,能帮助自动化完成需决策和推理的复杂任务。文中回顾了 AI Agents 的核心组成部分,包括记忆、工具和推理能力,讨论了常见工作流模式,如规划、工具使用和反思,还概述了两个特别有效的用例,以及市场上已有的两个 AI Agents 的工作流,并探讨了其优势、局限性和挑战。 最早实现让 LLM 自己做自动化多步骤推理想法原型的是 AutoGPT 和 BabyAGI 两个开源的智能代理。随着 LLM 的推理能力和速度提高,Agent 的思路已被很多创业公司和科技巨头用到产品中,如 Devin、Google 等。 以下是一些 Agent 构建平台: Coze:新一代一站式 AI Bot 开发平台,适用于构建各类问答 Bot,集成丰富插件工具。 Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及部署 Copilot 到各种渠道。 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者打造产品能力。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识等,并访问第三方数据和服务或执行工作流。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 钉钉 AI 超级助理:依托钉钉优势,在处理高频工作场景方面表现出色。
2025-03-31
ai思维导图提示词
以下是关于 AI 思维导图提示词的相关内容: 在文生图的提示词中,例如“”,来告诉 AI 不要的内容。 在 AI 作图的创作中,有以下要点: 1. 趣味性与美感概念:趣味性可通过反差、反逻辑、超现实方式带来视觉冲击,美感需在美术基础不出错前提下形式与内容结合。 2. 纹身图创作:强调人机交互,对输出图片根据想象进行二次和多次微调,确定情绪、风格等锚点再发散联想。 3. 魔法少女示例:以魔法少女为例,发散联想其服饰、场景、相关元素等,并可采用反逻辑反差方式。 4. 提示词编写方法:用自然语言详细描述画面内容,避免废话词,Flux 对提示词的理解和可控性强。 5. 实操演示准备:以未发布的 Lora 为例,按赛题需求先确定中式或日式怪诞风格的创作引子。 6. 人物创作过程:从汉服女孩入手,逐步联想其颜色、发型、妆容、配饰、表情、背景等元素编写提示词。 优化和润色提示词(Prompt)的方法包括: 1. 明确具体的描述:使用更具体、细节的词语和短语来描述需求,而非过于笼统的词语。 2. 添加视觉参考:在 Prompt 中插入相关图片参考,提高 AI 理解意图和细节要求的能力。 3. 注意语气和情感:用合适的形容词、语气词等调整 Prompt 的整体语气和情感色彩。 4. 优化关键词组合:尝试不同的关键词搭配和语序,找到最准确表达需求的描述方式。 5. 增加约束条件:添加限制性条件,如分辨率、比例等,避免意外输出。 6. 分步骤构建 Prompt:将复杂需求拆解为逐步的子 Prompt,引导 AI 先生成基本结构,再逐步添加细节和完善。 7. 参考优秀案例:研究流行且有效的 Prompt 范例,借鉴写作技巧和模式。 8. 反复试验、迭代优化:多次尝试不同写法,并根据输出效果反馈持续优化完善。 总之,编写高质量 Prompt 需要不断实践、总结经验,熟悉 AI 模型的能力边界,保持开放思维尝试创新描述方式。
2025-03-31
ai提示词
以下是关于 AI 提示词的相关信息: 存在“PUA 式”AI 提示词,如 Codeium & Windsurf 的相关提示词,以虚构的道德胁迫和极端情景迫使 AI 生成高质量代码,引发网友反感和不适。 有一些关于提示词的项目合集,如 Awesome DeepSeek Integrations 项目,可帮助开发者启发灵感和探索新的 AI 应用场景。 对于 SD 新手,有多个提示词模板的相关网站,如 Majinai、词图 PromptTool AI 绘画资料管理网站、Black Lily 等。 星流一站式 AI 设计工具中: 提示词用于描绘画面,输入语言支持中英文,通用大模型与基础模型 F.1、基础模型 XL 使用自然语言,基础模型 1.5 使用单个词组。 写好提示词的要点包括内容准确,包含人物主体、风格、场景特点等;调整负面提示词以帮助 AI 理解不想生成的内容;利用“加权重”功能让 AI 明白重点内容;还可使用辅助功能,如翻译、删除所有提示词、会员加速等。
2025-03-31
coze开发硬件接入ai
如果您想开发硬件接入 Coze 智能体,以下是一些相关信息: 在服务器设置方面,对于 chatgptonwechat(简称 CoW)项目,可点击“Docker”中的“编排模板”中的“添加”按钮。备注说明版可借用“程序员安仔”封装的代码。将编译好的内容复制进来,在“容器编排”中“添加容器编排”,选择在“编排模板”里创建的“coze2openai”,若无法正常启动,可查看文档后面的“常见问题”。 关于计划,包括弄共学、做网页连接 Coze 等,涉及网页、小程序、App、桌面应用、浏览器插件等方面,还提到了硬件相关的工作安排。 在入门 Coze 工作流方面,首先要明确任务目标与执行形式,包括详细描述期望获得的输出内容(如文本、图像、音频等形式的数据,以及具体格式和结构、质量标准),预估任务的可行性,确定任务的执行形式。例如对于一篇文章,可参照特定框架进行微调,评估任务可行性,结合使用习惯确定预期的执行形式。
2025-03-27
有coze硬件的案例吗
以下是一些关于 Coze 硬件的案例: 1. 一泽 Eze:用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力。 分步构建和测试 Agent 功能:首先进入 Coze,点击「个人空间工作流创建工作流」,打开创建工作流的弹窗。根据弹窗要求,自定义工作流信息。点击确认后完成工作流的新建。左侧「选择节点」模块中,实际用上的有插件、大模型、代码。按照流程图,在编辑面板中拖入对应的 LLM 大模型、插件、代码节点,即可完成工作流框架的搭建。 2. 90 分钟从 0 开始打造你的第一个 Coze 应用:证件照 2025 年 1 月 18 日副本。 智能纪要:Code AI 应用开发教学,背景是智能体开发从最初的 chatbot 只有对话框,到有了更多交互方式,因用户需求扣子推出了 AI 应用,其低代码或零代码的工作流等场景做得较好。 3. 大雨:【场景驱动】企业的哪些重复性任务,最适合用 Coze 循环节点来解决? 案例展示:出海品牌设计师。早起智能体的逻辑通过工作流承载,比如让 AI 出图以后,希望在它的基础上再修改,直到满意为止,这种情况没有循环节点,整个工作流会非常复杂。从这个案例可以明显感受到,在智能体的交互上,循环节点的出现,带来极大的可能性。部分工作流的截图体现出 Coze 在实际业务场景上,具有非常巨大的商业价值。
2025-03-25
AI 硬件与软件市场趋势
以下是关于 AI 硬件与软件市场趋势的相关信息: 定见咨询发布的《人工智能行业 AI 硬件全景洞察报告:下一波 AI 创新机遇在物理空间》指出,AI 硬件将经历传统硬件+AI、AI 驱动型硬件到 AI 作为基础设施的三个阶段,深圳凭借产业集群优势成为全球 AI 硬件创新的热点地区。AI 推动软硬件协同创新,硬件产品的高价值区向软件偏移,软件端价值交付从订阅模式转向服务付费。报告还分析了 AI 硬件的分类、智能化简史、市场趋势、竞争格局、细分品类市场情况,以及典型团队的创新路径与策略。 机器之心的进化/理解 AI 驱动的软件 2.0 智能革命方面,在虚拟世界中做模拟,Meta 和 Nvidia 自然不能缺席。佐治亚理工学院的计算机科学家 Dhruv Batra 及 Meta AI 团队创造了名叫 AI 栖息地(AI Habitat)虚拟世界,目标是提高模拟速度。Nvidia 的 Omniverse 平台提供支持的 NVIDIA Isaac Sim 是一款可扩展的机器人模拟器与合成数据生成工具,能提供逼真的虚拟环境和物理引擎,用于开发、测试和管理智能代理。随着参与到这个领域的公司越来越多,数据和训练的需求也会越来越大,势必会有新的适合 EAI 的基础模型诞生。ARK Invest 在他们的 Big Ideas 2022 报告中提到,到 2030 年,硬件和软件的融合可以让人工智能训练的成本以每年 60%的速度下降,AI 硬件和软件公司的市值可以以大约 50%的年化速度扩大,从 2021 年的 2.5 万亿美元剧增到 2030 年的 87 万亿美元。 在 2024 年,人工智能几乎是所有软件公司和终端客户的首要任务。AI 软件公司将有效地有三种起源和结果:运行在现有软件之上的 AI 工具;运行在现有软件之上的 AI 工具,有机会取代现有的软件;成为劳动力的 AI 工具。我们正处于软件吞噬和增强劳动力的最初阶段。
2025-03-25
神经网络需要哪些硬件设施才能搭建起来
搭建神经网络通常需要以下硬件设施: 1. 图形处理单元(GPU):如英伟达的 GTX 580 GPU,其具有大量快速小内核,适合矩阵乘法和高内存带宽,能显著提高训练速度。 2. 专用芯片:如 ASIC 芯片、neuromorphic chips 等,更易于在芯片上实现神经网络的指令集,适用于低能耗的智能设备。 此外,搭建神经网络的硬件设施还具有以下特点和优势: 1. 同质化计算:典型的神经网络主要由矩阵乘法和线性整流函数(ReLu)两种操作组合而成,相比传统软件的指令更简单,核心代码(如矩阵乘法)的正确性和性能验证更容易。 2. 对芯片更友好:指令集小,在芯片实现上更轻松,能改变低能耗智能设备的应用场景。 3. 常量级的运行时间:每次前向迭代的计算量高度一致,不存在手写复杂 C++代码中的各种执行分支,能避免未预料的无限循环。 4. 常量级的内存消耗:几乎无需动态分配内存,减少与硬盘的 swap 和内存泄漏的可能。 5. 高度可移植:一连串的矩阵乘法操作更容易在各种计算机环境下运行。
2025-03-23
我是一名硬件工程师 如何让ai快速理解我的原理图并优化
以下是关于让 AI 理解原理图并优化的相关知识: 1. 在 AI 硬件发展方面,存算一体的方式是未来的趋势。对比人脑,其能耗低,使用存算一体的芯片有望诞生全新算法,运行几百亿参数的大模型的最佳架构也是存算一体,因其避免了数据搬运。 2. 大模型在通用知识方面较强,但对专业领域知识了解不足。将大模型与私域知识结合有 5 种方法:重新训练(拿私域数据重新训练大模型)、微调(拿私有数据 finetuning 大模型)、RAG(将知识库里的知识搜索送进大模型)、关键词工程(写好提示词)、加长 Context(当 Context 能无限长时,可将知识和记忆 prefill 到 Context 里)。学术界中,做深度学习的人偏向于用 RAG,做过搜索的人偏向于用 Long Context。 3. 在 Trae 优化代码方面,当请求“帮我把当前的代码给优化一下”时,请求先到 Trae 自己的服务器,服务器再请求对应模型返回数据。不会发送本地代码文件,只发送“文件名”加“问题”,且在最开始 Trae 打开项目进行索引构建时,已在云端构建好项目文件。 对于您作为硬件工程师让 AI 快速理解原理图并优化的需求,目前可能需要进一步探索如何将原理图的特征和相关信息转化为适合 AI 处理和理解的形式,或许可以借鉴上述将专业知识与大模型结合的方法,以及利用高效的数据库和模型架构来提高处理效率。
2025-03-23
我是AI小白,没有编程基础;也没有理工基础,对硬件不了解,但是我对AI和硬件结合的内容很感兴趣。请为我调出相关内容
以下是为您整理的关于 AI 和硬件结合的相关内容: AI 技术的学习路径: 偏向技术研究方向: 数学基础:包括线性代数、概率论、优化理论等。 机器学习基础:如监督学习、无监督学习、强化学习等。 深度学习:涵盖神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:包含语言模型、文本分类、机器翻译等。 计算机视觉:涉及图像分类、目标检测、语义分割等。 前沿领域:例如大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:包括论文阅读、模型实现、实验设计等。 偏向应用方向: 编程基础:如 Python、C++等。 机器学习基础:监督学习、无监督学习等。 深度学习框架:如 TensorFlow、PyTorch 等。 应用领域:自然语言处理、计算机视觉、推荐系统等。 数据处理:数据采集、清洗、特征工程等。 模型部署:模型优化、模型服务等。 行业实践:项目实战、案例分析等。 AI 硬件的发展趋势: 在端到端算法的时代,不应该继续使用冯诺依曼架构。 在存算一体(在存储单元里做计算)的芯片之上,一定会诞生一种全新的算法。对比人脑,使用存算一体的方式是未来 AI 硬件下一步的发展趋势,运行一个几百亿个参数的大模型最好的架构一定是存算一体的架构,因为它避免了所有的数据的搬运。 大模型与私域知识结合的方法: 按对模型改造侵入性划分,从左到右分为:重新训练、微调、RAG、关键词工程。 重新训练:拿私域数据重新训练大模型。 微调:拿私有数据 finetuning 大模型。 RAG:将知识库里的知识搜索送进大模型。 关键词工程:写好提示词。 加长 Context:当 Context 能无限长的时候,理论上讲可以把关于您的知识和记忆都 prefill 到 Context 里边去。 学术界中,做深度学习的人偏向于用 RAG,以前做过搜索的人偏向于用 Long Context。
2025-03-22